基于matlab的图像预处理技术研究文献综述

合集下载

使用Matlab进行植物图像分析的方法研究

使用Matlab进行植物图像分析的方法研究

使用Matlab进行植物图像分析的方法研究植物图像分析是一门重要的研究领域,它可以帮助我们更好地理解植物的结构和生理特性。

近年来,随着计算机技术的不断发展,使用计算机视觉方法进行植物图像分析已成为一种较为常见的研究手段。

本文将介绍使用Matlab进行植物图像分析的方法研究,并探讨其在生态学、农业科学等领域的应用前景。

一、图像预处理图像预处理是植物图像分析的第一步,它的目的是消除图像中的噪声和不需要的信息,提高图像的质量。

在Matlab环境下,我们可以利用图像处理工具箱中提供的函数进行图像预处理。

例如,我们可以使用滤波器对图像进行平滑操作,可以使用阈值分割方法将图像分为背景和前景等。

二、特征提取特征提取是植物图像分析的核心,它的目的是从图像中提取出植物的形态和结构等特征。

在Matlab中,我们可以利用图像处理工具箱中的多种函数进行特征提取。

例如,我们可以使用形态学操作对植物的轮廓进行提取,可以使用边缘检测算法对植物的边缘进行提取,可以使用纹理分析方法对植物的纹理特征进行提取等。

三、机器学习方法机器学习方法在植物图像分析中扮演着重要的角色,它可以根据提取出的特征对植物进行分类和识别。

在Matlab中,我们可以利用机器学习工具箱中提供的函数进行机器学习算法的实现。

例如,我们可以使用支持向量机(SVM)算法对植物进行分类,可以使用卷积神经网络(CNN)对植物进行识别等。

通过机器学习方法,我们可以更加准确地对植物进行分类和识别,为后续的研究工作提供支持。

四、应用前景植物图像分析在生态学、农业科学等领域具有重要的应用前景。

在生态学中,通过对植物的图像分析,我们可以了解植物的空间分布状况、生态系统的稳定性等。

在农业科学中,通过对植物的图像分析,我们可以监测植物的生长状态、预测产量、研究植物的抗逆性等。

此外,植物图像分析还可以应用于植物病害的检测和预防、植物品种的鉴别和选育等方面。

总结:使用Matlab进行植物图像分析的方法研究有着广泛的应用前景。

基于Matlab的数字图像处理系统设计_毕业论文设计 精品推荐

基于Matlab的数字图像处理系统设计_毕业论文设计 精品推荐

论文(设计)题目:基于MATLAB的数字图像处理系统设计基于MATLAB的数字图像处理系统设计摘要MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。

笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。

上述功能均是在MA TLAB 语言的基础上,编写代码实现的。

这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。

关键词:MATLAB 数字图像处理图像处理工具箱图像变换第一章绪论1.1 研究目的及意义图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。

MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。

MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。

它编写简单、编程效率高并且通俗易懂。

1.2 国内外研究现状1.2.1 国内研究现状国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。

MATLAB在高等数学中的应用文献综述

MATLAB在高等数学中的应用文献综述

MATLAB在高等数学中的应用文献综述文献综述MATLAB在高等数学中的应用一、前言部分MATLAB是Matrix Laboratory(矩阵实验室)的缩写,是一种广泛应用于工程计算及数值分析领域的新型高级语言,是一种具有广泛应用前景的全新的计算机高级编程语言,有人称它为“第四代”计算机语言。

它可以进行矩阵运算、数据可视化、实验算法、创建用户界面、连接其他编程语言程序等,它起源于矩阵计算,并提供强大的科学运算、灵活的程序设计流程和高质量的图形,且具有一下的特点与功能:1MATLAB是一个交互式软件系统输入一条命令就可以得出该命令的结果。

