CH4与CO2重整制合成气研究的研究报告
甲烷与二氧化碳重整制取合成气反应的研究

甲烷与二氧化碳重整制取合成气反应的研
究
甲烷和二氧化碳通过重整反应转化为合成气,再经费托反应再进一步转化为各种重要化学品,不仅可以达到天然气高效利用的目的,还可有效减少温室气体排放。
但传统重整反应中的一氧化碳歧化反应和甲烷热裂解容易产生积碳,高温下催化剂烧结/团聚的问题也会导致干重整性能的衰减。
近日,中国科学院福建物质结构研究所功能纳米结构设计与组装院重点实验室谢奎课题组通过固体氧化物电解池将二氧化碳电解(CO2+2e-=CO+O2-)和甲烷氧化(CH4+O2-=CO+2H2+2e-)两个气相电化学转化过程结合,实现了电催化甲烷/二氧化碳制合成气,并明确了CH4/CO2的重整机制。
该研究通过原位调控陶瓷电极维纳尺度金属/氧化物界面结构与组分,获得了复合体系对CH4/CO2气氛的抗积碳性能和高温稳定性,电化学重整CH4/CO2制合成气的原子效率和电流效率高达100%。
相关研究成果发表在Science Advances上。
该研究得到了国家基金重大研究计划(碳基能源转化利用的催化科学)、福建省创业创新人才“百人计划”等的资助。
《Ni基双金属催化的CH4-CO2重整反应中积碳问题的研究》

《Ni基双金属催化的CH4-CO2重整反应中积碳问题的研究》篇一Ni基双金属催化的CH4-CO2重整反应中积碳问题的研究Ni 基双金属催化的CH4/CO2重整反应中积碳问题研究一、引言随着能源危机的日益严重,天然气和二氧化碳的转化与利用已成为科学研究的热点。
甲烷(CH4)和二氧化碳(CO2)的重整反应是一种重要的转化过程,其不仅可以提高甲烷的利用率,还可以有效降低二氧化碳的排放。
然而,在Ni基双金属催化的CH4/CO2重整反应中,积碳问题成为限制该技术发展的重要因素。
本文将对Ni基双金属催化剂在此过程中的积碳问题进行深入探讨与研究。
二、CH4/CO2重整反应的基本原理CH4/CO2重整反应是一种将甲烷和二氧化碳在高温、催化剂作用下转化为合成气(H2和CO)的过程。
此过程中,Ni基双金属催化剂因其良好的催化活性和稳定性被广泛使用。
然而,由于反应过程中可能发生的碳沉积,使得催化剂的活性降低,甚至导致催化剂失活。
三、Ni基双金属催化剂的积碳问题积碳是Ni基双金属催化CH4/CO2重整反应中的主要问题。
碳的沉积可能发生在催化剂表面或孔道内,这不仅会降低催化剂的活性,还会影响其选择性。
积碳的形成主要源于甲烷分解产生的碳与催化剂活性组分之间的相互作用。
此外,反应条件如温度、压力、空速等也会影响积碳的形成。
四、积碳问题的研究方法针对积碳问题,研究者们采用了多种研究方法。
包括通过X 射线衍射(XRD)、拉曼光谱、透射电子显微镜(TEM)等手段对催化剂的物理化学性质进行表征,了解积碳的形态和分布;通过改变反应条件如温度、压力等,探究不同条件下积碳的形成情况;通过使用不同的催化剂前驱体或添加助剂来抑制积碳的形成。
五、抑制积碳的策略为了解决积碳问题,研究者们提出了一系列策略。
首先,通过选择合适的催化剂前驱体和助剂,可以提高催化剂的抗积碳能力。
其次,优化反应条件如温度、压力等也可以有效抑制积碳的形成。
此外,通过设计具有特殊结构的催化剂,如多孔结构、高比表面积等,可以增加催化剂的活性位点,提高其抗积碳性能。
甲烷-二氧化碳干重整制合成气文献

甲烷-二氧化碳干重整制合成气文献摘要:1.甲烷- 二氧化碳干重整制合成气的背景和意义2.甲烷- 二氧化碳干重整制合成气的反应原理3.甲烷- 二氧化碳干重整制合成气的催化剂研究4.甲烷- 二氧化碳干重整制合成气的工艺及应用5.甲烷- 二氧化碳干重整制合成气的未来发展前景正文:一、甲烷- 二氧化碳干重整制合成气的背景和意义随着全球能源需求的增长和环境问题的加剧,开发利用清洁能源已成为当今世界的重要课题。
其中,甲烷- 二氧化碳干重整制合成气技术在近年来备受关注。
