数据分析 统计分析 培训PPT

合集下载

数据分析师培训PPT课件完整版)pptx

数据分析师培训PPT课件完整版)pptx
数据分析师需要对收集到的数据进行清洗和整理,去除无效和错误数据,确保数据的准确性和可靠性。
数据清洗和整理
数据分析
数据分析师需要将分析结果以图表、报告等形式呈现出来,帮助组织更好地理解和利用数据。
数据可视化
数据分析师可以在各个行业领域中找到工作机会,如金融、电商、医疗、教育等。
随着数据驱动决策的普及,数据分析师的地位和作用越来越重要,未来的职业发展前景更加广阔。
分类与聚类
掌握常见的分类算法(如决策树、朴素贝叶斯、支持向量机)和聚类算法(如K-means、层次聚类),并能够根据业务需求选择合适的算法。
数据分析师的职业素养与道德规范
THANKS
感谢您的观看

汇报人:可编辑
2023-12-24
数据分析师培训ppt课件完整版)pptx
目录
数据分析师概述数据分析基础知识数据分析工具与技术数据分析实战案例数据分析师技能提升数据分析师的职业素养与道德规范
数据分析师负责收集各种数据,包括市场调查、销售数据、用户行为数据等,为组织提供全面的数据资源。
数据收集
在此添加您的文本17字
在此添加您的文本16字
在此添加您的文本16字
在此添加您的文本16字
在此添加您的文本16字
在此添加您的文本16字
详细描述
数据采集与清洗:收集历史股票数据和市场信息,清洗和整理数据,去除异常值和缺失值。
特征提取与选择:从数据中提取与股票价格相关的特征,如开盘价、收盘价、成交量等,选择对预测有用的特征。
理解参数估计、假设检验、回归分析等统计方法,以及如何根据数据做出合理的预测和推断。
推断性统计
理解概率、随机变量、期望、方差等基本概念,以及常见概率分布(如二项分布、正态分布)的应用。

数据分析(培训完整)ppt课件

数据分析(培训完整)ppt课件
对数据进行初步分析,了解数据 的分布、特征和关系。
结果解释和应用
将分析结果转化为业务洞察和行 动计划,并应用到实际业务中。
模型评估和优化
对模型进行评估和优化,以提高 预测准确性和业务洞察力。
建立模型
根据分析目标,选择合适的数据 分析方法和模型。
02
CATALOGUE
数据收集与整理
数据来源
01
02
格式统一
将不同格式的数据统一 为标准格式,便于后续
分析。
数据转换
对数据进行必要的转换 ,以满足分析需求。
数据存储与备份
选择合适的存储介质
根据数据量、访问频率和安全 性要据进行备份,以防数 据丢失。
数据归档
将不常用的数据归档到低成本 存储设备上。
数据迁移
随着数据量的增长,适时迁移 数据到更高级的存储设备。
03
04
内部数据
公司数据库、CRM系统、日 志文件等。
外部数据
市场调查、公共数据、第三方 数据提供商等。
社交媒体数据
社交媒体平台上的用户生成内 容。
IoT数据
物联网设备产生的数据。
数据清洗与整理
缺失值处理
删除缺失值过多、无法 获取有效信息的记录。
异常值处理
识别并处理异常值,如 离群点、错误数据等。
简洁明了
避免图表过于复杂,突出核心信息 ,减少不必要的元素。
选择合适的图表类型
根据数据特点选择合适的图表类型 ,如柱状图、折线图、饼图、散点图 等。
色彩和字体选择
使用易于阅读的颜色和字体,确保 图表清晰易读。
数据可视化案例分享
销售趋势分析
使用折线图展示不同时间段内的销售数据, 分析销售趋势。

