设计规范平面与纵断面设计1平面设计
城市道路设计规范平面与纵断面设计道路与道路交叉

五、平曲线与竖曲线适当与不适当的组合见图5.3.2。
第5.3.3条 平曲线与竖曲线应避免下列几种组合:
一、在凸形竖曲线的顶部或凹形竖曲线的底部插入急转的平曲线或反向曲线。
二、在一个长平曲线内设两上和两个以上的竖曲线;或在一个长竖曲线内设有两个或两个以上的平曲线。
三、在长直线段内,插入小于一般最小半径的凹形竖曲线。
第六章 道路与道路交叉
第一节 设计原则与规定
第6.1.1条 城市道路交叉口应按城市规划道路网设置。道路相交时宜采用正交,必须斜交时交叉角应大于或等于45°,不宜采用错位交叉,多路交叉和畸形交叉。
第6.1.2条 道路与道路交叉分为平面交叉和立体交叉两种,应根据技术、经济及环境效益的分析,合理确定。
非机动车车行道的竖曲线的最小半径为500m。
第5.2.7条 桥梁引道设竖曲线时,竖曲线切点距桥端应保持适当距离,大、中桥为10~15m,工程困难地段可减为5m。
隧道洞口外应保持一段与隧道内相同的纵坡,其长度见表5.1.16。
第三节 平面线形与纵断面线形的组合
第5.3.1条 道路线形组合应满足行车安全、舒适以及与沿线环境、景观协调的要求,并保持平面、纵断面两种线形的均衡,保证路面排水通畅。
三、经综合分析认为设置爬坡车道比降低纵坡经济合理时。
第5.1.13条 设置分隔带及缘石断口应符合下列规定:
一、快速路上无信号灯管制交叉口的中间分隔带不应设断口。
快速路上两侧分隔带的断口间距应大于或等于400m。主干路上两侧分隔带断口间距宜大于或等于300m。
断口最小长度宜采用6m。
二、应严格控制快速路、主干路的路侧带缘石断口。两侧建筑物出入口宜设在支路或街坊内部路上。缘石断口位置应离开交叉口,间距应大于60m。
道路平面、纵断面设计出图格式

平面图比例1:3000 节点比例1:2000 特别情况除外一、文字部分:1、模型空间:字高——保证出图文字大小为2.5,可根据出图比例进行调节以1:3000为例——文字字高:7.5号字;宋体;黑色;高宽比1;坐标字高:7.5号字;宋体;黑色;高宽比1;桩号字高:6号字;宋体;黑色;高宽比0.75;图层名:文字2、布局空间:文字字高:2.5号字;宋体;黑色;高宽比1;图例文字字高:2.5号字;宋体;黑色;高宽比0.75;图层名:图框文字相交道路规划范围偏离主线中心线200。
图层顺序(按照从上到下的顺序):沿线单位→地形→高速公路填充→高压铁塔→上跨桥梁部分→道路部分→下穿隧道部分→轨道(若轨道为高架形式则应位于道路部分之上)→拆迁相交道路名字——位于主线道路下方,相交道路右侧(若相交道路由不同路名的路组成,则路名分别位于本道路右侧)视图比例1:1以上为纵断面出图时要求说明,关于纵断面在布局中各项说明标准见文件“纵断面示意图.dwg”隧道,桥梁结构部分填充使用ansi31,45度,比例0.25三、道路横断面设计出图格式标注样式(采用样式——横断面)直线:尺寸线——颜色:黑色;线型:直线;线宽:0.0000;超出标记:0.0000;基线间距:0.3800;不隐藏尺寸线。
尺寸界限——颜色:黑色;尺寸界线1:直线;尺寸界线2:直线;线宽:0.0000;超出尺寸线:0.4000;起点偏移量:0.0625;不固定尺寸界线的长度;不隐藏尺寸界线。
箭头和符号:箭头——第一项:建筑标记;第二项:建筑标记;引线:倾斜。
圆心标记——标记大小:0.0900。