该技术能够将温室气体二氧化碳转化为具有高附加值的合成气,为我国能源结构转型和环境保护提供了新的技术支持。
二、甲烷- 二氧化碳干重整制合成气的反应原理甲烷- 二氧化碳干重整制合成气是一种通过甲烷和二氧化碳在特定条件下进行反应,生成合成气和水蒸气的过程。
该反应具有较高的热效应,能够在较低的能耗下实现。
反应方程式如下:CH4 + CO2 →2H2 + CO三、甲烷- 二氧化碳干重整制合成气的催化剂研究催化剂是甲烷- 二氧化碳干重整制合成气反应的关键,目前研究较多的催化剂包括金属催化剂、非金属催化剂和复合催化剂。
这些催化剂在反应活性、稳定性和选择性等方面具有不同的优势,但仍存在一定的局限性,需要进一步研究和优化。
四、甲烷- 二氧化碳干重整制合成气的工艺及应用甲烷- 二氧化碳干重整制合成气技术在工艺上主要包括气相反应和催化剂再生两个环节。
目前,该技术已成功应用于多个领域,如合成氨、甲醇、氢气等。
同时,随着技术的不断进步,甲烷- 二氧化碳干重整制合成气在能源、化工和环保等领域的应用前景将更加广泛。
五、甲烷- 二氧化碳干重整制合成气的未来发展前景甲烷- 二氧化碳干重整制合成气技术在未来有望实现大规模商业化应用。
一方面,随着全球气候变化问题日益严重,各国政府对二氧化碳减排的重视程度将不断提高,为该技术提供了政策支持;另一方面,随着技术的成熟和优化,甲烷- 二氧化碳干重整制合成气的成本将逐渐降低,市场竞争力将逐步增强。
CH4与CO2重整制合成气研究的研究报告

CH4与CO2重整制合成气研究的研究报告杨真一 1 ,胡莹梦2,徐艳 3 ,郑先坤4(1:2009级化学工程与工艺四班,学号:09430841372::2009级化学工程与工艺三班,学号:09430841413:2009级化学工程与工艺三班,学号:09430841364:2009级化学工程与工艺三班,学号:0943084008)摘要:二氧化碳和甲烷既是温室气体的主要组成,又是丰富的碳资源。
在石油资源日益匮乏以及环境问题日益严重的今天,二氧化碳的资源化利用已受到了广泛的关注,二氧化碳与甲烷重整制合成气的方法也越来越多,从传统的催化重整反应到现今受到更多研究的等离子体重整CH4-CO2技术,还有等离子体协同催化剂重整技术,都有大量的研究基础,本文就目前常用的几种甲烷-二氧化碳重整技术进行了调研研究并对热等离子体重整制合成气的实验方法进行了简要说明与探讨。
关键词:甲烷二氧化碳重整合成气研究二氧化碳和甲烷的化学转化和利用对于降低甲烷使用量、消除温室气体等具有重大意义;而合成气又是合成众多化工产品以及环境友好型清洁能源的重要原料。
以天然气和CO2为原料制备合成气,与其他方法相比较,在获得同量碳值的合成气情况下,不仅可以减少天然气消耗量50%,还有利于减排CO2。
目前利用二氧化碳和甲烷重整制备合成气的方法主要有三种:(1)利用催化剂催化重整制合成气;(2)利用等离子体技术重整CH4-CO2;(3)前两种方法的综合利用。
一、催化重整反应在催化剂的作用下,发生CH4与CO2重整的反应。
而其使用的催化剂则为重点研究对象。
(1)活性组分第ⅤⅢ族过渡金属除Os 外均具有重整活性,其中贵金属催化剂具有较高的活性和抗积炭性能,但贵金属具有资源有限、价格昂贵和需要回收的缺点,因此国内研究的大多为非贵金属催化剂,特别是负载型Ni基催化剂和Co基催化剂,或是Ni-Co双金属催化剂,且研究结果表明:双金属催化剂的催化活性和抗积碳性能更优越于单金属催化剂。
甲烷与二氧化碳催化重整制取合成气的研究进展

第34卷第12期2005年12月应 用 化 工App lied Che m ical I ndustryVol .34No .12Dec .2005专论与综述收稿日期:2005210211基金项目:国家自然科学基金和宝钢科学基金联合资助项目(50164002,50574046);云南省自然科学基金资助项目(2004E0012Q );教育部高校博士学科点专项科研基金资助项目(20040674005)作者简介:魏永刚(1977-),男,陕西咸阳人,云南理工大学在读博士研究生,师从王华教授,从事环境调和型能源新技术的研究。
