光伏逆变器详细介绍(完整版)之一
光伏逆变器详细介绍(完整版)

保护功能
总结词
保护功能是确保光伏逆变器安全运行的重要措施,包括过载保护、短路保护、过压保护 和欠压保护等。
详细描述
过载保护是指在负载超过额定值时,逆变器自动切断输出或降低输出功率,以保护设备 和电网的安全;短路保护则是在发生短路故障时,逆变器能够快速切断输出,防止电流 过大造成设备损坏;过压和欠压保护则是在输入电压过高或过低时,逆变器自动调节或
转换效率
总结词
转换效率是衡量光伏逆变器性能的重 要指标,它表示逆变器将直流电能转 换为交流电能的效率。
详细描述
转换效率越高,意味着逆变器在转换 过程中损失的能量越少,系统整体效 率更高。因此,选择高效率的逆变器 可以降低系统能耗,提高经济效益。
输入电压范围
总结词
输入电压范围表示逆变器能够接受的 直流输入电压的范围。
逆变器无法启动
检查电源是否正常,检查电缆 连接是否紧固。
输出电压异常
检查输入电压是否正常,检查 电缆连接是否紧固。
散热风扇不运转
检查散热风扇是否损坏,需要 更换散热风扇。
显示面板无显示
检查显示面板的连接线是否正 常,需要更换显示面板。
THANKS FOR WATCHING
感谢您的观看
方向。
数字化、智能化技术加速应用 ,提升光伏逆变器的能源管理
和运维水平。
并网、储能、充电等多功能集 成化成为技术发展新趋势。
模块化、定制化设计满足不同 应用场景需求。
未来市场预测
随着全球能源结构转型和可再生能源政策的推动,光伏 逆变器市场前景广阔。
5G通信、物联网等新技术的应用将为光伏逆变器市场 带来新的发展机遇。
要点一
建筑集成光伏(BIPV)
将光伏板与建筑相结合,通过光伏逆变器将太阳能转化为 直流电能,供给建筑内部负载使用或并入电网。
光伏逆变器功能特点和主要技术参数说明

光伏逆变器功能特点和主要技术参数说明将直流电能变换成为交流电能的过程称为逆变,完成逆变功能的电路称为逆变电路,而实现逆变过程的装置称为逆变器或逆变设备。
太阳能光伏系统中使用的逆变器是一种将太阳能电池产生的直流电能转换为交流电能的转换装置。
它使转换后的交流电的电压、频率与电力系统交流电的电压、频率相一致,以满足为各种交流用电装置、设备供电及并网发电的需要,它是光伏系统的大脑。
1.离网逆变器的主要特点(1)采用16位单片机或32位DSP微处理器进行控制;(2)太阳能充电采用PWM控制模式,大大提高了充电效率;(3)采用数码或液晶显示各种运行参数,可灵活设置各种定值参数;(4)方波、修正波、正弦波输出。
纯正弦波输出时,波形失真率一般小于5%;(5)稳压精度高,额定负载状态下,输出精度一般不大于±3%;(6)具有缓启动功能,避免对蓄电池和负载的大电流冲击;(7)高频变压器隔离,体积小、重量轻;(8)配备标准的RS232/485通信接口,便于远程通信和控制;(9)可在海拔5500m以上的环境中使用。
适应环境温度范围为-20~50℃;(10)具有输入接反保护、输入欠压保护、输入过压保护、输出过压保护、输出过载保护、输出短路保护、过热保护等多种保护功能。
2.并网型逆变器主要性能特点(1)功率开关器件采用新型IPM模块,大大提高系统效率;(2)采用MPPT自寻优技术实现太阳能电池最大功率跟踪,最大限度地提高系统的发电量;(3)液晶显示各种运行参数,人性化界面,可通过按键灵活设置各种运行参数;(4)设置有多种通信接口可以选择,可方便地实现上位机监控(上位机是指:人可以直接发出操控命令的计算机,屏幕上显示各种信号变化如电压、电流、水位、温度、光伏发电量等);(5)具有完善的保护电路,系统可靠性高;(6)具有较宽的直流电压输入范围;(7)可实现多台逆变器并联组合运行,简化光伏发电站设计,使系统能够平滑扩容;(8)具有电网保护装置,具有防孤岛保护功能。