2MATLAB具有很强的数值计算功能MATLAB以矩阵作为数据操作的基本单位,但无需预先指定矩阵维数。

按照IEEE的数值计算标准进行计算。

提供十分丰富的数值计算函数,方便计算,提高效率。

MATLAB命令与数学中的符号、公式非常接近,可读性强,容易掌握。

二、主题部分2.1.MATLAB软件介绍2.1.1.MATLAB软件概况“MATLAB”是“Matrix Laboratory”的缩写。

MATLAB的第一个版本是LINPACK和EISPACK库的程序的一个接口,用来分析线性方程组。

随着MATLAB的演化,除了线性代数外,它还支持许多其他的程序。

MATLAB的核心仍然是基于命令行的交互式分析工具。

用户可以用类Fortran语言扩展交互环境。

交互环境中的程序以命令行的形式执行。

MATLAB用户接口包括下拉菜单和对话框,任何个人电脑使用者对这一接口都很熟悉。

菜单命令支持文件操作、打印、程序编辑和用户接口定制。

MATLAB 的数值计算是通过在命令窗口输入命令,并不是通过菜单操作进行的。

MATLAB是一个基本的应用程序,它有一个称为标准工具箱的巨大程序模块库。

MATLAB工具箱包括解决实际问题的扩展库,如:求根、插值、数值积分、线性和非线性方程组求解以及常微分方程组求解。

由于继承了LINPACK、EISPACK 和LAPACK的特性,MATLAB对数值线性代数来说是一个高可靠的优化系统。

基于Matlab的遥感数据处理与图像分析技术研究

基于Matlab的遥感数据处理与图像分析技术研究

基于Matlab的遥感数据处理与图像分析技术研究遥感技术是一种通过传感器获取地面、大气和水体等目标信息的技术,广泛应用于农业、林业、地质勘探、城市规划等领域。

而Matlab作为一种功能强大的科学计算软件,被广泛应用于遥感数据处理和图像分析中。

本文将探讨基于Matlab的遥感数据处理与图像分析技术研究。

1. 遥感数据处理遥感数据处理是指对通过遥感传感器获取的数据进行预处理、特征提取和信息提取的过程。

在Matlab中,可以利用各种工具箱和函数对遥感数据进行处理,包括但不限于:数据读取与显示:Matlab提供了丰富的函数用于读取各种格式的遥感数据,并可以通过图像显示函数展示数据。

数据预处理:包括去噪、辐射校正、几何校正等预处理步骤,可以有效提高后续分析的准确性。

特征提取:利用Matlab中的图像处理工具箱,可以提取各种地物特征,如植被指数、土地覆盖类型等。

分类与识别:通过机器学习算法,在Matlab环境下进行遥感影像分类与目标识别,实现自动化信息提取。

2. 图像分析技术图像分析技术是指对图像进行数字化处理和分析,从中获取有用信息的过程。

在遥感领域,图像分析技术可以帮助解译遥感影像,提取地物信息,进行环境监测等。

在Matlab中,可以结合图像处理工具箱和深度学习工具箱进行图像分析,包括但不限于:图像增强:通过直方图均衡化、滤波等方法增强遥感影像的对比度和清晰度。

目标检测:利用目标检测算法,在遥感影像中自动识别并标记出目标物体。

变化检测:通过对多时相遥感影像进行比对分析,检测地表变化情况,如城市扩张、植被覆盖变化等。

三维重建:基于多角度或多时相影像,使用立体视觉技术实现地形三维重建。

3. Matlab在遥感领域的应用案例3.1 遥感影像分类利用Matlab中的支持向量机(SVM)算法对高光谱遥感影像进行分类,实现土地覆盖类型的自动识别。

通过构建合适的特征空间和选择适当的核函数,提高分类精度和效率。

3.2 遥感变化检测结合Matlab中的差异图像分析方法和变化检测算法,对城市扩张、湖泊面积变化等进行监测与分析。

基于MATLAB的图像识别与处理系统设计

基于MATLAB的图像识别与处理系统设计

基于MATLAB的图像识别与处理系统设计图像识别与处理是计算机视觉领域的重要研究方向,随着人工智能技术的不断发展,基于MATLAB的图像识别与处理系统设计变得越来越受到关注。