弧长符号——标注文字的前缀。
半径标注折弯——折弯角度:90。
文字:文字外观——文字样式:宋体长宽比例1 ;文字颜色:黑色;填充颜色:黑色;文字高度:0.8;不绘制文字边框。
文字位置——垂直:上方;水平:置中;从尺寸线偏移:0.0900。
文字对齐——与尺寸线对齐。
调整:调整选项——文字和箭头。
城市道路交通第六章城市道路的平面与纵断面

坡长
坡长是指一段坡路的长度,合理的坡长设置 可以减少车辆能耗和排放。
排水设计
纵断面设计应考虑排水问题,合理设置排水 沟和排水管道,确保雨天行车安全。
纵断面设计案例分析
案例一
某城市主干道纵断面设计,通过合理 的坡度和坡长设置,实现了安全、顺 畅的交通环境。
案例二
某山区公路纵断面设计,充分考虑了 地形和地质条件,采用了适当的坡度 和排水设计,有效减少了交通事故和 山体滑坡的风险。
城市道路的平面与纵断面是城市道路交通的重 要组成部分,对城市交通的流畅度和安全性具 有重要影响。
纵断面设计中应合理设置坡度、坡长和竖曲线半 径等参数,以保证行车安全和舒适性。
对未来城市道路交通的建议
未来城市道路交通的发展应注 重智能化和绿色化,推广智能 交通系统和绿色出行方式,提 高城市交通的效率和环保性。
雨水收集与利用
通过雨水收集系统,将雨水收集起来用于绿化灌溉、 道路清洗等用途,减少对城市水资源的消耗。
节能环保材料
推广使用节能环保材料进行城市道路建设,降低能耗 和环境污染。
05
结论
总结
平面设计中应充分考虑道路的功能、交通流量 、安全性和环境等因素,以提高道路的使用效
率和安全性。
城市道路的平面与纵断面设计应注重整体性和连续性 ,与周边环境和建筑物相协调,提升城市形象。
协调设计的原则和方法
符合规范标准
遵循国家和地方的道路设计规范,确保设计 符合相关标准和规定。
考虑地形地貌
根据城市地形地貌的特点,合理规划道路的 平面和纵断面,充分利用地形优势。
优化交叉口设计
合理设置交叉口的位置和形式,提高交叉口 的通行能力。
注重人性化设计
线路的平面及纵断面

地铁线路应尽可能采用较平缓的坡度,最大坡度的 确定必须考虑各类车辆在最大坡道上停车时的启动与防 溜,同时考虑必要的安全系数。最大坡度也是地铁主要 技术标准之一。《地铁设计规范》中规定“正线的最大 坡度宜采用30‰,困难地段可采用35‰,联络线、出入 线的最大坡度宜采用40‰。”
地铁隧道线路应考虑排水需要,正线最小坡度不宜小于3‰,困路由于停车及站台面平 缓要求宜设置在3‰的坡道上,困难条件下可设置在2‰或不大于5‰的坡道上, 但是要确保排水坡度不小于3‰,以利于排水畅通。隧道内的折返线与存车线, 应布置在面向车挡的下坡道上,其坡度宜为2‰。
线路的平面及纵断面
一、平面及其组成要素
1.圆曲 线
线路在转弯处所设的曲线为圆曲线。国家标准《地 铁设计规范》(GB 50157—2013)中规定“线路平面圆 曲线最小曲线半径应符合规定”,如表3-1所示。
线路
车型
正线
出入线、联络线 车场线
A 型车
一般地段
困难地段
350
300
250
150
150
—
B 型车
地面及高架桥上的车站站台线路不受排水影响宜设在平坡上,车场线可设 在不大于1.5‰的坡道上。
2.竖曲线
为了保证列车运行的平顺与安全,当相邻两坡段的坡度 代数差大于2‰时,应以竖曲线相连接,并要求线路纵向坡 段长度不宜小于远期列车计算长度,同时应满足相邻竖曲线 间的夹直线长度的要求,其夹直线长度不宜小于50 m。竖曲 线的主要作用:缓和纵向变坡处行车动量变化而产生的冲击 作用,确保道路纵向行车视距;将竖曲线与平曲线恰当地组 合,有利于路面排水和改善行车的视线诱导和舒适感。
