嵌入式系统课程设计(温度检测报警系统)

合集下载

实时温控报警系统

实时温控报警系统

《嵌入式系统二》课程设计报告实时温控报警系统设计日期:2011年07月4日至2010年07月8日设计题目:实时温控报警系统摘要本次课程设计是利用S3C2410A开发板,Z L G7290芯片,L M75A数字温度传感器,键盘,L E D数码管和蜂鸣器设计了一个实时温控报警系统。

本系统可以通过数字键设定需控制的温度,并在L E D上显示。

温度设定完后,系统启动加热器,对水进行加热。

L E D实时显示当前的温度,当超过设定温度值时,系统关闭加热器,并使报警器鸣叫。

运行过程中,若再按下电源键,则系统停止,电源指示灯灭。

本系统功能实用,可用于生产或生活中。

关键词:S3C2410A LM75A按键输入实时温控LE D数码管目录1.绪论 (1)1.1 嵌入式系统简介 (1)1.2 课程设计题目及设计要求 (1)2.硬件设计 (2)2.1 S3C2410A开发板 (3)2.2 ZLG7290键盘输入模块及LED数码管 (4)2.3 传感器模块 (7)2.4 报警器模块 (8)3.软件设计 (8)3.1 系统控制程序概述 (8)3.2 系统控制程序的设计 (10)3.3 设计过程及结果 (10)4.源程序代码 (12)5.课程设计体会 (15)6.参考文献 (16)1.绪论1.1嵌入式系统简介嵌入式系统是指以应用为中心、以计算机技术为基础、软硬件可裁剪的专用计算机系统,是继I T网络技术之后的又一新技术发展方向。

由于具有体积小、功耗低、可靠性高以及面向多行业应用的特征,嵌入式系统目前已被广泛用于国防军事、电子消费、网络通信、工业控制等领域,具有极为广阔的发展前景。

结合I n t e r n e t技术,嵌入式系统目前已普遍应用于智能公路(车辆导航、信息监测等)、植物工厂(无土栽培、智能种子工程等)、虚拟现实(V R)(交通警察、家用机器人等)、信息家电(冰箱、空调网络化、自动抄表、防火/防盗系统等)、先进工业自动化(电网安全等)、P O S网络及电子商务(交通卡、电话卡、自动售货机等)。

嵌入式系统课程设计温度检测报警系统

嵌入式系统课程设计温度检测报警系统

嵌入式系统课程设计姓名:班级:学号:.目录:一.系统要求二.设计方案三.程序流程图四.软件设计五.课程总结与个人体会.一、系统要求使用STM32F103作为主控CPU设计一个温度综合测控系统,具体要求:1、使用热敏电阻或者内部集成的温度传感器检测环境温度,每0.1秒检测一次温度,对检测到的温度进行数字滤波(可以使用平均法)。

记录当前的温度值和时间。

2、使用计算机,通过串行通信获取STM32F103检测到的温度和所对应的时间。

3、使用计算机进行时间的设定。

4、使用计算机进行温度上限值和下限值的设定。

5、若超过上限值或者低于下限值,则STM32进行报警提示。

.二、设计方案本次课程设计的要求是使用STM32F103设计一个温度测控系统,这款单片机集成了很多的片上资源,功能十分强大,我使用了以下部分来完成课程设计的要求:1、STM32F103内置了3个12位A/D转换模块,最快转换时间为1us。

本次课程设计要求进行温度测定,于是使用了其中一个ADC对片上温度传感器的内部信号源进行转换。

当有多个通道需要采集信号时,可以把ADC配置为按一定的顺序来对各个通道进行扫描转换,本设计只采集一个通道的信号,所以不使用扫描转换模式。

本设计需要循环采集电压值,所以使用连续转换模式。

2、本次课程设计还使用到了DMA。

DMA是一种高速的数据传输操作,允许在外部设备和储存器之间利用系统总线直接读写数据,不需要微处理器干预。

使能ADC的DMA接口后,DMA控制器把转换值从ADC数据寄存器(ADC_DR)中转移到变量ADC_ConvertedValue中,当DMA传输完成后,在main函数中使用的ADC_ConvertedValue的内容就是ADC转换值了。

