生物传感器
什么是生物传感器

1.什么是生物传感器?主要由哪几部分组成,分别有什么功能.生物传感器的定义:生物传感器是一种精致的分析器件,它结合一种生物或者生物衍生的敏感器件与一只理化换能器,能给产生间断或连续的数字电信号,信号强度与被分析物成比例。
组成:生物敏感膜(分子识别元件),换能器作用过程是,待分析物与生物敏感膜发生反应,产生物理、化学量的变化,物理化学量的变化传递给换能器,转换为可被计算机识别的电信号。
生物敏感膜的种类:酶,全细胞,组织,细胞器,免疫物质,具有生物亲和能力的物质,核算,模拟酶。
以上生物敏感膜均是人工膜,而非天然生物膜换能器:其作用是将各种生物的、化学的和物理的信息转化成电信号。
可以用作转化的信息有,离子变化,电阻、电导变化,光学变化,质量变化,力学变化,气体分压变化。
2.什么是酶联免疫测定法?描述其两种检测方法,可画图说明.并举一两个例子。
夹心法:先将抗体固定在膜的表面,加入待检测的抗原,与固定抗体结合,因为抗原至少含有两个结合点,可以再结合一个被酶标记的抗体,加入底物,根据标记到抗体上的酶与底物的颜色,荧光,氧化还原电位等信号检测待测抗原的量。
竞争法:将与待测抗原全部覆盖到固定膜上,然后加入待测样品和酶标记的抗体,待反应完全后冲洗固定膜,再检测固定膜上的抗体的量,因为样品中的抗原已被冲走,剩下的抗体是与样品中抗原竞争时结合到被固定抗原上的抗体量。
3.DNA的三级结构?一级结构:脱氧核糖核苷酸的排列顺序二级结构:根据碱基互补配对形成的双螺旋连。
现在已发现的螺旋分为B型,A型,C型,Z型,它们在螺距,直径,每个螺旋的碱基数和旋转的方向上不同。
三级结构:DNA双螺旋继续扭曲变形,并与蛋白质分子结合形成核小体,压缩进染色体内。
4.生物敏感元件的固定化方法有哪几种?分别有什么特点.酶和DNA分别常用哪几种固定方法.5.NH3电极属于第一代生物传感器的哪种基础电极,说明其作用原理.6.分析裸电极上Fe(CN)63-/4-的循环伏安曲线,并指出由其能得到什么信息。
生物传感器概述及应用

膜或电极电荷状态的变化
膜电位法、电极电位法
质量变化
压电元件法
阻抗变化
电导率法
热变化(热效应)
热敏电阻法
光谱特性变化(光效应)
光纤和光电倍增管
将识别元件上进行的生化反应中消耗或生成的化学物质,或产生的光或热等转换为可用信号,并呈现一定的比例关系。
感受器是生物传感器的心脏。制备分两方面工作,一是选择最佳载体材料(需活化);二是在载体表面固定化亲和配基(非共价和共价) 换能器感知固定化配基与待测物结合产生的微小变化,其质量好坏决定了传感器的灵敏度。
酶具有识别特定分子的能力
1962年,
酶与电极结合起来测定酶的底物
固定化葡萄糖氧化酶(GOD)+氧电极
葡萄糖电极
196
1956, L.C. Clark : oxygen electrode 1962, L.C. Clark : biosensor concept (electrochemical sensor + enzyme transducers as membrane = enzyme electrode)
oxygen electrode enzyme electrode
酶 辅酶 维生素 抗原 抗体
生物功能膜(酶、微生物、细胞器、组织、细胞、抗原、抗体)
待测物质
扩散作用
固定化生物敏感膜层
分子识别
生物学反应
电信号
换能器
生物传感器的分子识别元件
分子识别元件
生物活性单元
酶膜
各种酶类
微生物传感器可用于测量发酵工业中的原材料和代谢产物。还用于微生物细胞数目的测定。利用这种电化学微生物细胞数传感器可以实现菌体浓度连续、在线的测定。
生物传感器

生物传感器生物传感器是利用电化学、光学或热学等原理构成对某种或某些特定分子如糖、氨基酸、DNA、激素等有特定响应的检测器,它由对被测物有高选择性的分子识别能力的膜和能把膜上进行的生物化学反应中消耗或生成的化学物质或产生的光、热转变为电信号的换能器所构成。