竖曲线就是纵断面上的圆曲线,竖曲线的曲线半径采用情况,如表3-2所示。
城市道路设计规范平面与纵断面设计

城市道路设计规范平⾯与纵断⾯设计城市道路设计规范平⾯与纵断⾯设计热★★★浏览: 809 更新时间:2010-5-26 10:04:21平⾯设计应符合下列原则:⼀、道路平⾯位置应按城市总体规划道路⽹布设。
⼆、道路平⾯线形应与地形、地质、⽔⽂等结合,并符合各级道路的技术指标。
三、道路平⾯设计应处理好直线与平曲线的衔接,合理地设置缓和曲线、超⾼、加宽等。
四、道路平⾯设计应根据道路等级合理地设置交叉⼝、沿线建筑物出⼊⼝、停车场出⼊⼝、分隔带断⼝、公共交通停靠站位置等。
五、平⾯线形标准需分期实施时,应满⾜近期使⽤要求,兼顾远期发展,减少废弃⼯程。
第5.1.2条直线、平曲线的布设与连接宜符合下列规定:⼀、计算⾏车速度⼤于或等于60km/h时,直线长度宜满⾜下列要求:1.同向曲线间的最⼩直线长度(m)宜⼤于或等于计算⾏车速度(km/h)数值的六倍。
2.反向曲线间的最⼩直线长度(m)宜⼤于或等于计算⾏车速度(km/h)数值的⼆倍。
当计算⾏车速度⼩于60km/h,地形条件困难时,直线段长度可不受上述限制,但应满⾜设置缓和曲线最⼩长度的要求。
⼆、计算⾏车速度⼤于或等于40km/h时,半径不同的同向圆曲线连接处应设置缓和曲线。
受地形限制并符合下述条件之⼀时,可采⽤复曲线。
1.⼩圆半径⼤于或等于不设缓和曲线的最⼩圆曲线半径;2.⼩圆半径⼩于不设缓和曲线的最⼩圆曲线半径,但⼤圆与⼩圆的内移值之差⼩于或等于0.1m;3.⼤圆半径与⼩圆半径之⽐值⼩于或等于1.5。
三、计算⾏车速度⼤于或等于40km/h时,长直线下坡尽头的平曲线半径应⼤于或等于不设超⾼的最⼩半径。
在难以实施地段,应采取防护措施。
四、计算⾏车速度⼩于40km/h,且两圆半径都⼤于不设超⾼最⼩半径,可不设缓和曲线⽽构成复曲线。
第5.1.3条道路的圆曲线半径应采⽤⼤于或等于表5.1.3规定的不设超⾼最⼩半径值。
当受地形条件限制时,可采⽤设超⾼推荐半径值。
地形条件特别困难时,可采⽤设超⾼最⼩半径值。
铁路线路的平面与纵断面

第二节 铁路线路的平面及纵断 面
一、铁路线路的平面
1.铁路线路的平面定义 线路中心线在水平面上的投影,称为铁路线路的平面; 2.铁路线路平面组成要素 直线和曲线(圆曲线和缓和曲线)是铁路平面的组成要素。
第二节 铁路线路的平面及纵断 面
青藏铁路当雄本拉特大桥
第二节 铁路线路的平面及纵断 面
• 4.曲线阻力产生原因: • (1)列车通过曲线时,由于离心力的作用,使得
外侧车轮轮缘挤压外轨,摩擦增大; • (2)同时由于外轨长于内轨,内车轮在轨面上滚
动时产生相对滑动,从而产生了曲线阻力。 • 曲线阻力大小可用公式计算:
绕避地形示意图
第二节 铁路线路的平面及纵断 面
3.运行阻力 • 列车在线路上运行时,所受阻力可归纳为两类:基本阻
力和附加阻力。
• 基本阻力:列车在空旷地段沿平、直轨道运行时受到的 阻力。
• 附加阻力:线路上受到额外阻力,如坡道阻力、曲线阻 力,启动阻力。附加阻力随列车运行条件或线路平面、 纵断面情况而定。
i ‰= h / L =tanα
式中:α-坡道线线路 中心线与水平线 夹角(°)。
第二节 铁路线路的平面及纵断