数据分析统计分析培训ppt

数据分析统计分析培训ppt

9
大家应该也有点累了,稍作休息
大家有疑问得,可以询问与交流
10
第二课时: Excel常用操作技巧
Sum:求与 Average:平均值 Max:最大值 Min:最小值 Large:第几大值 Count:计数 Round:保留小数位 Int:取整数位 And Or If
常用 函数
最有价值得函数 Vlookup:查找引用 精确查找:最常用,找到完全
客户性别 客户年龄 消费值 地理区域 使用得产品类型 拆分后在同一个项目里可能拥有若干个呼叫子清单,之所以这样做 就是您会发现在不同得呼叫时段/不同得技能组/不同性别得电话销售 代表/不同得排序方式下,不同得呼叫子清单会有着不同得绩效表现。 这个时候我们要做得只就是根据数据分析得结果相应得去调整各个子 清单,与其最适合得要素进行搭配就可以了!
数据分析在整个电话销售项目中就是贯穿始末得,但主要集中在以 下三个方面:
数据清单得提取
现场活动得监控
项目活动得总结
20
第六课时:数据分析在电话销售项目中得应用
数据清单得提取
电话销售得一个前提条件就是拥有大量得呼叫清单(CALL LIST),呼 叫清单就意味着潜在客户,因此为了寻找合适得清单不少企业甚至宁愿 花费巨额代价去第三方公司购买。而在某些企业得合作案例中我们也 瞧到,客户资源竟作为重要得参股条件为企业获得股权上得利益。但另 一方面我们也注意到,在拥有大量终端客户资源得电信及银行等行业, 在实施电话销售项目时对数据得滥用令人痛心!
案例1:某电信公司在推广新业务得时候,对所有得用户进行地毯式 得外呼,耗时之长、影响之大令人叹为观止。但实际结果就是新增市场 份额得目得就是达到了,但作为一个商业项目来核算得话,收益却就是 负值。用户得满意度及忠诚度也会因为这个不合时宜得电销活动受到 影响,对今后其她电话销售活动得开展埋下了隐患。

数据分析师培训PPT课件完整版

数据分析师培训PPT课件完整版
商业智能定义
角色
在企业和组织中,数据分析师扮 演着数据解读者、业务顾问和决 策支持者的角色。
数据分析师的核心能力
数据处理和分析能力
沟通和表达能力
掌握数据处理和分析技术,包括数据 挖掘、数据清洗、数据可视化等。
能够将复杂的数据分析结果以简洁明 了的方式呈现给非技术人员,具备良 好的沟通和表达能力。
业务理解和洞察能力
从大量数据中提取出有用信息和 知识的过程。
数据挖掘流程
包括数据准备、数据挖掘、结果 评估和应用四个阶段。
数据挖掘技术
分类、聚类、关联规则挖掘、时 间序列分析等。
关联规则挖掘与聚类分析
关联规则挖掘
发现数据项之间的有趣关联和相关性,如购物篮 分析等。
聚类分析
将数据对象分组,使得同一组内的对象相似度较 高,不同组间的对象相似度较低。
颜色搭配等。
可视化工具
介绍常用的数据可视化工具和技术 ,如Excel、Tableau、Power BI 等。
报告制作
阐述数据分析报告的结构和内容, 包括标题、摘要、目录、正文、结 论和建议等部分,同时提供报告制 作的技巧和规范。
数据分析方法与技
03

描述性统计分析
数据可视化
利用图表、图像等方式 直观展示数据分布和特
根据样本数据构造总体参数的 置信区间,评估参数估计的可
靠性。
方差分析
研究不同因素对总体变异的影 响程度,确定各因素对结果的
影响显著性。
回归分析
探究自变量与因变量之间的线 性或非线性关系,建立预测模
型。
机器学习算法与应用
监督学习
通过已知输入和输出数据进行 训练,建立预测模型,如线性 回归、逻辑回归、支持向量机