3、STM32内部的温度传感器和ADCx_IN16输入通道相连接,此通道把传感器输出的电压值转换成数字值。

STM内部的温度传感器支持的温度范围:-40到125摄氏度。

利用下列公式得出温度温度(°C) = {(V25 - VSENSE) / Avg_Slope} + 25式中V25是 VSENSE在25摄氏度时的数值(典型值为1.42V))曲线的平均斜率(典型值为4.3mV/C是温度与Avg_SlopeVSENSE利用均值法对转换后的温度进行滤波,将得到的温度通过串口输出。

嵌入式温度测量系统的设计与实现

嵌入式温度测量系统的设计与实现

嵌入式温度测量系统的设计与实现嵌入式温度测量系统是一种基于嵌入式技术和传感器技术的温度测量系统。

随着科技的发展,嵌入式温度测量系统越来越受到人们的关注。

下面我们就来探讨一下嵌入式温度测量系统的设计与实现。

一、设计嵌入式温度测量系统设计步骤如下:1. 确定系统需求:包括测量温度范围、精度、测量间隔、数据处理方式等参数。

2. 确定选用的传感器类型:根据测量要求,选择相应的温度传感器类型。

如NTC热敏电阻、热电偶、热电阻等。

3. 建立硬件电路:设计合适的硬件电路,将传感器与处理器连接。

准确采集温度数据。

4. 编写软件程序:编写合适的软件程序,将采集到的温度数据处理,并作为输出。

5. 实现数据通信:根据系统的需求,设计合适的通信方式,将数据及时的传输给其他设备。

二、实现嵌入式温度测量系统实现步骤如下:1. 选用适当的芯片:根据自己的需求,选用适当的芯片,比如常用的stm32、arduino、MCU等。

2. 选用合适的传感器:根据需求,选择合适的温度传感器,如DS18B20, TLM9941ISHJ, Thermocouple Type-K等传感器。

3. 搭建硬件电路:利用电路设计软件,设计出嵌入式温度测量系统的硬件电路,并制造出PCB板。

4. 编写相应软件:利用相应的开发工具,编写出嵌入式温度测量系统的软件程序。

5. 调试和测试:将硬件连接好后,通过调试和测试程序,确保嵌入式温度测量系统的功能达到预期。

三、总结嵌入式温度测量系统是一种实用性强且功能高的温度测量系统。

不同的系统设计有不同的实现方法,本文只是简单的介绍了嵌入式温度测量系统的设计与实现步骤。

对于嵌入式技术爱好者来说,希望能够通过学习本文获得一些有价值的内容。

嵌入式系统课程设计(基于ARM的温度采集系统设计)

嵌入式系统课程设计(基于ARM的温度采集系统设计)

教师批阅目录一、设计内容............................................................................................................. - 1 -1.1设计目的....................................................................................................... - 3 -1.2设计意义....................................................................................................... - 3 -二、设计方案............................................................................................................. - 5 -2.1设计要求....................................................................................................... - 5 -2.2方案论证....................................................................................................... - 5 -三、硬件设计............................................................................................................. - 6 -3.1设计思路....................................................................................................... - 6 -3.2系统电路设计............................................................................................... - 6 -四、软件设计............................................................................................................. - 8 -4.1设计思路....................................................................................................... - 8 -4.2程序清单..................................................................................................... - 10 -五、心得体会........................................................................................................... - 12 -参考文献................................................................................................................... - 13 -教师批阅基于ARM的温度采集系统摘要:本设计是基于嵌入式技术作为主处理器的温度采集系统,利用S3C44B0xARM微处理器作为主控CPU,辅以单独的数据采集模块采集数据,实现了智能化的温度数据采集、传输、处理与显示等功能,并讨论了如何提高系统的速度、可靠性和可扩展性。

嵌入式课程设计红外报警

嵌入式课程设计红外报警

嵌入式课程设计红外报警一、教学目标本课程的教学目标是使学生掌握嵌入式系统中的红外报警原理,学会使用相关电子元件进行电路设计,并能够编写简单的程序实现红外报警功能。