本文将介绍如何利用MATLAB进行图像识别与处理系统设计,包括系统架构、算法选择、性能优化等方面的内容。

一、系统架构设计在设计基于MATLAB的图像识别与处理系统时,首先需要考虑系统的整体架构。

一个典型的系统架构包括以下几个模块:图像采集模块:负责从各种来源获取原始图像数据,可以是摄像头、传感器等设备。

预处理模块:对采集到的图像数据进行预处理,包括去噪、灰度化、尺寸调整等操作,以便后续的处理。

特征提取模块:从预处理后的图像中提取出有用的特征信息,这些特征将用于后续的分类和识别。

分类器模块:采用机器学习或深度学习算法对提取到的特征进行分类和识别,输出最终的结果。

结果展示模块:将分类和识别结果展示给用户,可以是文字描述、可视化界面等形式。

二、算法选择与优化在基于MATLAB进行图像识别与处理系统设计时,算法选择和优化是至关重要的环节。

以下是一些常用的算法和优化技巧:图像处理算法:MATLAB提供了丰富的图像处理工具箱,包括滤波、边缘检测、形态学操作等功能,可以根据具体需求选择合适的算法。

特征提取算法:常用的特征提取算法包括HOG(Histogram of Oriented Gradients)、SIFT(Scale-Invariant Feature Transform)等,选择合适的算法可以提高系统性能。

分类器算法:MATLAB中集成了多种机器学习和深度学习算法,如SVM(Support Vector Machine)、CNN(Convolutional Neural Network)等,可以根据数据特点选择最适合的分类器。

性能优化:在实际应用中,为了提高系统性能和响应速度,可以采用并行计算、GPU加速等技术对算法进行优化。

三、实例分析为了更好地理解基于MATLAB的图像识别与处理系统设计过程,我们以一个实例进行分析:假设我们需要设计一个人脸识别系统,首先我们需要收集大量人脸图像数据,并对这些数据进行预处理和特征提取。

基于MATLAB的医学影像处理算法研究与实现

基于MATLAB的医学影像处理算法研究与实现

基于MATLAB的医学影像处理算法研究与实现一、引言医学影像处理是医学领域中非常重要的一个分支,它通过对医学影像数据的获取、处理和分析,帮助医生做出准确的诊断和治疗方案。