《太阳能光伏发电技术》课件——6.逆变器

中功率逆变器 (5-50KW)
大功率逆变器 (>50KW)
4、按逆变器输出能量的去向分类
有源逆变器 无源逆变器
有源逆变电路的交流侧接电网,即交流侧接有电源。 无源逆变电路的交流侧直接和负载联接。
三、逆变器的分类
5、按逆变器输出电压的波形分类
方波逆变器
阶梯波逆变器
正弦波逆变器
三、逆变器的分类
光伏逆变器
离网型逆变器 并网箱逆变器
集中并网逆变器 组串式并网逆变器
微型并网逆变器 双向并网逆变器
6.2逆变器的结构与工作原理
逆变器的结构与工作原理
一、逆变器的基本结构
DC入
输入电路
DC
AC
主逆变电路
输出电路
AC出
辅助电路
控制电路
逆变器的基本电路结构图
保护电路
一、逆变器的基本结构
1、输入电路
作用:为主逆变电路提供可确保其正常工作的直流工作电压。
光伏逆变器是光伏发电系统必不可少的一部分。
一、控制器的功能
主要作用
将直流电转换为交流电
自动运行和停机 防孤岛效应
其他作用
最大功率点跟踪(MPPT)控制 电网检测及并网
一、控制器的功能
1、自动运行和停机作用
辐射强度
太阳能电池输出
达到所需 输出功率
逆变器主动开始运转
只需太阳能电池组件的输出功率大于逆变器任务所需的输出功率,逆变器就继续运转;
• 对电网参数产生小干扰信号,通过检测反馈信号来判断电网是否失电。
一、控制器的功能
4、电网检测及并网
电网取电
检测 电压 频率 相序
调整并网逆 器发电参数
并网发电
光伏逆变器的原理

光伏逆变器的原理光伏逆变器是光伏发电系统中的重要组成部分,它的作用是将光伏板产生的直流电转化为交流电,用于外部电网或负载供电。
光伏逆变器的工作原理可以分为以下几个方面进行解析。
首先,光伏逆变器首先要解决的问题是光伏电池发出的是直流电,而实际应用中需要的是交流电。
因此,光伏逆变器的首要任务是将直流电转换为交流电。
这个过程主要分为两个步骤,即将直流电高频变换为交流电,然后再将高频交流电转换为所需要的交流电。
这两个步骤涉及到的理论基础是电流、电压和功率的转换关系。
在光伏逆变器中,首先需要将直流电转换为高频交流电。
这一步骤的核心操作是采用功率开关器件(如MOSFET、IGBT等)来控制直流电池与负载间的电流通断,并通过快速切换来实现高频变换。
功率开关器件的切换操作由逆变器中的控制电路来控制,根据输入的信号进行开关控制,从而实现对电流的频率和幅值的控制。
接下来的步骤是将高频交流电转换为所需要的交流电,也就是通过输出变压器来将高频交流电进行降压、升压、变频等操作。
光伏逆变器中的输出变压器通过绕组之间的电磁耦合来实现高低电压的变换,从而实现对输出交流电的调节。
具体来说,通过改变变压器的绕组比例,可以实现输入高频交流电的降低或升高,从而获得所需要的电压。
光伏逆变器的控制系统起着至关重要的作用。
它可以监测光伏板的电压和电流输出,并实时调节逆变器的工作状态,保证系统的稳定运行。
控制系统通过对光伏模块的MPPT(最大功率点跟踪)进行控制,以获得最大的输出功率。
此外,控制系统还可以对逆变器的工作状态进行监测和调整,包括输出电压、频率和波形等。
此外,光伏逆变器还需要处理一些特殊情况,如过压保护、欠压保护、过流保护等。
这些保护措施可以防止逆变器过载、损坏或故障。
例如,在电网电压过高或过低时,逆变器可以自动切断供电,以保护负载和逆变器本身。