1.了解红外线的基本原理和特性。

2.掌握红外探测器的工作原理和应用。

3.学习嵌入式系统的基本组成和编程方法。

4.能够使用红外探测器、触发器、LED灯等电子元件设计简单的红外报警电路。

5.能够编写嵌入式程序实现红外报警功能。

6.能够对红外报警系统进行调试和优化。

情感态度价值观目标:1.培养学生的创新意识和团队合作精神。

2.培养学生对嵌入式技术的兴趣和热情。

3.培养学生的动手能力和实践能力。

二、教学内容本课程的教学内容主要包括红外报警原理、电路设计和程序编写三个方面。

1.红外报警原理:介绍红外线的基本原理和特性,红外探测器的工作原理和应用。

2.电路设计:学习如何使用红外探测器、触发器、LED灯等电子元件设计简单的红外报警电路。

3.程序编写:学习嵌入式编程方法,编写程序实现红外报警功能。

三、教学方法本课程采用讲授法、讨论法、实验法等多种教学方法相结合的方式进行教学。

1.讲授法:通过讲解红外报警原理和相关知识,使学生掌握基本概念和理论知识。

2.讨论法:通过小组讨论,激发学生的思考和创造力,培养学生的团队合作精神。

3.实验法:通过动手实验,使学生能够将理论知识应用到实际电路设计和程序编写中,培养学生的实践能力。

四、教学资源本课程的教学资源包括教材、实验设备和相关多媒体资料。

1.教材:选用《嵌入式系统设计》等相关教材,为学生提供系统的理论知识学习。

2.实验设备:提供红外探测器、触发器、LED灯等电子元件和相关实验设备,为学生提供动手实践的机会。

3.多媒体资料:提供相关的教学视频、PPT等多媒体资料,帮助学生更好地理解和掌握知识。

五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分,以全面客观地评价学生的学习成果。

1.平时表现:通过观察学生在课堂上的参与度、提问回答和小组讨论的表现,评估学生的学习态度和理解程度。

单片机课程设计---温度检测报警系统的设计

单片机课程设计---温度检测报警系统的设计

《单片机原理及接口》课程设计报告题目:专业名称:班级:学号:姓名:2010年 12月课程论文首页温度检测报警系统的设计摘要: proteus具有强大的仿真功能,通过proteus仿真可以为更快的对一些系统进行设计和性能测试,直到仿真系统可以运行。

该温度报警系统是用温度传感器18B20对温度进行采集,通过单总线结构与单片机AT89C52进行通信。

在此基础上,添加一个时钟芯片DS1302用来时钟计时。

并用液晶显示器对温度和时间进行显示,同时可以用控制按键可以切换“时间”、“日期”和“温度报警上下限”的显示,而且可以对温度报警上下限进行按键动态调整。

关键词:proteus 温度报警 AT89C52 单片机1、引言Proteus ISIS 是英国 Labcenter 公司开发的电路分析与实物仿真软件。

它运行于 Windows 操作系统上,可以仿真、分析各种模拟器件和集成电路,该软件的特点是:①实现了单片机仿真和SPICE 电路仿真相结合。

②支持主流单片机系统的仿真。

③提供软件调试功能。

④具有强大的原理图绘制功能。

总之,该软件是一款集单片机和SPICE 分析于一身的仿真软件,功能极其强大。

本文是基于 PROTEUS 的单片机温度采集系统的仿真设计,由单片机对温度进行采集,由温度传感提供温度,然后通过数码管显示温度值,并通过按键设置报警温度的上下限,当温度超出范围时报警。