培训培训数据分析报告(PPT

培训培训数据分析报告(PPT
主要用于文学领域的学术论文引用。
3
Chicago格式
主要用于历史和传记领域的学术论文引用。
THANKS。
通过问卷调查、面谈、绩效评估等方 式收集员工对培训的反馈意见。
分析评估结果和反馈意见,找出培训 中存在的问题和改进点,制定针对性 的改进措施。
定期对培训效果进行跟踪评估,确保 培训持续改进和提高。
05
结论
培训数据分析的价值和意义
提升培训效果
通过数据分析,可以了解 培训过程中存在的问题和 不足,从而针对性地改进 ,提高培训效果。
评估方法
可以采用问卷调查、考试 、绩效评估等多种方式进 行培训效果评估。
效果反馈
将培训效果评估结果及时 反馈给相关人员,以便针 对性地改进和优化培训计 划,提高培训质量。
培训需求预测
预测方法
通过分析组织战略、业务发展、 员工职业规划等因素,结合历史 培训数据和趋势分析,预测未来
培训需求。
需求优先级
SPSS
用于数据分析和统计检验,如 描述性统计、回归分析等。
Python
用于数据清洗、处理和可视化 ,如Pandas、Matplotlib等
库的应用。
R语言
用于数据分析和统计建模,如 基础统计分析、机器学习算法
等。
数据解读和呈现
数据解读
通过对收集到的数据进行统计 分析,得出有意义的结论和解
释。
图表呈现
优化培训计划
数据分析可以帮助我们了 解培训需求和目标受众, 从而制定更符合实际需求 的培训计划。
评估培训投资回报
通过数据分析,可以量化 培训的效果和收益,为企 业的决策提供有力的数据 支持。
对未来培训工作的展望和建议

培训培训数据分析报告(PPT

培训培训数据分析报告(PPT

THANKS 感谢观看
描述性统计分析还可以通过绘制直方图、箱线图等图形,更加直观地展 示数据的分布情况。
推断性统计分析
推断性统计分析是通过样本数据来推 断总体特征的统计方法,包括参数估 计和假设检验。
假设检验是通过样本数据来检验关于 总体的某个假设是否成立,帮助我们 了解总体特征是否符合预期。
参数估计是通过样本数据来估计总体 的参数值,如总体均值和总体比例。
案例二:销售培训数据分析
总结词
销售业绩与培训效果关联性
详细描述
通过对销售培训数据进行分析,探究销售业绩与培训效果之间的关联性。收集销售人员 的培训参与情况、考核成绩和销售业绩数据,利用统计分析方法,如回归分析或相关分 析,分析培训效果与销售业绩之间的关联程度。根据分析结果,优化销售培训计划,提
高销售人员的专业能力和业绩。
总结词
员工参与度、学习效果与满意度
详细描述
通过分析员工在线培训数据,评估员工参与度、学习效果和满意度。使用数据分析工具,如Excel或Python,对 在线培训平台的数据进行可视化分析,以了解员工的学习进度、课程完成率和考试成绩等。同时,结合员工反馈 ,评估在线培训的优缺点,为后续培训提供数据的准确性和 完整性。
数据清洗与整理
数据清洗
去除重复、错误或不完整的数据,对缺失值进行填补或删除 。
数据整理
将数据按照统一格式进行分类、排序和组织,以便进行后续 分析。
数据存储与备份
数据存储
选择合适的存储介质和数据库管理系统,确保数据的安全性和可访问性。
推断性统计分析可以帮助我们了解总 体的特征和规律,从而为决策提供依 据。
数据可视化分析
数据可视化分析是通过图形化手 段呈现数据和分析结果,帮助人 们更加直观地理解数据和分析结

数据分析培训课件精品ppt

数据分析培训课件精品ppt
总结词
探索性分析是对数据进行深入挖掘和探索的方法,旨在发现数据中的潜在规律 和模式。
详细描述
探索性分析通过绘制图表、计算相关系数、进行假设检验等方式,深入挖掘数 据中的潜在规律和模式,为后续的数据分析提供方向和思路。
预测性分析
总结词
预测性分析是利用已知数据和算法对未来进行预测的方法,包括回归分析、时间 序列分析等。
可读性
数据的格式和呈现是否易于理解。
03
数据处理与清洗
数据预处理
01
02
03
数据清洗
去除重复、无效或异常数 据,确保数据质量。
数据转换
将数据从一种格式或类型 转换为另一种格式或类型 ,以便于分析。
数据整合
将多个数据源的数据进行 整合,形成统一的数据集 。
数据缺失处理
删除缺失数据
对于缺失值较多的数据, 可以考虑删除含有缺失值 的记录。
市场风险分析:分析市场 走势和波动性,预测未来 市场风险,提前做好风险 管理准备。
用户行为分析
详细描述
用户画像构建:利用数据分析技 术,构建用户画像,了解用户特 征和需求。
用户行为路径分析:分析用户在 产品或服务中的使用路径和交互 行为,发现潜在优化点。
总结词:通过数据分析,了解用 户需求、偏好和行为模式,优化 产品设计和服务体验。
数据分析培训课件精品
汇报人:可编辑
2023-12-23
目录
• 数据分析基础 • 数据来源与获取 • 数据处理与清洗 • 数据分析方法与技巧 • 数据分析应用场景 • 数据分析案例分享
01
数据分析基础
数据分析的定义与重要性
数据分析的定义
数据分析是指通过统计方法和分 析工具对数据进行分析、挖掘和 解释,以提取有价值的信息和知 识的过程。