面 列车在坡道上运行时,会受到由坡道引起的阻力,称为坡
道附加阻力
• 机车车辆所受的重力Qg可分为两个分力F1和F2,F1由 轨道的反作用力所抵消,则F2就是坡度附加阻力。
• 单位坡道阻力:列车平均每单位质量所受到的坡道阻力 (用Wi表示),近似等于用千分率表示的这一坡道度数。
第二节 铁路线路的平面及纵断
面 • (5)坡度标:设在线路坡度的变坡点处,两侧各标明其
第六章 城市道路的平面与纵断面
1.应考虑曲线上离心加速度的变化率 ; 2.需考虑缓和曲线的视觉交果; 3.不设缓和曲线的圆曲线半径 。 (四)行车视距 所谓行车视距是指从驾驶员视线高度(1.1~1.2m),能见到汽车 前方车道上高度为10cm的物体顶点的距离内,沿行车道中心线量 得的长度,计算位常用米(m)。 1. 停车视距S停 汽车在道路上行驶时,司机从发现前方障碍物,紧急制动到与 障碍物保持一定安全间距,整个过程所需要的最短行车距离停车 视距S停。 停车视距大致可分为三个部分参见图(5-5) S停=S1+S2+S° (m)
当的朝向背向圆心方向时为负值。 iy 1)
值的确定
≤ 0
在干燥状态的路面上, O =0.4~0.8, 潮湿的沥青类路面上高速行驶时, O=0.25~0.40, 路面积积雪结冰时,降至0.2以下。 2)
i y 值的确定 iy < 0
《城市道路设计规范》规定的最大超高横坡度为2%~6%, 详见表5-4。
值愈大,汽车在圆曲线路上的稳定性愈差,反之,稳定性愈好。
2.圆曲线半径的确定 为保证汽车在弯道上行车的安全和舒适,在确定圆曲线半径时,必须 控制横力系数 的大小,同时适当设置圆曲线超高 i y 。圆曲线最小半径的 计算式可由公式(5-2)变换得来:
返回 退出
上一页 下一页
V2 R= 127( + iy )
返回 上一页 下一页 退出
图5-8 弯道平面视距离障碍的清除
(1)最大横净距的计算 (2)视距包络线或视距曲线的绘制 1.将弯道平面图以1:500~1:200的比例尺展绘在图纸上,标出内 侧车道的中心线如图5-9中的虚线。 2.从直线路段开始,在虚线上隔适当的距离,量一个视距S,并标 上首尾点,如图5-9的1~1,2~2,3~3,……,10~10。间隔的 距离视曲线半径大小和曲线长而定,通常能将半个曲线分10等分也 就行了。 3.将上面标准的视距长度线的首尾点连以直线(表示司机的视线)。 4.作直线族的内切包络线,该线即为视距曲线。
道路交通道路平面和纵断面设计
四、曲线的超高与加宽
(一)超高
当曲线受地形、地物限制, 选用不设超高的半径十 分困难时,为保证车辆 能以设计车速行驶,可 以在曲线上设置超高。
1、超高横坡度
2、超高缓和段
超高缓和段是由直线段上的双坡横断面过渡到具有完全超高的单坡横断 面的路段。超高缓和段的长度按下式计算:
超高缓和段不宜过短,否则会发生侧向摆动,行车不十分稳定。一般,超高 缓和段的长度最好不小于15~20m。
– 汽车行驶轨迹是一条连续的圆滑曲线,并且轨迹的曲率、曲率 变化率都是连续的。
– 如果汽车前轮转角为α ,汽车前后轴距离为L,则汽车轨迹半 径可近似地用r=L/α 表示。轨迹曲线的半径由r=∞ 变到r=R, 或者由r=R变到r=∞ ,是一条缓和的曲线。
– 缓和曲线可以采用不同形式的曲线,如回旋线(螺旋线)、三 次抛物线、双纽线、多心复曲线等
倒的危险。 一般多以μ=0.15为最大控制数值。
3、运营经济要求