同时具有时间计时的功能。

2、功能及操作说明2.1 功能说明:a.具有温度采集功能。

b.具有时间计时功能。

c.液晶分两行显示,上一行显示“温度”,下一行可以对“时间”、“日期”和“温度上下限”进行切换显示。

d.可以对温度上下限进行动态设置,在超过温度的上限或低于温度的下限时蜂鸣器会响,进行报警。

e.初始化(复位)功能。

2.2 操作说明:a.按下proteus中的运行按键。

b.按下“K1”键对“时间”、“日期”和“温度上下限”进行切换显示。

图2-1 切换显示c.在显示“温度”和“温度上下限”的时候,按下“K2”键,进入“温度上下限”调整状态,调整位闪烁显示,如(图2)所示。

嵌入式温度监测与报警系统设计设计Word

嵌入式温度监测与报警系统设计设计Word

学号14112200224毕业设计(论文)题目: 嵌入式温度监测与报警系统设计作者易康乐届别 2015届院别信息与通信工程学院专业电子信息指导教师万忠民职称教授完成时间2015年5月10日摘要本设计采用了ARM COTEX—M3 系列芯片STM32F103RCT6为主控芯片,对DS18B20温度传感器进行控制,实现温度采集功能,并在TFTLCD液晶显示屏上显示实时温度。

软件采用μC/OS-Ⅱ嵌入式实时内核与μC/GUI图形界面库来实现多任务管理和UI界面的功能。

利用μC/GUI设计一个具有显示实时温度折线图和控制窗口的UI界面,从而减少按键数量。

同时调用μC/OS-Ⅱ嵌入式实时内核实现多任务管理和利用μC/GUI实现对触摸按键的设置,通过TFTLCD触摸屏上设置的按键进行温度采集的控制。

通过利用软件模拟按键从而简化了系统的软硬件设计,更便于使用人员进行控制操作,同时提高了系统的可维护性和可操作性,达到了节约成本和具有更高效率的目的。

关键词:微控制器;TFTLCD, DS18B20;温度监测;嵌入式AbstractSystem uses ARM COTEX-M3 chips STM32F103RCT6 as main controller that controls the temperature sensor DS18B20 to achieve temperature acquisition function,and displays real-time temperature on the TFT LCD screen. The software uses the μC/OS - Ⅱ embedded real-time kernel and μC/GUI graphical interface library to implement the multiple task management and UI interface functions. Using the μC/GUI design a interface which display a real-time line graph of temperature and control window’s UI to reduce the number of buttons. At the same time, calling the μC/OS - Ⅱsystem manage the multiple task and using μC/GUI implement settings of ing the TFT LCD touch screen buttons control the temperature acquisition. By using simulation keys to simplify the design of system hardware and software,more easier to operator to control the operation.Meanwhile it can improve the maintainability of the system and operability, and achieve the purpose of saving cost and higher efficiency.Keywords:Microcontroller; TFTLCD, DS18B20; Temperature monitoring; Embedded目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 课题设计背景及意义 (1)1.2 行业技术发展概况 (1)1.3 课题设计的主要内容 (2)第2章温度监测与报警系统总体设计 (4)2.1 系统基本框图 (4)2.2 硬系统工作原理图及工作原理 (4)2.2.1 系统工作原理图 (4)2.2.2 系统工作原理 (4)2.3 硬件元件介绍 (5)2.3.1 STM32F103RCT6介绍 (5)2.3.2 DS18B20介绍 (5)2.3.3 TFT-LCD介绍 (6)2.3.4 蜂鸣器介绍 (7)第3章温度监测与报警系统硬件设计 (8)3.1 硬件接口框图 (8)3.2 MCU设计 (8)3.3 JTAG设计 (9)3.4 TFTLCD电路设计 (10)3.5 蜂鸣器电路设计 (11)3.6 DS18B20设计 (12)第4章软件设计 (13)4.1软件简介 (13)4.2主函数分析 (14)4.3 主要任务分析 (15)4.3.1 Task_wave任务 (15)4.3.2 Task_TOUCH任务 (16)4.3.3 TASK_beep任务 (17)4.3.4 Task_DS18B20任务 (17)第5章调试结果及分析 (19)总结 (22)参考文献 (23)致谢 (24)附录一硬件原理图 (25)附录二程序 (26)第1章绪论1.1 课题设计背景及意义当今现代化建设和国民经济发展迅速。