MATLAB作为一种功能强大的科学计算软件,在医学影像处理领域有着广泛的应用。

本文将探讨基于MATLAB的医学影像处理算法研究与实现。

二、医学影像处理概述医学影像处理是指利用计算机技术对医学图像进行数字化处理和分析的过程。

常见的医学影像包括X射线片、CT扫描、MRI等。

医学影像处理可以帮助医生更清晰地观察患者的内部结构,发现病变部位,提高诊断准确性。

三、MATLAB在医学影像处理中的优势MATLAB作为一种专业的科学计算软件,具有丰富的图像处理工具箱和强大的编程能力,适合用于医学影像处理。

其优势主要体现在以下几个方面: - 提供丰富的图像处理函数和工具箱,如imread、imshow、imfilter等,方便快捷地对医学图像进行处理。

- 支持自定义算法的开发,可以根据具体需求设计和实现各种医学影像处理算法。

- 集成了大量数学计算和统计分析工具,可用于对医学影像数据进行深入分析和挖掘。

四、常见的医学影像处理算法1. 图像去噪图像去噪是医学影像处理中常见的预处理步骤,旨在消除图像中的噪声干扰,提高图像质量。

MATLAB提供了多种去噪算法,如中值滤波、均值滤波、小波去噪等。

2. 图像分割图像分割是将图像划分为若干个具有相似特征的区域或对象的过程,常用于检测病变区域或器官轮廓。

MATLAB中常用的图像分割算法有阈值分割、区域生长、边缘检测等。

3. 特征提取特征提取是从图像中提取出具有代表性信息的特征,用于描述和区分不同目标或结构。

MATLAB提供了各种特征提取方法,如灰度共生矩阵、Gabor滤波器、形态学特征等。

4. 图像配准图像配准是将不同时间或不同模态下获取的图像进行对齐和配准,以便进行定量比较和分析。

MATLAB中常用的配准算法有基于特征点的配准、基于互信息的配准等。

基于Matlab的图像预处理讲解

基于Matlab的图像预处理讲解

基于Matlab的图像预处理算法实现目录第一章绪论 (1)1.1何谓数字图像处理 (1)1.2数字图像处理的特点及其应用 (1)1.2.1 数字图像处理的特点 (1)1.2.2图像预处理的内容 (2)1.2.3 数字图像处理的应用 (3)1.3MATLAB (4)1.3.1 matlab简述 (4)1.3.2 matlab处理图像的特点 (5)第二章数字图像处理的灰度直方图 (6)2.1灰度的定义 (6)2.2直方图定义 (6)2.2.1直方图的典型用途 (6)2.2.2灰度直方图的计算 (7)2.2.3图像直方图实现代码 (7)2.3直方图均衡 (8)2.3.1 直方图均衡原理 (8)2.3.2直方图均衡的实现 (8)第三章图像平滑与图像锐化 (12)3.1图像的平滑 (12)3.1.1领域平均法基础理论 (12)3.1.2算法实现 (13)3.2图像锐化 (15)3.2.1图像锐化的目的和意义 (15)3.2.2图像锐化算法 (16)3.2.3图像锐化的实现代码 (16)第四章图像噪声与噪声的处理 (19)4.1噪声的概念 (19)4.2图像噪声对图像的影响 (19)4.3噪声来源 (19)4.4噪声图像模型及噪声特性 (20)4.4.1 含噪模型 (20)4.4.2 噪声特性 (21)4.5图像二值化 (21)4.5.1理论基础 (21)4.5.2图像二值化的实现代码 (21)4.6二值图像的去噪 (22)4.6.1理论基础 (23)4.6.2二值图像去噪的实现代码 (23)第五章结论 (25)参考文献 (26)第一章绪论1.1何谓数字图像处理数字图像处理(Digital Image Processing),就是利用数字计算机或则其他数字硬件,对从图像信息转换而得到的电信号进行某些数学运算,以提高图像的实用性。

例如从卫星图片中提取目标物的特征参数,三维立体断层图像的重建等。

总的来说,数字图像处理包括点运算、几何处理、图像增强、图像复原、图像形态学处理、图像编码、图像重建、模式识别等。

图像处理文献综述

图像处理文献综述

文献综述近年来,随着计算机视觉技术的日益发展,图像处理作为该领域的关键方向受到越来越多研究人员的关注与思考。

在现在的日常生活中,由于通信设备低廉的价格和便捷的操作,人们越来越喜欢用图像和视频来进行交流和分享,消费性的电子产品在消费者中已经非常普遍,例如移动手机和数码相机等等。

在这个纷繁多变的世界,每天都有数以万计的图像产生,同时信息冗余问题也随之而来。

尽管在一定的程度上,内存技术的增加和网络带宽的提高解决了图像的压缩和传输问题,但是智能的图像检索和有效的数据存储,以及图像内容的提取依然没有能很好的解决。

视觉注意机制可以被看做是人类对视觉信息的一个筛选过程,也就是说只有一小部分重要的信息能够被大脑进行处理。

人类在观察一个场景时,他们往往会将他们的注意力集中在他们感兴趣的区域,例如拥有鲜艳的颜色,光滑的亮度,特殊的形状以及有趣的方位的区域。

传统的图像处理方法是将整幅图像统一的处理,均匀的分配计算机资源;然而许多的视觉任务仅仅只关系图像中的一个或几个区域,统一的处理整幅图像很明显会浪费过多的计算机资源,减少处理的效率[1,2]。