在光伏板输出电流过大时,逆变器也可以通过调整负载电流来保持在逆变器额定功率范围内。
总结起来,光伏逆变器的工作原理是将光伏电池系统产生的直流电转换为交流电。
(完整word版)光伏发电系统逆变器结构特点

光伏发电系统逆变器结构特点提出问题:1.光伏发电系统并网时的主要部件是什么?2.光伏逆变器如何分类?其电路如何构成?3.IGBT是什么,有什么特点,主要参数?4.电力MOSFET是什么,主要参数和特性?5.逆变器的常用电路有哪些,各自的接线和特点是什么?6.常用逆变器的形式有哪些,各自特点是什么,主要生产厂家?1・光伏发电系统并网时的主要部件是什么?光伏发电系统并网时的主要部件是逆变器。
无论是太阳能电池、风力发电还是新能源汽车,其系统应用都需要把直流电转换为交流电,承担这一任务的部件为逆变器。
逆变器乂称电源调整器、功率调节器,是光伏系统必不可少的一部分。
通常,物理上把将直流电能变换成交流电能的过程称为逆变,把实现逆变过程的装置称为逆变设备或逆变器。
逆变器的名称由此而來。
光伏逆变器最主要的功能是把太阳能电池板所发的直流电转化成家电使用的交流电。
逆变器是光伏系统的心脏,太阳能电池板所发的电全部都要通过逆变器的处理才能对外输出,逆变器对于整套系统的运行起着重要的作用,逆变器的核心器件是IGBT(绝缘栅双极型晶体管),也是价格最高的部件之一。
2.光伏逆变器如何分类?其电路如何构成?光伏逆变器的分类如下图:逆变器的分类输出波形运行方式输出交流电相数功率流动方向方波逆变器阶梯波逆变器正弦波逆变器离网逆变器并网逆变器单相逆变器三相逆变器单向逆变器双向逆变器功率较小(<4kW)的光伏发电系统一般采用正弦波逆变器。
逆变器的显示功能主要包括:直流输入电斥•和电流的测量值,交流输出电床和电流的测最值,逆变器的工作状态(运行、故障、停机等)。
光伏逆变器的电路构成如下图所示:控制电路:逆变器的控制电路主要是为主逆变电路提供一系列的控制脉冲來控制逆变开关器件的导通与关断,配合主逆变电路完成逆变功能。
辅助电路:辅助电路主要是将输入电压变换成适合控制电路工作的直流电压。
辅助电路还包含多并网逆变器Sd Conriectca Conveners®.AC ElecincrtyQ电网s><raQ种检测、显示电路。
深度总结光伏逆变器的工作原理(1)

深度总结光伏逆变器的工作(gōngzuò)原理引言(yǐnyán)掌握逆变器的工作原理是整个逆变器研发生产过程中的核心,直接关系到逆变器的转换效率,为此无论是光伏圈、厂家还是用户对此都非常关注,关于逆变器的工作原理网上的解答实在是太多,为了让大家对逆变器工作原理有一个彻底的了解,欧姆尼克凭借多年的技术经验做了详细的总结,希翼对关注的朋友(péng you)能起到一定的匡助。
逆变器的概念(gàiniàn)理解逆变器是将交流电能变换(biànhuàn)成直流电能的过程称为整流,把完成整流功能的电路称为整流电路,把实现整流过程的装置称为整流设备或者整流器。
与之相对应,把将直流电能变换成交流电能的过程称为逆变,把完成逆变功能的电路称为逆变电路,把实现逆变过程的装置称为逆变设备或者逆变器。
逆变器分类详解1.按逆变器输出交流电能的频率分,可分为工频逆变器、中频逆器和高频逆变器。
工频逆变器的频率为50~60Hz的逆变器;中频逆变器的频率普通为400Hz到十几kHz;高频逆变器的频率普通为十几kHz到MHz。
2.按逆变器输出的相数分,可分为单相逆变器、三相逆变器和多相逆变器。
3.按照逆变器输出电能的去向分,可分为有源逆变器和无源逆变器。
凡将逆变器输出的电能向工业电网输送的逆变器,称为有源逆变器;凡将逆变器输出的电能输向某种用电负载的逆变器称为无源逆变器。