基于嵌入式系统数字温度的测试系统设计

基于嵌入式系统数字温度的测试系统设计

基于嵌入式系统数字温度的测试系统设计基于嵌入式系统数字温度的测试系统设计温度传感器是一类被广泛应用且被最先开发的传感器。

但大多数温度传感器没有对数字信号分析及处理,达到自动化控制的效果。

因此,本设计基于这种情况,利用相关软硬件提高了温度传感器的实用价值。

下面一起来看看吧!2.总体设计2.1系统功能模块设计从需求分析可以看出,该系统的功能模块应包括以下几个部分:实时温度采集与更新模块、自定义温度警报模块、超温报警模块。

DS18B20采用了单总线方式的传输协议,即只需要一根管脚就可以对输入输出进行控制。

此种单总线传输协议在实际应用中有很大优势,使用此种协议的芯片不需要任何外围电路,对硬件设计时的复杂性大大简化了许多。

2.2系统软件设计方案2.2.1嵌入式操作系统选择在本设计当中,硬件平台完全支持Linux、开发便捷迅速、资料众多、内核小、效率高等优点决定了在本设计当中的稳定性等优点,均使得本设计采用了Linux作为开发的操作系统。

2.2.2应用层程序语言选择应用程序使用C语言进行开发,使用Linux标准C语言接口,与驱动层进行交互。

3.硬件设计3.1整体硬件电路设计根据硬件设计方案,在开发中用到的硬件有Tiny6410开发板、DS18B20数字温度传感器、USB转串口数据线。

3.2硬件连接方式将USB转串口线一端接在Tiny6410的串口1上,另一端连接PC 机USB接口。

两个DS18B20传感器的VCC与GND管脚并联起来,与Tiny6410开放的电源与地线接口相连,两个传感器的数据接口一起连接在S3C6410的GPIO的管脚上。

4.软件设计4.1嵌入式系统架构本系统在软件方面主要由Linux内核裁剪和移植、底层驱动程序开发、上层应用程序开发三部分组成。

其中,Linux内核的运行需要有引导程序BootLoader、内核的配置裁剪与编译、根文件系统的编译三个部分支持。

4.2驱动程序设计在本设计当中,对DS18B20数字温度传感器根据其数据手册上的传输协议及参数进行驱动编写,首先要明确其控制参数及流程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

嵌入式系统课程设计姓名:班级:学号:目录:一.系统要求二.设计方案三.程序流程图四.软件设计五.课程总结与个人体会一、系统要求使用STM32F103作为主控CPU设计一个温度综合测控系统,具体要求:1、使用热敏电阻或者内部集成的温度传感器检测环境温度,每0.1秒检测一次温度,对检测到的温度进行数字滤波(可以使用平均法)。

记录当前的温度值和时间。

2、使用计算机,通过串行通信获取STM32F103检测到的温度和所对应的时间。

3、使用计算机进行时间的设定。

4、使用计算机进行温度上限值和下限值的设定。

5、若超过上限值或者低于下限值,则STM32进行报警提示。

二、设计方案本次课程设计的要求是使用STM32F103设计一个温度测控系统,这款单片机集成了很多的片上资源,功能十分强大,我使用了以下部分来完成课程设计的要求:1、STM32F103内置了3个12位A/D转换模块,最快转换时间为1us。

本次课程设计要求进行温度测定,于是使用了其中一个ADC对片上温度传感器的内部信号源进行转换。

当有多个通道需要采集信号时,可以把ADC配置为按一定的顺序来对各个通道进行扫描转换,本设计只采集一个通道的信号,所以不使用扫描转换模式。

本设计需要循环采集电压值,所以使用连续转换模式。

2、本次课程设计还使用到了DMA。

DMA是一种高速的数据传输操作,允许在外部设备和储存器之间利用系统总线直接读写数据,不需要微处理器干预。

使能ADC的DMA接口后,DMA控制器把转换值从ADC数据寄存器(ADC_DR)中转移到变量ADC_ConvertedValue中,当DMA传输完成后,在main函数中使用的ADC_ConvertedValue的内容就是ADC转换值了。