电话:(0871)5153405,E 2mail:t orier@sina .com 甲烷与二氧化碳催化重整制取合成气的研究进展魏永刚,王 华,何 方,辛嘉余(昆明理工大学材料与冶金工程学院,云南昆明 650093)摘 要:综述了甲烷与二氧化碳催化重整制取合成气的最新研究进展,比较了不同类型的催化剂在重整反应过程中的性能差异,分析了催化剂的积炭过程和重整反应机理,对非常规供能方式进行了阐述,指出了甲烷与二氧化碳催化重整制取合成气的研究方向。
关键词:催化重整;合成气;积炭;反应机理中图分类号:T Q 51 文献标识码:A 文章编号:1671-3206(2005)012-0721-05Progress i n methane cat alyti c refor m i n g with carbon di oxi de to syngasW E I Yong 2gang,WAN G Hua,HE Fang,X I N J ia 2yu(Faculty ofM aterials and Metallurgy Engineering,Kun m ing University of Science and Technol ogy,Kun m ing 650093,China )Abstract:The latest p r ogress of methane catalytic ref or m ing with carbon di oxide t o syngas is revie wed .The perf or mance difference a mong catalysts in the ref or m ing reacti on p r ocess is compared .The p r ocess of carbon depositi on of catalysts and ref or m ing reacti on mechanis m are analyzed,and non 2conventi onal means of supp lying energy are described .Finally the devel opment trend of methane catalytic ref or m ing with carbon di oxide t o syngas is pointed out .Key words:catalytic refor m ing;syngas;carbon depositi on;reacti on mechanis m 甲烷是煤层气和天然气的主要成分,随着石油资源的日益枯竭,储量丰富的天然气资源将成为最具希望的替代能源之一。
CH4CO2催化重整制合成气的研究进展及前景

高建权:cH。/c0:催化重整制合成气的研究进展及前景 [3]
2011年1月
叭.%~14.5叭.%Ni和7.59砒.%一12.9 wt.%Co)
Tang
S,Ji L,Lin J,et a1.C02 refo咖ing of methane
over
to
syn山e.
的催化剂明显失活,有相当多的积碳生成¨“。 Bengaard,等人¨纠研究了用实验和理论研究了吸 附K的Ni(100)和Ni(111)面上CH。的化学吸附,实 验研究结果显示,K出现时,CH。的粘滞概率减少。
xU
si8 gas metauic
80l—gel—made N∥一y・A12 03
catalysts fbm orgaIlo-
[4]
precursors[J].J C砒al,2000,19(4):424'430. J H Kim,D J Suh,T J Park,et a1.Ef玷ct of metal particle size
H
J,Wang H,A K Dalai.E&cts of metal
content
on
ac.