生物传感器并不专指用于生物技术领域的传感器,它的应用领域还包括环境监测、医疗卫生喝食品检验等。
生物传感器是用生物活性材料与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法也是物质分子水平的快速、微量分析方法。
生物传感器克服了过去分析酶法试剂费用高和化学分析繁琐复杂的缺点,但是专一性强、分析速度快、准确度高、操作系统比较简单、成本低,有的生物传感器能够可靠地指示微生物培养系统内的供氧状况和副产物的产生。
21世纪是生命科学的世纪,随着“人类基因组工作草图”的完成、纳米生物技术和纳米微电子加工技术的出现,使得无论在原理上还是加工技术上,都将为生物传感器的发展带来巨大的变革。
生物传感器作为一类特殊的化学传感器,它是以生物活性单元作为生物敏感基元,对被测目标物具有高度选择性的检测器。
它通过各种物理、化学型信号转换器捕捉目标物与敏感基元之间的反应,然后,将反应的程度用离散或连续的电信号表达出来,从而得出被测物的浓度。
固定化微生物也越来越多地被用作生物传感器的敏感材料,于是产生了微物传感器。
微生物传感器主要由两部分组成——固定化微生物膜和转换器,将这两部分组合在一起便构成了微生物传感器。
微生物传感器与酶传感器相比,价格更便宜、使用时间更长、稳定性更好,微生物传感器是由固定微生物膜及电化学装置组成,微生物膜的固定化法与酶的固定方式相同。
微生物的菌株比分离提纯的酶的价格低得多,因而制成的传感器便于推广普及。
微生物细胞内的酶在适当环境下活性不易降低,因此微生物传感器的寿命更长。
即使微生物体内的酶的催化活性已经丧失,也还可以因细胞的增殖使之再生。
生物传感器.pptx

返回
上页
下页
图库
10.1.2 生物传感器的类型
生物传感器可以根据其分子识别元件的敏感物 质分为:酶传感器、微生物传感器、组织传感 器、细胞传感器和免疫传感器。还可以根据换 能器和测声型生物传感器等。生物传感器的分 类如图10-1所示。
返回
上页
下页
图库
▪
图10-1 生物传感器的基本结构
返回
上页
下页
生物传感器通常将生物物质固定在高分子膜等 固体载体上,例如酶、微生物组织、动物细胞、 底物、抗原、抗体等,被识别的生物分子作用 于生物功能性人工膜(生物传感器)时,将会 产生生理变化或化学变化,换能器将此信号转 换为电信号,从而检测出待测物质。转换包括 电化学反应、热反应、光反应等,输出为可处 理的电信号。人们把这类固定化的生物物质: 酶、抗原、抗体、激素等,或生物体本身:细 胞、细胞体(器)、组织作为敏感元件的传感 器,称为生物分子传感器或简称生物传感器。
返回
上页
下页
图库
10.3.2 生物场效应晶体管结构类型
一 生物场效应晶体管有分离型和结合型 二 结合型生物场效应晶体管 三 酶场效应晶体管差分输出
返回
上页
下页
图库
10.3.3 应用研究实例
1 尿素测定 2 NAD+-NADH测定 3 肌酸酐测定 4 青霉素测定 5 甲醛测定 6 有机磷农药测定 7 活细胞场效应晶体管 8 昆虫触角天线场效应晶体管 9 其他用途
返回
上页
下页
图库
▪ DNA在固体电极上的固定化方法: ▪ (1)吸附法 ▪ (2)共价键结合法 ▪ (3)自组装膜法
返回
上页
下页
图库
10.2.3 电化学传感器中的标识物
电化学生物传感器的分类

电化学生物传感器的分类
1. 酶电化学生物传感器呀,就像一个极其敏锐的侦探!你看,检测血糖的血糖仪不就是个很好的例子嘛。
它通过酶来识别和转化目标物质,精准得很呢!
2. 免疫电化学生物传感器呢,就如同战士一样坚守着!新冠抗体检测试剂不就是这样嘛,专门去识别那些特定的抗原。
3. 微生物电化学生物传感器呀,嘿,这可神奇了,就好像训练有素的小部队!比如可以检测水质中细菌的传感器,那可真是厉害得很!