3、STM32内部的温度传感器和ADCx_IN16输入通道相连接,此通道把传感器输出的电压值转换成数字值。

STM内部的温度传感器支持的温度范围:-40到125摄氏度。

利用下列公式得出温度温度(°C) = {(V25 - VSENSE) / Avg_Slope} + 25式中V25是VSENSE在25摄氏度时的数值(典型值为1.42V)Avg_Slope是温度与VSENSE曲线的平均斜率(典型值为4.3mV/C)利用均值法对转换后的温度进行滤波,将得到的温度通过串口输出。

4、本设计采用了USART1作为串行通信接口,来进行时间、温度的传输,以及进行时间和温度上下限的设定。

5、当温度超过上下限时,开发板上的灯会相应亮起作为警报,使用了GPIO配置引脚。

6、时间计时使用了systick时钟,并配置其中断,由此进行一秒定时,实现时钟的实时显示。

7、时间设定部分参考了一个两位数字读取的函数,在进入主循环前设定参数,从而避免了在串口中断中输入只能一次性输入所有参数的弊端。

三、程序流程图四、软件设计用到的库文件:stm32f10x_adc.h,stm32f10x_dma.h,stm32f10x_flash.h,stm32f10x_gpio.h,stm32f10x_rcc.h,stm32f10x_usart.h,misc.h 自己编写的文件:main.c,stm32f10x_it.c,stm32f10x_it.hmain文件:#include "stm32f10x.h"#include "stdarg.h"#include "stdio.h"#define ADC1_DR_Address ((uint32_t)0x4001244C)extern __IO u16 ADC_ConvertedValue;extern __IO u16 calculated_temp;__IO u16 Current_Temp;unsigned char sec=0,min=0,hour=0;typedef struct{int tm_sec;int tm_min;int tm_hour;}rtc_time;rtc_time systmtime;__IO u16 upper_bound;__IO u16 lower_bound;//static uint8_t USART_Scanf(uint32_t value);void Time_Regulate(rtc_time *tm);unsigned int TimingDelay=0;unsigned int KEY_ON;unsigned int KEY_OFF;void Delay(u32 count){u32 i=0;for(;i<count;i++);}void LED_GPIO_Config(){GPIO_InitTypeDef GPIO_InitStructure;RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE); // 使能PD端口时钟GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8|GPIO_Pin_9|GPIO_Pin_10|GPIO_Pin_11;//LED0-->PD.8端口配置GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //IO 速度50MHzGPIO_Init(GPIOD, &GPIO_InitStructure); //根据设定参数初始化GPIOB.5}void SysTick_Init(){if (SysTick_Config(SystemCoreClock / 1000)){while(1);}SysTick->CTRL &= ~ SysTick_CTRL_ENABLE_Msk;//关闭滴答定时器//SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;//开启滴答定时器}void Delay_ms(__IO u32 nTime){TimingDelay=nTime;SysTick->CTRL |= SysTick_CTRL_ENABLE_Msk;//打开while(TimingDelay != 0);}void RCC_Config(void)//配置时钟{RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);//DMA RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_GPIOC, ENABLE);//ADC1 and GPIOCRCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);//USARTRCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE); // 使能PD端口时钟LED}void GPIO_Config(void){GPIO_InitTypeDef GPIO_InitStructure;/***Config PA.01 (ADC1)***/GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;GPIO_Init(GPIOC, &GPIO_InitStructure);/***Config LED ***/GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //推挽输出GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //IO 速度50MHzGPIO_Init(GPIOD, &GPIO_InitStructure); //根据设定参数初始化GPIOB.5/***Config USART ***//* Configure USART1 Tx (PA.09) as alternate function push-pull */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOA, &GPIO_InitStructure);/* Configure USART1 Rx (PA.10) as input floating */GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;GPIO_Init(GPIOA, &GPIO_InitStructure);}void DMA_Config(void){/* DMA channel1 configuration */DMA_InitTypeDef DMA_InitStructure;DMA_DeInit(DMA1_Channel1);DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address; /*ADC??