《数据分析培训》PPT课件

《数据分析培训》PPT课件
竞品分析
通过分析竞品的销售数据、产品特 点、价格策略等,了解市场动态和 竞争态势,制定针对性的竞争策略 。
金融行业数据分析
风险评估
通过分析金融数据,评估 贷款、投资等业务的信用 风险和市场风险,为决策 提供依据。
市场分析
通过分析金融市场的交易 数据、宏观经济数据等, 预测市场走势,为投资决 策提供支持。
柱状图
用于比较不同类别 之间的数据。
饼图
用于展示各部分在 整体中所占的比例 。
热力图
通过颜色的变化展 示数据的分布和密 度。
数据可视化工具
Excel
适用于基础的数据分析 和可视化。
Tableau
功能强大的数据可视化 工具,支持多种数据源
连接。
Power BI
基于云的数据分析和可 视化工具,支持团队协
客户分析
通过分析客户的金融交易 行为、资产状况等数据, 了解客户需求和偏好,优 化产品设计和服务策略。
制造业数据分析
生产数据分析
通过分析生产过程中的数据,了 解生产效率、质量、成本等方面 的情况,优化生产流程和降低成
本。
供应链分析
通过分析供应链数据,了解供应 商、库存、物流等方面的情况, 优化供应链管理和降低运营成本
数据类型转换
说明如何将数据转换为正确的 数据类型,如将字符串转换为 日期或数字。
数据标准化和归一化
解释标准化和归一化的概念, 并说明在数据分析中的重要性