tivity粕d stability of Ni—Co bimetallic catalysts for C02
ming of
ref碡
cH4[J].Appljed
cataJysis A:General,2008,339:
refo珊ing[J].science,1998,
279:1913-1915. ZHANG
J,WANG H,A K dalai.Development of stabIe bimet—
al-lic catalysts for
光辐照驱动CH4/C02催化重整制合成气

c a n t l y h i g h e r t h a n t h e p ho t o v o l t a i c p r o d u c t i o n h y d r o g e n b y 1 0. 8 5% . By XRD , t h e be t t e r p e fo r r ma n c e o f Ni /Mg O —A1 2 03 i s a t t r i bu t e d t o i t s h J g he r me t a l d i s p e r s i o n, s ma l l e r me t a l p a r t i c l e s i z e, a s we l l a s t h e i n —
摘
要: 以等离子体还原制 备的 N i / A 1 O 3和 N i / M g O—A 1 : O ,为催 化剂 , 用 氙灯模 拟 太 阳光 聚光 系统进 行 C H 一
c 0 :重整反 应 , 并考察其催 化性 能及 能量 转化 效率 , 实验 结果表明 , 以等 离子体还 原并加入 Mg O助 剂制备 的 N i / Mg O— A l : O , 催化剂具有较好的低温催化活性 , 在温度为7 4 0  ̄ C时 , c H 4 和c 0 : 的最高转化率分别为8 3 l % I , 能量转
S y ng a s Pr e pa r e d f r o m CO 2 r e f o r mi n g o f CH 4 wi t h Li g h t I r r a d i a t i o n He a t i ng
X U Bi ng — q i ng ,ZHA NG Xi a o—q i n g。 SHANG S hu —y on g ’
二氧化碳甲烷重整制备合成气工艺设计

二氧化碳甲烷重整制备合成气工艺设计随着全球经济的发展和人口的增加,能源需求不断增加,而传统的化石能源已经面临着枯竭和环境污染等问题。
因此,寻找新的能源替代品已经成为了当今世界的重要任务之一。
合成气作为一种重要的化学原料和能源,具有广泛的应用前景。
本文将介绍一种以二氧化碳和甲烷为原料,通过重整反应制备合成气的工艺设计。
一、工艺流程该工艺流程主要包括以下几个步骤:1. 原料准备:将二氧化碳和甲烷按照一定的比例混合,制备成反应物料。
2. 催化剂制备:选择适合该反应的催化剂,并进行制备和活化处理。
3. 反应器设计:根据反应物料的性质和反应条件,设计合适的反应器。
4. 反应过程:将反应物料加入反应器中,通过加热和催化剂的作用,进行重整反应,生成合成气。
5. 分离纯化:将合成气进行分离纯化,得到所需的产品。
二、反应机理该工艺的反应机理主要包括以下几个步骤:1. 甲烷重整反应:CH4 + H2O → CO + 3H22. 水气变换反应:CO + H2O → CO2 + H23. 甲烷水蒸气重整反应:CH4 + H2O → CO + 2H24. 水气变换反应:CO + H2O → CO2 + H2通过以上反应,可以将二氧化碳和甲烷转化为合成气,其中合成气的组成可以根据反应条件进行调节。
三、工艺优势该工艺具有以下几个优势:1. 原料丰富:二氧化碳和甲烷是常见的化学原料,且二氧化碳是一种废弃物,可以有效地减少环境污染。
2. 产品多样:合成气可以用于制备多种化学品和燃料,具有广泛的应用前景。
3. 能源利用率高:该工艺可以将二氧化碳和甲烷转化为高能量的合成气,能源利用率高。
四、工艺应用该工艺可以应用于以下领域:1. 化学工业:合成气可以用于制备甲醇、氨、乙烯等化学品。
2. 能源领域:合成气可以用于制备合成燃料、合成天然气等。
3. 环保领域:该工艺可以将二氧化碳转化为有用的化学品,减少环境污染。