*/DMA_InitStructure.DMA_MemoryBaseAddr = (u32)&ADC_ConvertedValue;DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;DMA_InitStructure.DMA_BufferSize = 16;DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable;DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;DMA_InitStructure.DMA_Priority = DMA_Priority_High;DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;DMA_Init(DMA1_Channel1, &DMA_InitStructure);/* Enable DMA channel1 */DMA_Cmd(DMA1_Channel1, ENABLE);}void ADC1_Config(void){ ADC_InitTypeDef ADC_InitStructure;ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;ADC_InitStructure.ADC_ScanConvMode = ENABLE ;ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;ADC_InitStructure.ADC_NbrOfChannel = 1;ADC_Init(ADC1, &ADC_InitStructure);/* ADC1 regular channel16 configuration */ADC_RegularChannelConfig(ADC1, ADC_Channel_16, 1, ADC_SampleTime_55Cycles5);ADC_TempSensorVrefintCmd(ENABLE);ADC_DMACmd(ADC1, ENABLE);ADC_Cmd(ADC1, ENABLE);ADC_ResetCalibration(ADC1);while(ADC_GetResetCalibrationStatus(ADC1));ADC_StartCalibration(ADC1);while(ADC_GetCalibrationStatus(ADC1));ADC_SoftwareStartConvCmd(ADC1, ENABLE);}void USART1_Config(void){USART_InitTypeDef USART_InitStructure;USART_ART_BaudRate = 9600;USART_ART_WordLength = USART_WordLength_8b;USART_ART_StopBits = USART_StopBits_1;USART_ART_Parity = USART_Parity_No ;USART_ART_HardwareFlowControl = USART_HardwareFlowControl_None;USART_ART_Mode = USART_Mode_Rx | USART_Mode_Tx;USART_Init(USART1, &USART_InitStructure);// USART_ITConfig(USART1,USART_IT_RXNE,ENABLE); //接收使能// USART_ITConfig(USART1,USART_IT_TXE,ENABLE); //发送使能USART_Cmd(USART1,ENABLE); //启动串口}static uint8_t USART_Scanf(uint32_t value)//字符串读取函数{uint32_t index = 0;uint32_t tmp[2] = {0, 0};while (index < 2){/* Loop until RXNE = 1 */while (USART_GetFlagStatus(USART1, USART_FLAG_RXNE) ==RESET) {}tmp[index++] = (USART_ReceiveData(USART1));if ((tmp[index - 1] < 0x30) || (tmp[index -1] > 0x39)){printf("\n\r请输入有效数字0 到9 -->: ");index--;}}index = (tmp[1] - 0x30) + ((tmp[0] - 0x30) * 10);/* Checks */if (index > value){printf("\n\r请输入有效数字0 到%d", value);return 0xFF;}return index;}void Time_Regulate(rtc_time *tm)//时间设定函数{uint32_t Tmp_HH =0xFF, Tmp_MI = 0xFF, Tmp_SS = 0xFF;uint32_t Tmp_up = 0xff,Tmp_low = 0xff;printf("\r\n 设定温度范围");printf("\r\n 输入温度上限: ");while (Tmp_up == 0xFF){Tmp_up = USART_Scanf(99);}printf("\n\r 温度上限为%0.2d C\n\r", Tmp_up); upper_bound = Tmp_up;//-------------------printf("\r\n 输入温度下限: ");while (Tmp_low == 0xFF){Tmp_low = USART_Scanf(99);}printf("\n\r 温度下限为%0.2d C\n\r", Tmp_low); lower_bound = Tmp_low;printf("\r\n 设定时间");Tmp_HH = 