4. 组织电化学生物传感器啊,这就像是一个微观的分析大师!像检测脑组织功能的那些传感器就是典型的例子呢。
5. 细胞电化学生物传感器,哇哦,这简直是对细胞的专属关注者嘛!活细胞分析传感器不就是在时刻关注着细胞的一举一动嘛。
6. 核酸电化学生物传感器,可不就是基因的探秘者嘛!基因检测不就是运用它来探索那些神秘的遗传信息呀。
7. 离子电化学生物传感器,像是对离子的敏锐追踪者!比如检测血液中钙离子浓度的传感器,精准得让人惊叹呀。
8. 气体电化学生物传感器,这就是气体的猎手呀!像检测氧气浓度的传感器,那是非常重要的呢!我觉得电化学生物传感器的分类真的好丰富好神奇,每个都有独特的用途和价值,太牛啦!。
生物传感器

6.1 生物传感器的原理
分子印迹传感器
原理:将所研究的目标分子作为模板分子,选择在官能团和空间结构上与之相匹配的功能 单体,让两者间发生共价作用或非共价作用(一 般指氢键、静电引力、范德华力、离子交 换、疏水作用、金属螯合及空间位阻效应等),再加入交联剂通过热聚合或光聚合,在引 发剂和致孔剂的诱发下产生聚合反应,从而形成包裹有目标分子的高聚物,即分子印迹聚 合物。随后,利用物理或化学方法,将目标分子从聚合物内部洗脱出来,以此获得具有与 目标分子形状相同且官能团位置。
6.2 生物传感器快速检测技术的构建
6.2.2 生物传感器固定化技术 6.2.2.1 生物元件的固定方法
针对不同的生物敏感元件,选择合适的固定化方法来实现敏 感元件与载体的有机结合,可以获得较好的固定效果,并保 持敏感元件的生物活性,以此使生物传感器具有较好的灵敏 度、稳定性以及在不同测试环境的使用性。
6.1 生物传感器的原理
细胞生物传感器与生物组织传感器
细胞生物传感器
细胞传感器工作原理为当 活细胞与病原体或毒素特异性 结合后,产生的信息如阻抗特 性、胞外离子浓度、胞外电位 信号等改变,通过换能器转换 为可处理信号,从而定性定量 的检测病原体或毒素的性质。
生物组织传感器
生物组织传感器基本原理 为生物组织中酶的催化反应, 相比于传统的酶传感器其具有 酶活性高,稳定性好和生物材 料易于获取等优点但是存在特 异性不高、重现性不太好、响 应时间较长及使用寿命较短等 问题。
生物传感器 快速检测技术
目录
6.1 生物传感器原理 6.2 生物传感器快速检测技术的构建 6.3 生物传感器快速检测技术的应用现状 6.4 生物传感器发展趋势
6.1 生物传感器的原理
什么是传感器?
生物传感器

在食品分析的应用
• 食品成分分析
• 食品添加剂的分析 • 农药和抗生素残留量分析 • 微生物和生物毒素的检验 • 食品鲜度的检测
在环境监测中的应用
•水质分析:一个典型应用是测定生化需氧量 (BOD),传统方法测BOD需5天,且操作复杂。 1977年Karube等首次报道了BOD微生物传感器, 只需15分钟即能测出结果,连续使用寿命达17天;
优点:酶易被分离,贮存较稳定,所以目前被广泛 的应用。
缺点:1.酶的特异性不高,如它不能区分结构上稍有差异的
梭曼与沙林。
2.酶在测试的过程中因被消耗而需要不断的更换。
2、组织传感器(Tissue Sensor)
测定项目 谷氨酸 组织膜 木瓜 基础电极 CO2 稳定性/ 天 7 线性范围 2×10-4~1.3×102mol/L 3.4×10-5~1.5×103mol/L 1×10-4~1.1×102mol/L
生物传感器的特点
(1) 测定范围广泛。
(2)生物传感器使用时一般不需要样品的预处理,样品中的被测组分的分离和 检测同时完成,且测定时一般不需加入其它试剂。 (3) 采用固定化生物活性物质作敏感基元(催化剂),价值昂贵的试剂可以 重复多次使用。 (4)测定过程简单迅速。 (5) 准确度和灵敏度高。一般相对误差不超过1%。 (6)由于它的体积小,可以实现连续在线监测,容易实现自动分析。 (7) 专一性强,只对特定的底物起反应,而且不受颜色、浊度的影响。 (8)可进入生物体内。 (9)传感器连同测定仪的成本远低于大型的分析仪器,便于推广普及。
• (2)一般不需进行样品的预处理,它利用本身具备 的优异选择性把样品中被测组分的分离和检测 统一为一体,测定时一般不需另加其他试剂,使 测定过程简便迅速,容易实现自动分析
生物传感器与医学应用

生物传感器的类型
▪ 压电生物传感器