因此,在计算机视觉领域,建立具有人类视觉系统独特数据筛选能力的数学模型显得至关重要。

受高效的视觉信息处理机制的启发,计算机视觉领域的显著性检测应运而生。

图像显著性检测是通过建立一定的数学模型,让计算机来模拟人类的视觉系统,使得计算机能够准确高效的定位到感兴趣的区域。

一般来说,一个信号的显著性可以表示为其和周围环境的差异性。

正是因为这个信号和周围的其他信号的迥异性,使得视觉系统不需要对环境中的所有感兴趣的区域进行逐个的扫描,显著的目标会自动从环境中凸显出来。

另外,一些心理学研究表明人类的视觉机制不仅仅是由低级的视觉信号来驱动的,基于记忆、经验等的先验知识同样能够决定场景中的不同信号的显著性,而这些先验知识往往是和一些高层次的事件以及视觉任务联系在一起的。

基于当前场景的视觉显著性机制是低级的,慢速的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计文献综述题目:基于matlab的图像预处理技术研究专业:电子信息工程1前言部分众所周知,MATLAB在数值计算、数据处理、自动控制、图像、信号处理、神经网络、优化计算、模糊逻辑、小波分析等众多领域有着广泛的用途,特别是MATLAB的图像处理和分析工具箱支持索引图像、RGB 图像、灰度图像、二进制图像,并能操作*.bmp、*.jpg、*.tif等多种图像格式文件如。

果能灵活地运用MATLAB提供的图像处理分析函数及工具箱,会大大简化具体的编程工作,充分体现在图像处理和分析中的优越性。

图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。

视觉是人类从大自然中获取信息的最主要的手段。

拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。

由此可见,视觉信息对人类非常重要。

同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。

通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。

图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。

图像处理它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。

图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。

图像处理作为一门学科大约形成于20世纪60年代初期。

早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。

图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。

首次获得实际成功应用的是美国喷气推进实验室(JPL)。

他们对航天探测器徘徊者7号在 1964 年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。

随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了图像处理这门学科的诞生。

在以后的宇航空间技术,如对火星、土星等星球的探测研究中,图像处理技术都发挥了巨大的作用。

图像处理取得的另一个巨大成就是在医学上获得的成果。

1972 年英国 EMI 公司工程师 Housfield 发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT ( Computer Tomograph )。

CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。

1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。

1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。

与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学工程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。

随着图像处理技术的深入发展,从70 年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速发展,图像处理向更高、更深层次发展。

人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。

很多国家,特别是发达国家投入更多的人力、物力到这项研究,取得了不少重要的研究成果。

其中代表性的成果是70年代末MIT的Marr提出的视觉计算理论,这个理论成为计算机视觉领域其后十多年的主导思想。

图像理解虽然在理论方法研究上已取得不小的进展,但它本身是一个比较难的研究领域,存在不少困难,因人类本身对自己的视觉过程还了解甚少,因此计算机视觉是一个有待人们进一步探索的新领域。

近年来计算机技术的飞速发展和数早图像技术的日趋成熟,例如传统的交通管理带来巨大转变,先进的计算机处理技术,不但,可以将人力从繁琐的人工观察、监测中解放出来,而且能够大大提高其精确度,例如汽车牌照自动识别系统在这样的背景与目的下发展飞速。

汽车牌照信息的采集和识别对于交通车辆管理、园区车辆管理、停车场管理等都有着重要的作用。

对车牌图像的顶处理能有效地提取其中的有用信息,增强识别的可靠性。

车牌图像顶处理是车牌识别系统的前提条件,它直接关系着系统后续早符分割和识别的准确性。

为了便于图片的分割和字符的识别,原始图像应具有适当的亮度和对比度。

但是由于光照条件的不稳定变化、图片不整洁、摄像头与牌照的距离或角度不合适以及速度较快等因素,都将引起图像质量严重下降,包括模糊、光照不均、亮度太低、对比度太小、倾斜等现象。