0xFF;printf("\r\n 设定小时: ");while (Tmp_HH == 0xFF){Tmp_HH = USART_Scanf(23);}printf("\n\r 设定小时为%d\n\r", Tmp_HH ); tm->tm_hour= Tmp_HH;Tmp_MI = 0xFF;printf("\r\n 设定分钟: ");while (Tmp_MI == 0xFF){Tmp_MI = USART_Scanf(59);}printf("\n\r 设定分钟为%d\n\r", Tmp_MI);tm->tm_min= Tmp_MI;Tmp_SS = 0xFF;printf("\r\n 设定秒: ");while (Tmp_SS == 0xFF){Tmp_SS = USART_Scanf(59);}printf("\n\r 设定秒为%d\n\r", Tmp_SS);tm->tm_sec= Tmp_SS;}int fputc(int ch, FILE *f)//重定向函数{USART_SendData(USART1, (unsigned char) ch);// while (!(USART1->SR & USART_FLAG_TXE));while( USART_GetFlagStatus(USART1,USART_FLAG_TC)!= SET);return (ch);}/*****************************主函数***********************************************/ int main(void){#ifdef DEBUG#endifSysTick_Init();LED_GPIO_Config();RCC_Config();GPIO_Config();DMA_Config();ADC1_Config();USART1_Config();Delay(5000);Time_Regulate(&systmtime);GPIO_SetBits(GPIOD, GPIO_Pin_8);GPIO_SetBits(GPIOD, GPIO_Pin_9);GPIO_SetBits(GPIOD, GPIO_Pin_10);GPIO_SetBits(GPIOD, GPIO_Pin_11);sec=systmtime.tm_sec;min=systmtime.tm_min;hour=systmtime.tm_hour;while(1){sec++;if(sec==60){ sec=0;min++;if(min==60){min=0;hour++;if(hour==24){hour=0;}}}printf("\r\n 当前时间:%d :%d :%d \r\n", hour,min,sec);printf("\r\n 当前温度:%02d C 温度上限:%02d C 温度下限:%02d C \r\n",Average_Temp,upper_bound,lower_bound);GPIO_SetBits(GPIOD, GPIO_Pin_8);GPIO_SetBits(GPIOD, GPIO_Pin_9);GPIO_SetBits(GPIOD, GPIO_Pin_10);GPIO_SetBits(GPIOD, GPIO_Pin_11);if(((int)Current_Temp) > ((int)upper_bound)){GPIO_ResetBits(GPIOD, GPIO_Pin_8);}else if(((int)Current_Temp) < ((int)lower_bound)){GPIO_ResetBits(GPIOD, GPIO_Pin_11);}else{GPIO_SetBits(GPIOD, GPIO_Pin_8);GPIO_SetBits(GPIOD, GPIO_Pin_9);GPIO_SetBits(GPIOD, GPIO_Pin_10);GPIO_SetBits(GPIOD, GPIO_Pin_11);}Delay_ms(1000);}}stm32f10x_it.c文件:/* Includes ------------------------------------------------------------------*/#include "stm32f10x_it.h"/* Private functions---------------------------------------------------------*/void display(void){unsigned char ad_data,ad_value_max,ad_value_min;ad_data=Current_Temp;if(ad_sample_cnt==0){ad_value_max=ad_data;ad_value_min=ad_data;}else if(ad_data<ad_value_min){ad_value_min=ad_data;}else if(ad_data>ad_value_max){ad_value_max=ad_data;}ad_value_sum+=ad_data;ad_sample_cnt++;if(ad_sample_cnt==10){ad_value_sum-=ad_value_min;ad_value_sum-=ad_value_max;ad_value_sum/=8;calculated_temp=ad_value_sum;ad_sample_cnt=0;ad_value_min=0;ad_value_max=0;}}void SysTick_Handler(void){TimingDelay--;ADC_tempValueLocal = ADC_ConvertedValue;//printf("\n %02d \n, ADC_ConvertedValue");Current_Temp=(V25-ADC_tempValueLocal)/Avg_Slope+25;temp_sum+=Current_Temp;temp_cnt++;if(temp_cnt>=10){temp_cnt=0;temp_sum/=10;Average_Temp=temp_sum;temp_sum=0;}//printf("\r\n The current temperature = %02d C\r\n", calculated_temp);}五、课程总结与个人体会嵌入式开发是自动化专业的主要课程之一,现实生活中,嵌入式在应用可以说得是无处不在。

相关文档
最新文档