4.按逆变器主电路的形式分,可分为单端式逆变器,推挽式逆变器、半桥式逆变器和全桥式逆变器。
5.按逆变器主开关器件的类型分,可分为晶闸管逆变器、晶体管逆变器、场效应逆变器和绝缘栅双极晶体管(IGBT)逆变器等。
又可将其归纳为“半控型”逆变器和“全控制”逆变器两大类。
前者,不具备自关断能力,元器件在导通后即失去控制作用,故称之为“半控型”普通晶闸管即属于这一类;后者,则具有自关断能力,即无器件的导通和关断均可由控制极加以控制,故称之为“全控型”,电力场效应晶体管和绝缘栅双权晶体管(IGBT)等均属于这一类。
光伏逆变器培训二(南瑞)

巡检注意事项
1、检查逆变器室内有无异味。 2、检查逆变器运行声音是否正常。 3、检查设备的仪表和工控机显示是否正常。 如(电压表、电流表、工控显示屏等) 4、检查设备的风机自动启停及运行是否正常, 有无异常响动。 5、打开柜门检查各元器件有无变色或变形。
常见故障判断及处理方法
PT故障 现象: 逆变器系统不能并网,装置中PT采样的三相电 压信号丢失; 处理方法: 逆变器处于停机状态后, 首先检查PT外观是否 良好,一般损坏的PT外表可能会有小的鼓包。排 除此项后再检查PT回路的端子、接线等是否有松 动。若三项电压恢复,查看9563装置中动作元件 里允许逆变器并网显示为1时,再进行开机运行。
逆变器的基本操作
系统及控制装置上电检查 上电顺序依次为:交流系统输出侧电压 270V->UPS输入220V ->UPS输出220V>±15V及24V控制电源 装置启动完毕后,在开入开出菜单查看相 关断路器、接触器位置信号是否正确 控制装置-保护测量中交流电压、直流电压 相关模拟量显示是否正确
常见故障判断及处理方法
驱动板故障 现象: 逆变器保护动作,驱动保护动作; 处理方法: 检查驱动回路,包括光纤、光电转换板、 驱动板上是否有明显的断开,若没有明显 的物理上的断口,则初步判断驱动板或插 件有异常;对驱动板进行更换后,对逆变 器进行试运行并录波后,再投入运行。
常见故障判断及处理方法
光伏逆变器培训
(二)
电力检修部
目
录
一、南瑞光伏逆变器 1、逆变器的基本介绍 2、逆变器的基本操作 3、常见故障判断及处理 4、模组的更换与调试 二、阳光20、30KW逆变器 1、 逆变器的基本介绍 2、 逆变器的常见故障及处理方法 3、 逆变器风扇的清洁维护 三、光伏逆变器的巡检注意事项 四、升压变压器的巡检注意事项
光伏并网逆变器的分类及原理ppt课件

二、组串式逆变器 组串式逆变器顾名思义是将光伏组件产生的直流电直接转变为交流电汇总后 升压、并网。因此,逆变器的功率都相对较小。光伏电站中一般采用50kW以 下的组串式逆变器。 (一)组串式逆变器优点: 1.不受组串间模块差异,和阴影遮挡的影响,同时减少光伏电池组件最佳工 作点与逆变器不匹配的情况,最大程度增加了发电量; 2.MPPT电压范围宽,组件配置更加灵活;在阴雨天,雾气多的部区,发电时 间长; 3.体积较小,占地面积小,无需专用机房,安装灵活; 4.自耗电低、故障影响小。 (二)组串式逆变器存在问题: 1.功率器件电气间隙小,不适合高海拔地区;元器件较多,集成在一起,稳 定性稍差; 2.户外型安装,风吹日晒很容易导致外壳和散热片老化; 3.逆变器数量多,总故障率会升高,系统监控难度大; 4.不带隔离变压器设计,电气安全性稍差,不适合薄膜组件负极接地系统。
21