1.压电生物传感器是基于压电效应,将生物分子间的相互作用 转化为电信号,实现生物分子检测的传感器。 2.该类型传感器具有灵敏度高、稳定性好等优点,可用于检测 生物分子浓度和活性。 3.压电生物传感器在生物医学、环境监测等领域有广泛的应用 前景。
▪ 热学生物传感器
1.热学生物传感器是通过测量生物分子结合过程中释放的热能 ,实现生物分子检测的传感器。 2.该类型传感器具有无需标记、非破坏性等优点,可用于实时 监测生物分子间的相互作用。 3.热学生物传感器在药物筛选、疾病诊断等领域有重要的应用 价值。
康复医学中的应用
1.生物传感器能实时监测患者的生理指标,为康复治疗提供依 据。 2.通过监测患者的运动和功能恢复情况,评估康复治疗效果。 3.生物传感器技术有助于提高康复治疗的针对性和效率。
在医学中的应用
▪ 远程医疗与健康监测
1.生物传感器可实现远程实时监测,为远程医疗提供便利。 2.患者可在家中自测生理指标,将数据实时传输给医生,提高 医疗效率。 3.生物传感器技术有助于降低医疗成本,提高医疗资源的普及 率。
▪ 生物传感器与可穿戴设备
1.生物传感器可集成于可穿戴设备中,实时监测用户的生理指 标。 2.可穿戴设备结合生物传感器技术,可实现健康监测、运动跟 踪等功能。 3.随着技术的进步,生物传感器在可穿戴设备中的应用将更加 广泛,提高人们的健康水平。
生物传感器与医学应用
生物传感器的优势
生物传感器的优势
生物传感器概述
▪ 生物传感器的应用领域
1.生物传感器在医学、环境监测、食品安全等领域有广泛应用。 2.在医学领域,生物传感器可用于疾病诊断、药物筛选、生物分子相互作用研究等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(一)电位型电极
1 离子选择电极 离子选择性电极是一类对特定的离子呈选择 性响应的电极,具有快速、灵敏、可靠、价廉等 优点,因此应用范围很广.离子选择性电极作为 生物传感器的信号转换器只是它的一种应用,在 生物医学领域也常直接用它测定体液中的一些成 分(如H+,K+,Na+,Ca2+等)。 2 氧化还原电极 氧化还原电极是不同于离子选择电极的另一 类电位型电极。
上面介绍的各种名称都是类别的名称,每一类 又都包含许多种具体的生物传感器。 例如,仅酶电极一类,根据所用酶的不同就有 几十种,如葡萄糖电极、尿素电极、尿酸电极、 胆固醇电极、乳酸电极、丙酮酸电极等等。 就是葡萄糖电极也并非只有一种,有用pH电极 或碘离子电极作为转换器的电位型葡萄糖电极, 有用氧电极或过氧化氢电极作为转换器的电流 型葡萄糖电极等。实际上还可再细分。
2 酶的固定化技术
固定化酶(Immobilized Enzyme)是20世纪60年代发展起来的— 项新技术。以往使用的酶绝大多数是水溶性的酶。这些水溶性酶 催化结束后,极难回收,因而阻碍了酶工业的进一步发展。60年 代后,在酶学研究领域内涌现出固定化酶。它是通过物理的或化 学的手段,将酶束缚于水不溶的载体上,或将酶柬缚在一定的空 间内,限制酶分子的自由流动,但能使酶充分发挥催化作用;过 去曾称其为水不溶酶或固相酶。1971年第一届国际酶工程会上正 式建议采用固定化酶的名称。 从60年代起,固定化酶的研究发展很快,起初人们把注意力 集中在酶的固定化方法研究上,近年来,不但固定化方法和载体 开发有了长足发展,并且已转向它在工业、医药、化学分析、亲 和层析、环境保护、能源开发以及理论研究等方面的应用研究。
(二)电流型电极
电化学生物传感器中采用电流型电极为信号转 换器的趋势日益增加,这是因为这类电极和电 位型电极相比有以下优点: (1)电极的输出直接和被测物的浓度呈线性关系, 不像电位型电极那样和被测物浓度的对数呈线 性关系。 (2)电极输出值的读数误差所对应的待测物浓度 的相对误差比电位型电极的小。 (3)电极的灵敏度比电位型电极的高。
(三)生物传感器分类
1 根据输出信号产生的方式
生物亲和型、代谢型、催化型 2 根据生物分子识别元件上的敏感物质 酶传感器、组织传感器、微生物传感器、免疫传感器、 基因传感器等 3 根据信号转化器
电化学生物传感器、半导体生物传感器、测热型生物 传感器、测光型生物传感器、测声型生物传感器等
4 其他分类 被测对象、大小、功能
1 氧电极