这些都影响了图像字符的分割进而降低了车牌识别率。

因此,必须通过采取图像预处理措施减少非日标了图像和噪声的十扰,以提高识别率。

图像的预处理技术,本研研究探讨其图像归一化、二值化、图像增强、图像平滑和图像的倾斜校正等过程。

2主题部分图像预处理主要研究的内容有以下几个方面:1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。

因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。

目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。

2)图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。

压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。

编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。

3)图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。

图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。

如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。

图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像。

4) 图像分割图像分割是数字图像处理中的关键技术之一。

图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。

虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。

因此,对图像分割的研究还在不断深入理解的必要前提。

作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。

对于特殊的纹理图像可采用二维纹理特征描述。

随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。

6)图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。

图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

解决图像因为天气或者拍摄角度等原因造成的图像模糊、歪斜或缺损的情况。

一般动作有对输入的灰度图像进行大小归一化,避免因图像的变形而影响后续的处理,通过灰度拉伸增强图像对比度,通过二值化处理实现图像中背景和对象的分割。

采用动态阈值法确定图像二值化的关键阈值,使用带修正的自适应邻域平均法消除图像干扰和噪音,并使用Hough变幻和选装投影想结合的方法实现图像的倾斜校正等。

一般对灰度图像可以实现较好的处理效果。

图像的预处理流程:图像的顶处理主要流程如图1所示,主要包括图像灰度化,图像去噪,图像增强,边缘化,二值化等。

图1:图像预处理过程预处理算法:1 图像灰度化灰度图像是指只含亮度信息,不含色彩信息的图像。

将彩色图像转化成为灰度图像的过程称为图像的灰度化处理。

彩色图像中的每个像素的颜色有R、G、B 三个分量决定,而每个分量有255种值可取,这样一个像素点可以有1600多万的颜色的变化范围。

而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,一个像素点的变化范围为255种,所以在数字图像处理中一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。

灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。

图像的灰度化处理可先求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。

图像样本,目前大都是通过摄像机、数码相机等设备拍摄获取的,因而顶处理前的图像都是彩色图像。

它是利用R, G, B 3个分量表示一个像素的颜色,R, G, B分别代表红、绿、蓝3种小同的颜色,通过三基色,可以合成出任意颜色。

由于图像的每个像素都具有三个小同的颜色分量,存在许多与识别无关的信息,小但在存储上开销很大,而且在处理上也会降低系统的执行速度,以便于进一步的识别工作,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。

彩色图像灰度化的处理方法主要有如下三种:1.最大位法:使R, G, B的位等于三位中最大的一个,即2.平均位法:使R, G, B的位等于三位和的平均值,即3.加权平均位法:根据重要性或其它指标给R, c, B赋子小同的权值,并使R, G, B等于它们的值的加权和平均,即:其中WR ,WG,WB分别为R, G, B的权值,由于人眼对绿色的敏感度最高,对红色的敏感度次之,对蓝色的敏感度最低,当WR =0.3,WG=0.59,WB=0.11,时,能得到最合理的灰度图像。

因此,用g表示灰度化后的灰度值,则g=0.3R+0.59G+0.11B 。

2 图像去噪图像去噪作为图像处理的一种重要的预处理手段一直得到人们的关注,而且随着对图像理解的不断深入和新数学理论的不断引入,图像去噪的方法与理论也不断得到丰富和发展。

因此本文对图像去噪的理论和方法做了系统的研究,并对其中的一些关键技术和问题进行了较为深入的探索。

主要工作包括两方面:首先将多分辨模型与总体最小二乘原理相结合,文中提出了一种新的用于含有混合噪声的图像去噪算法,这种算法是在充分考虑观测数据不确定的情况下建立起来的。

先运用多种图像特征检测算子将图像分为不同的特征区域,然后对这些区域分别采用不同的去噪策略。

相关文档
最新文档