3.2故障现象:逆变器不并网 故障分析:逆变器和电网没有连接, 可能原因: (1)交流开关没有合上。 (2)逆变器交流输出端子没有接上。 (3)接线时,把逆变器输出接线端子上排松动了。 解决办法:用万用表电压档测量逆变器交流输出电压,在正常情况下,输出端子应该有220V或 者380V电压,如果没有,依次检测接线端子是否有松动,交流开关是否闭合,漏电保护开关是 否断开。 3.3逆变器硬件故障:分为可恢复故障和不可恢复故障 故障分析:逆变器电路板,检测电路,功率回路,通讯回路等电路有故障。 解决办法:逆变器出现上述硬件故障,请把直流端和交流端全部断开,让逆变器停电30分钟以 上,如果自己能恢复就继续使用,如果不能恢复,就联系售后技术工程师。
直流侧断路器 PV+
PV-
直流支撑 逆变单元 电容
直流
EMI 滤波器
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦脉宽调制技术:
采样控制理论中有一个重要结论:冲量相等而形状不同的窄脉冲加在具 有惯性的环节上时,其效果基本相同。PWM控制技术就是以该结论为理论 基础,对半导体开关器件的导通和关断进行控制,使输出端得到一系列幅值 相等而宽度不相等的脉冲,用这些脉冲来代替正弦波或其他所需要的波形。 按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小, 也可以改变输出频率。
如果把一个正弦半波分成N等分,然后把每一等份的正弦曲线与横轴包 围的面积,用与它等面积的等高而不等宽的矩形脉冲代替,矩形脉冲的中点 与正弦波每一等分的中点重合,根据冲量相等,效果相同的原理,这样的一 系列的矩形脉冲与正弦半波是等效的,对于正弦波的负半周也可以用同样的 方法得到PWM波形。像这样的脉冲宽度按正弦规律变化而和正弦波等效的 PWM波形就是SPWM波。
逆变器的控制方案:
逆变器的控制方法主要有采用经典控制理论的控制策略和采用现代控 制理论的控制策略两种。
(1)经典控制理论的控制策略
1、电压均值反馈控制 他是给定一个电压均值,反馈采样输出电压的均值,两者相减得到一个 误差,对误差进行PI调节,去控制输出。他是一个恒值调节系统,优点是 输出可以达到无净差,缺点是快速性不好。 2、电压单闭环瞬时值反馈控制 电压单闭环瞬时值反馈控制采用的电压瞬时值给定,输出电压瞬时值反 馈,对误差进行PI调节,去输出控制。他是一个随动调节系统,由于积分 环节存在相位滞后,系统不可能达到无净差,所以这种控制方法的稳态误 差比较大,但快速性比较好。 3、电压单闭环瞬时值和电压均值相结合的控制方法
• 按逆变器主开关器件的类型分可分为: (1)晶闸管逆变器 (2)晶体管逆变器 (3)场效应逆变器 (4)绝缘栅双极晶体管(IGBT)逆变器 • 按直流电源分可分为: (1)电压源型逆变器(VSI) (2)电流源型逆变器(CSI) • 按逆变器控制方式分可分为: (1)调频式(PFM)逆变器 (2)调脉宽式(PWM)逆变器 • 按逆变器开关电路工作方式分可分为: (1)谐振式逆变器 (2)定频硬开关式逆变器 (3)定频软开关式逆变器
(2)阶梯波逆变器
此类逆变器输出的电压波形为阶梯波。逆变器实现阶梯波输出也 有多种不同的线路。输出波形的阶梯数目差别很大。
阶梯波逆变器的优点是 :输出波形比方波有明显改善 ,高次谐波 含量减少,当阶梯达到17个以上时输出波形可实现准正弦波,当采用 无变压器输出时整机效率很高。
缺点是阶梯波叠加线路使用的功率开关较多,其中还有些线路形 式还要求有多组直流电源输入。这给太阳能电池方阵的分组 与 接线 和蓄电池的均衡充电均带来麻烦 。此外阶梯波电压对收音机和某些通 讯设备仍有一些高频干扰。