数据探索
描述性统计分析
介绍均值、中位数、众数、方差等统 计量,并说明如何使用它们来初步了 解数据。
数据可视化
介绍如何使用图表(如直方图、箱线 图、散点图等)来直观展示数据的分 布和关系。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
客户性别 客户年龄 消费值 地理区域 使用的产品类型 拆分后在同一个项目里可能拥有若干个呼叫子清单,之所以这样 做是你会发现在不同的呼叫时段/不同的技能组/不同性别的电话销售 代表/不同的排序方式下,不同的呼叫子清单会有着不同的绩效表现。 这个时候我们要做的只是根据数据分析的结果相应的去调整各个子清 单,与其最适合的要素进行搭配就可以了!
案例1:某电信公司在推广新业务的时候,对所有的用户进行地毯 式的外呼,耗时之长、影响之大令人叹为观止。但实际结果是新增市 场份额的目的是达到了,但作为一个商业项目来核算的话,收益却是 负值。用户的满意度及忠诚度也会因为这个不合时宜的电销活动受到 影响,对今后其他电话销售活动的开展埋下了隐患。
2020/4/26
常用 快捷键
最有价值快捷键
F4:重复上次/上一组操作
快速选取单元格: ctrl+鼠标:选取多个单元 格 ctrl+↑↓←→ :快速切 到行列首尾 ctrl+home/end:快速切到 区域首个/最后一个单元格 shift+↑↓←→ or 鼠标: 选取连续单元格 ctrl+shift+↑↓←→:快 速选取数据区整列整行 Ctrl+1:单元格格式设置
▲ 实事求是,反映真相
数据分析报告罪重要的就是必须具备真实性。
▲ 用词准确,避免含糊
尽量用数据说话,避免使用“大约”“估计”“更多”“更少”等模糊字 眼。
▲ 篇幅适宜,简洁有效
篇幅长的报告不一定是好的报告!
▲ 结合业务,分析合理
一份优秀的分析报告不恩能够仅基于数据而分析问题,或简单地看图说话, 必须紧密结合公司的具体业务才能得出可实行、可操作的建议,否则将是纸上 谈兵,脱离实际。
数据分析的目的是为了管理决策提供依据,并在运营中不断发现 问题及解决问题。当沉浸其中的时候,当绩效不断提升的时候,我们 会发现工作原来是快乐的!
2020/4/26
27
4
第一课时:初步认识数据分析
数据分析方法论
数据分析方法论主要从宏观角度知道如何进行数据分析,从整体上对 数据进行规划,指导。好比如:做题的思路分析,项目的规划,起着火车 头的作用,指引前进的方向。
方法论 工具 技术
数据分析
服装制作
5W2H、4P、逻辑 树等思路分析
复制设计图
EXCEL、 SPSS 剪刀、缝纫机、电
数据分析培训课程安排
一,初步认识数据分析 二,Excel常用操作技巧 三,数据透视表(上机操作) 四,数据图表 五,数据分析报告 六,案例分析—数据分析在电话销售中的应用
2020/4/26
总部-项目信息管理部
1
第一课时:初步认识数据分析
什么是数据分析?
数据分析是指用适当的统计分析方法 对收集来的大量数据进行分析,将 它们加以汇总、理解并消化,以求 最大化地开发数据的功能,发挥数 据的作用。
2020/4/26
15
第五课时: 数据分析报告
5.4 数据分析报告的种类: 专题问题报告:用户流失分析、提升用户消费分析
综合分析报告:企业运营报告、世界人口发展报告
日常数据通报:月度数据报告、日报表
2020/4/26
16
第五课时: 数据分析报告
5.5 数据分析报告的结构:
总述
分述
总结
“总-分-总”结构的开篇部分包括标题页、目录和前沿(主要包括 分析背景、目的与思路);正文部分主要包括具体分析过程与结果;结 尾部分包括结论、建议及附录。
SAS等
熨斗等
交叉分析、相关分 析、回归分析、等
平面、立体剪裁等
(图表来源:小蚊子—黄书)
2020/4/26
5
5W2H分析法
第一课时:初步认识数据分析
2020/4/26
6
第一课时:初步认识数据分析
SWTO矩阵分析法
2020/4/26
7
第二课时: Excel常用操作技巧
提升excel使用效率的四个因素
结论是以数据分析结果为依据得出的分析结果,通常以综述性文字 来说明
建议是根据数据分析结论对企业或业务等所面临的问题额提出的改 进方法,建议主要关注在保持优势及改进劣势等方面。
2020/4/26
17
第五课时: 数据分析报告
5.6 撰写报告时的注意事项:
▲ 结构合理,逻辑清晰
数据分析报告的结构是否合理、逻辑条理是否清晰是决定此份报告成败的 关键因素。
2020/4/26
25
第六课时:数据分析在电话销售项目中的应用
现场活动的监控
根据上述图表中经过分析,我们会得出以下结论:
清单A和清单B在时段a和时段b的成功率是较其他时段要高的, 因此我们可以将这二个清单集中在a和b时段外呼。