为了减少轮胎和燃料的消耗曲线半径也 不应太小,以免轮胎在牵引力与横 向力共同作用下发生很大的横移偏 转角δ 。
当δ <1˚ 时,相当μ=0.1,燃料额外消耗为
10%~12%;当δ=1.8˚ 时,相当μ=0.16,
燃料额外消耗将达到40%,轮胎消耗速度比 正常速度加快一倍。
• 2),将路中线保持在原有高度位置 上,绕路中线旋转。
(二)加宽
机动车辆在曲线上行驶时,为保证 车辆不侵占相邻车道,要将行车部 分加宽。
e为双车道加宽值
前述公式未考虑行驶车辆摆动幅度在曲线曲线上的变化,即未 考虑车道加宽与行车速度的关系。因此,引用一个经验修正值, 即双车道行车部分的宽度B为:
μ为横向力系数,其意义为单位 车重的横向力。
第一部分-平纵横设计
第一章平、纵、横设计1.1 平面选线1.1.1 平原地区公路路线特点:平原地区地形平坦,坡度平缓,除草原、戈壁外,一般人烟稠密,农业发达。
村镇、农田、河流、湖泊、水塘、沼泽、盐渍土等为平原地区较常遇到的自然障碍。
因此平原地区选线一方面由于地势较平坦,路线纵坡及曲线半径等几何要素比较容易达到较高的技术标准;另一方面往往由于受当地自然条件和地物的障碍以及支援农村建设需要的限制选线要考虑各方面的因素。
1.1.2 平原四级公路设计要求及特点平原地区四级公路工程技术标准应为农村专用公路,工程技术标准要求较低,要求设计行车速度达到20km/h;平曲线不设超高最小半径150m,一般最小半径30m,极限最小半径15m;竖曲线最大纵坡不大于9%,坡段最小长度不小于60m,凸形竖曲线极限最小半径100m,一般最小半径200m,凹形竖曲线极限最小半径100,一般最小半径200m;设计时不但需要考虑地形、地质、水文、气象、地震等自然因素的影响,同时还要受到当地经济、土地资源,筑路材料来源、施工条件、劳动力状况诸多因素的限制,这要求我们在路线设计时要做到规范与实际相结合,在学习规范的同时,灵活应用规范,努力做到实用与经济相结合。
1.1.3 平原四级公路选线原则及依据选线是在符合国家建设发展的需要下,结合自然条件选定合理路线,使筑路费用与使用质量得到正确的统一,达到行车迅速安全,经济舒适及构造物稳定耐久,易于养护的目的,选线人员必须认真观贯彻国家规定的方针政策,深入实际,综合考虑路线、路基、路面、桥涵等,最后选出合适的路线。
1.1.4 平原地区公路选线应符合以下原则(1) 根据道路使用任务和性质,综合考虑路线区域国民经济发展情况与远景规划,正确处理好近期与远景的关系,在总体规划的知道下,合理选择方案。
(2) 认真领会任务书的精神,深入现场,多跑、多看、多问、多比较,深入调查当地的地形、气候、土壤、水文等自然情况,以利于选择有价值的方案进行比较。
铁路工程设计规范
铁路工程设计规范铁路工程设计规范是指在铁路建设过程中,根据国家相关标准和技术要求,对铁路工程的设计、施工、验收等各个环节进行规范化和标准化的文件。
它的主要目的是确保铁路工程的安全、高效和可持续发展。
本文将深入探讨铁路工程设计规范的内容和要点。
一、设计原则在进行铁路工程设计时,必须遵循一些基本原则,以确保设计的科学合理性和经济效益。
首先,设计必须符合国家法律法规和技术标准。
其次,要根据客观条件合理布局线路和站点。
此外,设计还需综合考虑地质、气候、环境等因素,确保工程的安全可靠性。
二、线路设计铁路线路设计是铁路工程设计中的核心内容之一。
其主要包括线路纵、横断面设计、平面布置设计和弯道设计等。