图1 低频环节逆变原理图
2.高频环节逆变技术
高频环节逆变电路如图2 所示,就是利用高频变压器替代低频变压器 进行能量传输、并实现变流装置的一、二次侧电源之间的电器隔离,从而 减小了变压器的体积和重量,降低了音频噪音,此外逆变器还具有变换效 率高、输出电压纹波小等优点。此类技术中也有不用变压器隔离的,在逆 变器前面直接用一级高频升压环节,这级高频环节可以提高逆变侧的直流 电压,使得逆变器输出与电网电压相当,但是这样方式没有实现输入输出 的隔离,比较危险,相比这两种技术来讲,高频环节的逆变器比低频逆变 器技术难度高、造价高、拓扑结构复杂。
(2)现代控制理论的控制策略:
1、多变量状态反馈控制 多变量状态反馈控制的优点在于可以大大改善系统的动态品质,因为
它可以任意的配置系统的极点,但是建立逆变器的状态模型时很难将负载 的动态特性考虑在内,所以,状态反馈只能针对空载或假定负载进行,对 此应采用负载电流前馈补偿,预先进行鲁棒性分析,才能使系统有好的稳 态和动态性能。 2、无差拍控制
按逆变器输出电压或电流的波形分可分为:
(1)方波逆变器
方波逆变器输出的电压波形为方波,此类逆变器所使用的逆变电 路也不完全相同 ,但共同的特点是线路比较简单,使用的功率开关 数量 很少。设计功率一般在百瓦至千瓦之间。
方波逆变器的优点是:线路简单,维修方便,价格便宜。 缺点是方波电压中含有大量的高次谐波,在带有铁心电感或变压 器的负载用电器中将产生附加损耗,对收音机 和某些通讯设备有干 扰。此外,这类逆变器还有调压范围不够宽,保护功能不够完善,噪 声比较大等缺点。
• (2)要求具有较高的可靠性
目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就 要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种 保护功能,如 :输入直流极性接反保护、交流输出短路保护、过பைடு நூலகம்、过载保 护等。
• (3)要求输入电压有较宽的适应范围
由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电 池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常 工作。
图2 高频环节逆变原理图
单相逆变电路拓扑的介绍:
实现逆变有很多种典型的电路拓扑,主要有推挽逆变拓扑、半桥 逆变拓扑、全桥逆变拓扑三种,下文将对这三种拓扑进行介绍。
推挽逆变拓扑:
图3 所示的推挽电路只用两个开关元器件,比全桥电路少用了 一半的开关器件,可以提高能量利用率,另外驱动电路具有公共地, 驱动简单,适用原边电压比较低的场合,但由于本身电路的结构特点, 推挽电路拓扑无法输出正弦电压波形,只能输出方波电压波形,适用 于1KW 以下的方波电压方案。
由于电压瞬时值单闭环控制系统的稳态误差比较大,而电压均值反馈 误差比较小,可以再PI控制的基础上再增设一个均值电压反馈,以提高系 统的稳态误差。
4、电压电流双闭环瞬时控制
电压单闭环控制在抵抗负载扰动方面的缺点与直流电机的转速单闭环 控制比较类似,具体表现在只有当负载(电流、转矩)扰动的影响最终在 系统输出端(电压、转速)表现出来后,控制器才开始有反应,基于这一 点,可以再电压外环基础上加一个电流内环,利用电流内环快速,及时的 抗扰性来抑制负载波动的影响,同时由于电流内环对被控对象的改造作用, 使得电压外环调节可以大大的简化。
全桥逆变拓扑:
图5 所示的全桥逆变电路,使用了4个开关元器件,开关端电压为 Ui,在相同的直流输入电压下,其最大输出电压是半桥逆变电路的两 倍。这就意味着在输出相同功率的情况下,全桥逆变器输出电流和通 过开关元器件的电流均为半桥逆变电路的一半,但驱动电路相比于前 面两种来得复杂。
图 5 全桥逆变电路
光伏逆变器的工作原理:
逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力 电子开关的导通与关断,来完成逆变的功能。
逆变器简单原理图
几种逆变技术分析
1.低频环节逆变技术 此技术可以分为:方波逆变、阶梯合成逆变、脉宽调制逆变三种,
但这三种逆变器的共同点都是用来实现电器隔离和调整变压比的变压器 工作频率等于输出电压频率,所以称为低频环节逆变器,该电路结构由 工频或高频逆变器、工频变压器以及输入、输出滤波器构成,如图1 所 示,具有电路结构简洁、单级功率变换、变换效率高等优点,但同时也 有变压器体积和重量大、音频噪音大等缺点。
光伏逆变器的概述:
一:逆变器的概述:
通常,把将交流电能变换成直流电能的过程称 为整流,把完成整流功能的电路称为整流电路, 把实现整流过程的装置称为整流设备或整流器。 与之相对应,把将直流电能变换成交流电能的过 程称为逆变,把完成逆变功能的电路称为逆变电 路,把实现逆变过程的装置称为逆变设备或逆变 器。
SPWM 有两种控制方式,一种是单极式,一种双极式,两种控制方式 调制方法相同,输出基本电压的大小和频率也都是通过改变正弦参考信号的 幅值和频率而改变的,只是功率开关器件通断的情况不一样,采用单极式控 制时,正弦波的半个周期内每相只有一个开关元器件开通或关断,而双极式 控制时逆变器同一桥臂上下两个开关器件交替通断,处于互补工作方式,双 极式比单极式调制输出的电流变化率较大,外界干扰较强。
光伏逆变器供应企业
国内逆变器的主要生产企业
光伏逆变器的分类:
光伏逆变器按宏观可分为: 1.普通型逆变器 2.逆变/控制一体机 3.邮电通信专用逆变器 4.航天、军队专用逆变器
1.按逆变器输出交流电能的频率分:
(1)工频逆变器 工频逆变器的频率为50~60Hz的逆变器
(2)中频逆器 中频逆变器的频率一般为400Hz到十几k
不连续的开关控制策略来强迫系统的状态变量沿着某一设计好的滑模面运 动。滑模变结构控制的优点是对系统参数变化和外部扰动不敏感,具有较 强的鲁棒性。然而,对逆变电源系统来说,要确定一个理想的滑模面是很 困难的。并且,在用数字式方法来实现这种控制方式时,开关频率必须足 够高。 4、模糊控制
模糊控制属于智能控制的范畴,与传统的控制方式相比,智能控制最大 的优点是不依赖于系统的数学模型,它是控制理论发展的高级阶段,主要 用来处理哪些对象不确定性,高度非线性的问题。 5、重复控制
并网逆变器的电路结构:
上图 为并逆变器内部功能模块框图。光伏输入在逆变器直流侧汇 总,升压电路将输入直流电压提高到逆变器所需的值。MPP 跟踪器 保证光伏阵列产生直流电能能最大程度地被逆变器所使用。IGBT 全 桥电路将直流电转换成交流电压和电流。保护功能电路在逆变器运行 过程中监测运行状况,在非正常工作条件下可触发内部继电器从而保 护逆变器内部元器件免受损坏。
无差拍控制的基本思想是将给定的正弦参考波形等间隔的划分成若干 个周期,根据每个采样周期的起始值采用预测算法计算出在采样结束时
负载应输出的值,通过合理计算这个值的大小使系统输出在采样周期结束 时与参考波形完全重合,没有任何相位和幅值偏差。
3、滑模变结构控制 滑模变结构控制是一种非线性的控制方法。他的基本思想是利用某种
图 3 推挽逆变原理图