有不少酶特别是各种氧化酶和加氧酶在催化底物反应时要 用溶解氧为辅助试剂,反应中所消耗的氧量就用氧电极来测 定。此外,在微生物电极、免疫电极等生物传感器中也常用 氧电极作为信号转换器,因此氧电极在生物传感器中用得很 广。 目前用得最多的氧电极是电解式的Clark氧电极,Clark氧 电极是由铂阴极、Ag/AgCl阳极、KCl电解质和透气膜所构成。 当将氧电极插入含有溶解氧的溶液后,溶液中的 O2 将扩散, 透过透气膜到达铂阴极表面被还原,还原电流值与溶解氧的 量有关。
(1)生物亲合型传感器
被测物质与分子识别元件上的敏感物质具有
生物亲合作用,即二者能特异地相结合,同时引起
敏感材料的分子结构和/或固定介质发生变化。例
如:电荷、温度、光学性质等的变化。反应式可表 示为: S(底物)+ R(受体) = SR
(2)代谢型传感器 底物(被测物)与分子识别元件上的敏感物 质相作用并生成产物,信号转换器将底物的消耗或 产物的增加转变为输出信号,这类传感器称为代谢 型传感器,其反应形式可表示为: S(底物)+R(受体)= SR → P(生成物)
是一门由生物、化学、物理、医学、电子技术等多种 学科互相渗透成长起来的高新技术。 应用领域:环境监测、食品分析、生物医学、发酵工 业等
2 生物传感器的组成
敏感元件: 酶、抗体、核酸、细 胞等。 转换器: 电化学电极、光学检 测元件、场效应晶体 管、压电石英晶体、 表面等离子共振。
酶 (Enzyme)
FET工作原理
当栅极电压为正时,电场方向是由栅极经绝缘
层指向基片,导电沟道内正电荷(空穴)被排斥 走,负电荷(自由电子)被集中,形成N型导电 沟道。电压变化,电场强度便改变,导电沟的 电阻也发生变化,流经源极后漏极之间经导电 沟道的电流大小也随之而改变。换一种说法: 场效应品体管是利用外加在栅极上的电压所产 生的感应效应来控制电流大小的。
还有很多细菌能与特定底物发生反应,产 生荧光,也可以用这种方法测定底物浓度。
鲁米诺
鲁米诺(luminol),又名发光氨。化学名称为 3-氨基邻苯二甲酰肼,化学式为C8H7N3O2,结构 式见右图,1853年就被合成出来了。1928年发现 它被氧化时能发出蓝光。主要用于现代刑侦的的 血液检测,能检测只有百万分之一含量的血,即 使滴一小滴血到一大缸水中也能被检测出来。过 氧化氢变成水和单氧,单氧再氧化鲁米诺让它发 光。
(1)惰性载体——物理吸附法
此法是酶分子通过极性键、氢键、疏水力或π电子 相互作用等吸附于不溶性载体上。 常用的载体有:多孔玻璃、活性炭、氧化铝、石英 砂、纤维素酯(包括硝酸纤维素、醋酸纤维素)、 葡聚糖、琼脂糖、聚氯乙烯、聚苯乙烯等。 已用此法固定化的酶如:脂肪酶、α-D葡萄糖苷酶、 过氧化物酶等。
固定化酶的研究已取得大量重要成果,发挥着巨大作用,受到 人们极大的关注。其重要原因是它和水溶性酶比较具有以下优 点: (1)极易将固定化酶与底物、产物分离;产物溶液中没有酶的 残留,简化了提纯工艺。 (2)可以在较长时间内反复使用,有利于工艺的连续化、管道 化。 (3)酶反应过程可以严格控制,有利于工艺自动化和微电脑化。 (4)在绝大多数情况下提高了酶的稳定性。 (5)较能适应于多酶反应。 (6)酶的使用效率提高,产物得率提高,产品质量有保障,成 本低。
(二) 生物传感器发展历程
开端于 20 世纪 60 年代。
1962 年克拉克等人报道了用葡萄糖氧化酶 与氧电极组合检测葡萄糖的结果,可认为是 最早提出了生物传感器(酶传感器)的原理。 1967 年 Updike 等人实现了酶的固定化技 术,研制成功酶电极,这被认为是世界上第 一个生物传感器。
4 通常其敏感材料是固定化生物元件,可反复多次使用。
5 准确度高,一般相对误差可达到1%以内。 6 可进行活体分析。 7 传感器连同测定仪的成本远低于大型的分析仪,因而便 于推广普及。
8 有的微生物传感器能可靠地指示微生物培养系统内的供 氧状况和副产物的产生,能得到许多复杂的物理化学 传感器综合作用才能获得的信息。
二、生物传感器的信号转换器
生物传感器中的信号转换器是将分子识别元件 进行识别时所产生的化学的或物理的变化转换 成可用信号的装置。 生物传感器的信号转换器已有许多种,其中到 目前为止用得最多的且比较成熟的是电化学电 极,用它组成的生物传感器称为电化学生物传 感器. 可用作生物传感器的信号转换器的电化学电极, 一般可以分为两种类型。电位型电极和电流型 电极.