在线路设计中需考虑交通量、线路等级、地形地貌、水文地质等因素,合理确定铁路线路的位置和技术参数,以满足运输需求和运行要求。
1. 纵断面设计纵断面设计是指根据铁路线路的地形起伏,确定不同区段的高度、倾斜度和高差等参数的过程。
设计时应根据地质情况和交通要求,合理选择切土、填土、隧道、桥梁等工程形式,以保证线路的平稳度和安全性。
2. 横断面设计横断面设计是指铁路线路的截面形状和尺寸设计。
设计时需考虑到列车的通过空间、供排水、岩土开挖与支护等因素,确保铁路线路在不同地质条件下的稳定性和可靠性。
3. 平面布置设计平面布置设计是指铁路线路在宽度和位置上的布置。
在设计中需充分考虑交通流量、乘客需求和地理条件等因素,合理确定线路的位置和布局,以确保铁路的运输效益和安全性。
4. 弯道设计弯道设计是指铁路线路中的曲线部分设计。
在弯道设计中,需考虑列车速度、弯道半径和曲线过渡等因素,以保证列车在曲线上的稳定行驶和乘客的舒适感受。
三、桥梁设计桥梁是铁路工程中不可或缺的重要组成部分,桥梁设计的合理性直接关系到铁路工程的安全和运行效果。
桥梁设计应根据地质、水文、交通量和线路等级等因素,选择合适的桥梁类型和设计参数,确保桥梁的结构稳定和安全可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节平面设计
第5.1.1条平面设计应符合下列原则:
一、道路平面位置应按城市总体规划道路网布设。
二、道路平面线形应与地形、地质、水文等结合,并符合各级道路的技术指标。
三、道路平面设计应处理好直线与平曲线的衔接,合理地设置缓和曲线、超高、加宽等。
四、道路平面设计应根据道路等级合理地设置交叉口、沿线建筑物出入口、停车场出入口、分隔带断口、公共交通停靠站位置等。
五、平面线形标准需分期实施时,应满足近期使用要求,兼顾远期发展,减少废弃工程。
第5.1.2条直线、平曲线的布设与连接宜符合下列规定:
一、计算行车速度大于或等于60km/h时,直线长度宜满足下列要求:
1.同向曲线间的最小直线长度(m)宜大于或等于计算行车速度(km/h)数值的六倍。
2.反向曲线间的最小直线长度(m)宜大于或等于计算行车速度(km/h)数值的二倍。
当计算行车速度小于60km/h,地形条件困难时,直线段长度可不受上述限制,但应满足设置缓和曲线最小长度的要求。
二、计算行车速度大于或等于40km/h时,半径不同的同向圆曲线连接处应设置缓和曲线。
受地形限制并符合下述条件之一时,可采用复曲线。
1.小圆半径大于或等于不设缓和曲线的最小圆曲线半径;
2.小圆半径小于不设缓和曲线的最小圆曲线半径,但大圆与小圆的内移值之差小于或等于0.1m;
3.大圆半径与小圆半径之比值小于或等于1.5。
三、计算行车速度大于或等于40km/h时,长直线下坡尽头的平曲线半径应大于或等于不设超高的最小半径。
在难以实施地段,应采取防护措施。
四、计算行车速度小于40km/h,且两圆半径都大于不设超高最小半径,可不设缓和曲线而构成复曲线。
第5.1.3条道路的圆曲线半径应采用大于或等于表5.1.3规定的不设超高最小半径值。
当受地形条件限制时,可采用设超高推荐半径值。
地形条件特别困难时,可采用设超高最小半径值。
第5.1.4条平曲线由圆曲线及两端缓和曲线组成。
平曲线长度与圆曲线长度应大于或等于表5.1.4-1的规定值。
道路中心线转角α小于或等于7°时,平曲线长度应大于或等于表5.1.4-2的规定值。