而清单C明显看出在时段c和时段d的成功率要相对较高,因此可 以安排在这二个时段进行外呼。
2020/4/26
24
第六课时:数据分析在电话销售项目中的应用
现场活动的监控
接下来我们看看数据分析能在一个项目开始后帮到我们什么?在 现场活动的监控中数据分析主要是帮助我们对呼叫清单的合理利用及 对人员绩效提升。
在清单的合理利用上,除了上述方法进行数据提取外,我们在进 行一个外呼项目的时候还可以按照客户的以下特征将呼叫清单拆分成 不同的子清单:
2020/4/26
22
第六课时:数据分析在电话销售项目中的应用
数据清单的提取
根据上面的图表显示,并不是每个细分群体的客户都是能获得利 润,在125个群体中可能只有21个群体在盈亏平衡点之上,其他却都是 亏损的。如果我们对所有的群体进行外呼,其收益可能是负数。盈利 的那部分群体的收益会被其他亏损的群体所消耗掉。因此在进行大规 模的正式外呼前,如果我们只提取符合获利群体代码的数据,你就会 发现最终的结果会比你撒网式的外呼效果好的多!
2020/4/26
21
第六课时:数据分析在电话销售项目中的应用
数据清单的提取
Mr. Arthur M Hughes曾经提出过一个著名的RFM模式来进行销售 前的目标用户提取,所谓的RFM是指根据客户的最近购买情况、购买频 率、消费金额将用户群切割成不同的细分群体。之所以根据这三个方 面进行分割,是因为根据研究,客户的购买行为绝大部分都基于这三 种行为之上。我们按不同的程度将每种行为划成五个纬度,因此我们 用这种办法可以将客户分割成5×5×5=125个细分群体,每个细分群 体用一个代码来表示,例如112等。在进行某个产品销售之前,我们可 以按照样本提取的原则从每个群体中提取部分数据进行测试,结果你 会发现以下的情况:
2020/4/26
13
第五课时: 数据分析报告
5.2 数据分析报告的写作原则:
一定形式的思路创新, 不要局限于某一种思 维方式。
规范性
数据分析报告中所使 用的名词术语一定要 规范,标准统一,前 后一致,要与业内公 认的术语一致。
创新性
编制过程一定要谨慎, 基础数据必须真实完 整,分析过程必须科 学合理全面,分析结 果可靠,内容要实事 求是。
1,快捷键 ctrl+……
2,函数 vlookup
3,数据透视表
4,图表
2020/4/26
8
第二课时: Excel常用操作技巧
ctrl+a 全选 ctrl+c 复制 ctrl+v 粘贴 ctrl+f 查找 ctrl+P 打印 ctrl+S 保存 ctrl+Z 后撤 ctrl+Y 复制上一步骤 ctrl+enter 多重填充 alt+enter 单元格内换行 F1 帮助 F4 锁定位置 F5 定位 "=ctrl+G
2020/4/26
18
第六课时:数据分析在电话销售项目中的应用
数据分析在电话销售项目中的应用 ——从数据中获取利润
有人说,呼叫中心管理是在进行一场数字游戏!其实在呼叫中心 的运营管理中,是否善于利用数据将是决定管理水准的重要因素之一! 目前电话销售已经成为呼叫中心应用中的一个热点,下面将就电话销 售项目中的数据分析应用进行一些探讨
20
第六课时:数据分析在电话销售项目中的应用
数据清单的提取
以上是一个没有经过数据分析就贸然进行电话销售活动的典型案 例,在电信或银行等拥有大量客户数据的企业,在进行电话销售活动 前需要思索的是:究竟哪些客户是我们的目标用户呢?或许有些项目 会有很明显的客户群体特征,例如我们要做一个客户挽留,那流失的 客户就是一个很明显的目标群体。但深层次思考,在这些流失的用户 中100%都是会成功的吗?又或者100%都是我们应该去挽留的吗?答案 是否定的!因此在正式开始项目前,我们必须对这些数据进行有效的 分析,并提炼出最合适的目标用户群体。
2020/4/26
11
第四课时: excel图表
2020/4/26
12
第五课时: 数据分析报告
5.1 数据分析报告定义:
数据分析报告是根据数据分析原理和方法,运用数据来反应、 研究和分析某项事物现状、问题、原因、本质和规律,并得出结论, 提出解决问题办法的一种分析应用问题。
这种问题是决策者认识事物、了解事物、掌握信息、搜集相关 信息的主要工具之一,数据分析报告通过对事物数据全方位的科学分 析来评估其环境及反正情况,为决策者提供科学、严谨的依据,降低 风险。
全匹配 模糊查找:常用于数值查找,
匹配小于所查找数值中的 最大值 F4:改变单元格引用状态$$ 初始状态:相对引用 第一次,绝对引用 第二次,固定行 第三次,固定列 第四次,返回初始状态 混合引用 Index:引用具体位置的数 值 Math:返回相对位置
2020/4/26
10
第四课时: excel图表
2020/4/26
9
第二课时: Excel常用操作技巧
相关文档
最新文档