DNA
抗体(Antibody)
3 转化器转化为电信号的方式 (1)将化学变化转变成电信号
酶传感器为例,酶催化特定底物发生反 应,从而使特定生成物的量有所增减,用能把 这类物质的量的改变转换为电信号的装置和固 定化酶耦合,即组成酶传感器,常用转换装置 有氧电极、过氧化氢。
(2)将热变化转换成电信号
(三)离子敏场效应晶体管(ISFET, ion-sensitive field effect transistor )
由于电化学理论和半导体理论的相互渗透。所 以出现了一类能够对离子或分子敏感的半导体器件, 并称之为化学敏感半导体器件。其中对离子敏传感 器件研究的成果较多. 原理:三极管工作原理,制ISFET漏电流变化
(四) 生物传感器组成部分
一是生物分子识别元件(感受器),体、核酸、有机物分子等);
二是信号转换器(换能器),主要有电化学电极(如电位、 电流的测量)、光学检测元件、热敏电阻、场效应晶 体管、压电石英晶体及表面等离子共振器件等,当待 测物与分子识别元件特异性结合后,所产生的复合物 (或光、热等)通过信号转换器变为可以输出的电信号、 光信号等,从而达到分析检测的目的。
(五) 生物传感器优点
1 根据生物反应的特异性和多样性,理论上可以制成 测定所有生物物质的传感器,因而测定范围广泛。
2 一般不需进行样品的预处理,它利用本身具备的优 异选择性把样品中被测组分的分离和检测统一为一 体,测定时一般不需另加其他试剂,使测定过程简 便迅速,容易实现自动分析。 3 体积小、响应快、样品用量少,可以实现连续在位 检测。
(一)生物传感器工作原理
待测物质经扩散作用进入固定生物膜敏 感层,经分子识别而发生生物学作用,产生 的信息如光、热、音等被相应的信号转换器 变为可定量和处理的电信号,再经二次仪表 放大并输出,以电极测定其电流值或电压值, 从而换算出被测物质的量或浓度。
1 生物传感器的模型
待测物 敏感元件 转换器
固定化细胞同时也存在—些缺点: (1)必须保持菌体的完整,防止菌体自溶,否则,将影 响产品纯度。 (2)必须防止细胞内蛋白酶对所需酶的分解,同时,需 抑制胞内其他酶的活性副产物的形成。 (3)细胞膜、壁会阻碍底物渗透和扩散。
1 酶的固定化方法
酶的固定化方法有:吸附法;共价键结合法;交联法;包埋法。 如下图:
20世纪 70年代中期后 , 生物传感器技术的成功主要集中 在对生物活性物质的探索、活性物质的固定化技术、生 物电信息的转换以及生物传感器等研究 ,并获得了较快 的进展,如 Divies首先提出用固定化细胞与氧电极配 合,组成对醇类进行检测所谓“微生物电极”。 1977年,钤木周一等发表了关于对生化需氧量(BOD)进行 快速测定的微生物传感器的报告,并在微生物传感器对 发酵过程的控制等方面,作了详细报导,正式提出了对 生物传感器的命名。