第5.1.5条直线与圆曲线或大半径圆曲线与小半径圆曲线之间应设缓和曲线。
缓和曲线采用回旋线。
缓和曲线长度应大于或等于表5.1.5-1规定值。
计算行车速度小于40km/h时,缓和曲线可用直线代替。
直线缓和段一端应与圆曲线相切,另一端与直线相接,相接处予以圆顺,见图5.1.5。
圆曲线半径大于表5.1.5-2不设缓和曲线的最小圆曲线半径时,直线与圆曲线可径相连接。
第5.1.6条圆曲线半径小于表5.1.3中不设超高最小半径时,在圆曲线范围内应设超高,最大超高横坡度的规定见表5.1.6。
超高的过渡方式应根据地形状况、车道数、超高横坡度值、横断面型式、便于排水、路容美观等因素决定。
单幅路路面宽度及三幅路机动车道路面宽度宜绕中线旋转;双幅路路面宽度及四幅路机动车道路面宽度宜绕中间分隔带边缘旋转,使两侧车行道各自成为独立的超高横断面,见图5.1.6。
第5.1.7条由直线上的正常路拱断面过渡到圆曲线上的超高断面时,必须在其间设置超高缓和段。
超高缓和段长度按下式计算:
在超高缓和段长度与缓和曲线长度两者中取大值作为缓和曲线的计算长度。
第5.1.8条超高缓和段起、终点处路面边缘出现的竖向转折,应予以圆顺。
第5.1.9条圆曲线半径小于或等于250m时,应在圆曲线内侧加宽,每条车道加宽值见表5.1.9。
第5.1.10条加宽缓和段长度的规定如下:
一、设置缓和曲线或超高缓和段时,加宽缓和段长度应采用与缓和曲线或超高缓和段长度相同值。
二、不设缓和曲线或超高缓和段时,加宽缓和段长度应按加宽侧路面边缘宽度渐变率为1∶15~1∶30,且长度不得小于10m的要求设置。
第5.1.11条视距的规定如下:
一、道路平面、纵断面上的停车视距应大于或等于表5.1.11-1规定值。
寒冷积雪地区应另行计算。
二、车行道上对向行驶的车辆有会车可能时,应采用会车视距。
其值为表5.1.11-1中停车视距的两倍。
三、对于凸形竖曲线和立交桥下凹形竖曲线等可能影响行车视距,危及行车安全的地方,均需验算行车视距。
验算时,物高为0.1m;目高在凸形竖曲线时为1.2m,在桥下凹形竖曲线时为1.9m。
四、平曲线内侧的边坡、建筑物、树木等均不应妨碍视线应按横净距绘制包络线,包络线与路面边缘之间的障碍物应予清除。
视距横净距计算公式见表5.1.11-2。
表中:a——最大横净距(m);
L——平曲线长度(m);
Ls——缓和曲线长度(m);
Li——曲线内侧汽车行驶轨迹长度(m);
Ri——平曲线内侧汽车行驶轨迹半径(m),其值为未加宽前路面内缘半径加1.5m;
Ψ——视距线所对的圆心角(°);
β——回旋线角(°);
am——汽车计算位置M或N到缓和曲线起点的距离(m);
ss——停车视距(m);
Lc——圆曲线长度(m);
a——道路中心线转角(°);
θ——通过汽车计算位置M(或N)与平曲线切线的平行线和M(或N)至缓和曲线终点间弦线的夹角(见图5.1.11-3)或平曲线切线与缓和曲线的弦线的夹角(见图5.1.11-4)(°)。
第5.1.12条快速路及计算行车速度为60km/h的主干路,纵坡度大于5%的路段或符合下列情况之一时,可在上坡方向车行道右侧设置爬坡车道。
爬坡车道宽度可采用3.25m。
一、沿上坡方向大型车辆的行驶速度降低到表5.1.12规定的容许最低速度以下时。
二、由于上坡路段混入大型车辆的干扰,降低路段通行能力时。
三、经综合分析认为设置爬坡车道比降低纵坡经济合理时。
第5.1.13条设置分隔带及缘石断口应符合下列规定:。