以二氧化碳和甲烷为原料,通过重整反应制备合成气的工艺具有广泛的应用前景和重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH4与CO2重整制合成气研究的研究报告杨真一 1 ,胡莹梦2,徐艳 3 ,郑先坤4(1:2009级化学工程与工艺四班,学号:09430841372::2009级化学工程与工艺三班,学号:09430841413:2009级化学工程与工艺三班,学号:09430841364:2009级化学工程与工艺三班,学号:0943084008)摘要:二氧化碳和甲烷既是温室气体的主要组成,又是丰富的碳资源。
在石油资源日益匮乏以及环境问题日益严重的今天,二氧化碳的资源化利用已受到了广泛的关注,二氧化碳与甲烷重整制合成气的方法也越来越多,从传统的催化重整反应到现今受到更多研究的等离子体重整CH4-CO2技术,还有等离子体协同催化剂重整技术,都有大量的研究基础,本文就目前常用的几种甲烷-二氧化碳重整技术进行了调研研究并对热等离子体重整制合成气的实验方法进行了简要说明与探讨。
关键词:甲烷二氧化碳重整合成气研究二氧化碳和甲烷的化学转化和利用对于降低甲烷使用量、消除温室气体等具有重大意义;而合成气又是合成众多化工产品以及环境友好型清洁能源的重要原料。
以天然气和CO2为原料制备合成气,与其他方法相比较,在获得同量碳值的合成气情况下,不仅可以减少天然气消耗量50%,还有利于减排CO2。
目前利用二氧化碳和甲烷重整制备合成气的方法主要有三种:(1)利用催化剂催化重整制合成气;(2)利用等离子体技术重整CH4-CO2;(3)前两种方法的综合利用。
一、催化重整反应在催化剂的作用下,发生CH4与CO2重整的反应。
而其使用的催化剂则为重点研究对象。
(1)活性组分第ⅤⅢ族过渡金属除Os 外均具有重整活性,其中贵金属催化剂具有较高的活性和抗积炭性能,但贵金属具有资源有限、价格昂贵和需要回收的缺点,因此国内研究的大多为非贵金属催化剂,特别是负载型Ni基催化剂和Co基催化剂,或是Ni-Co双金属催化剂,且研究结果表明:双金属催化剂的催化活性和抗积碳性能更优越于单金属催化剂。
同时也有研究表明:即使是同样的活性组分,由于担载量和前驱体的不同,制成催化剂的活性也不尽相同。
近来也有研究者发现Mo、W的硫化物和Co、W的碳化物也具有较好的反应活性和抗积碳性能,但该催化剂在常压下失活较快,因此需提高反应压力。
【1】(2)载体 CH4与CO2重整反应的催化剂主要是负载型催化剂,且因为该反应是在高温下进行,所以其选用的载体应有良好的热稳定性。
目前,重整催化剂使用的载体包括Al2O3 、MgO、SiO2 、TiO2 、CaO、ZrO2 、稀土金属氧化物以及一些复合金属氧化物(如Al2O3 - MgO、Al2O3 - CaO - TiO2 、Al2O3 - CaO -MgO) 和分子筛等。
研究者们对载体的酸碱性和氧化还原性质对重整反应的影响做了大量研究,结果表明:载体的酸碱性影响反应性能主要在于其对CO2的吸附性能的改变;具有氧化还原性能的氧化物为载体制备的催化剂CO 和H2 的收率较低。
当然载体的制备方法也会导致催化剂的性能差异,因此载体的选择需要综合考虑。
【1】(3)助剂在CH4-CO2的催化重整反应中,助剂的作用主要在以下几个方面:①调节催化剂表面酸碱性;②提高活性组分的分散度;③调节活性组分的电子性质。
目前常用的助剂有碱金属、碱土金属和稀土金属氧化物。
【1】甲烷与二氧化碳的重整反应对于工业发展和环境治理都具有重大意义,但也有着催化剂“积炭”和“烧结”这两个因素和反应温度高困扰着研究者们将其工业化,积炭与烧结都会导致催化剂失活,因此制备新型、廉价和具有较高催化活性及稳定性的催化剂,是急需解决的问题之一。
【4】二、等离子体技术重整等离子体是由电子、离子、原子、分子或自由基等高活泼性粒子组成的电离气体,在等离子体的作用下,可以实现甲烷和二氧化碳的重整。
如今等离子体重整CH4-CO2的技术日益成熟,可分为以下几种方法:①冷等离子体重整CH4-CO2;②热等离子体重整CH4-CO2。
(一)冷等离子体重整CH4-CO2热力学非平衡态等离子体中的轻粒子的温度远高于重粒子的温度,而等离子体的温度接近室温,因而也称为冷等离子体。
由于产生冷等离子体所需能量很少,并且气体温度与反应器温度上升也很低,避免了反应器材料选择和冷却问题,因此,冷等离子体在重整反应中应用比较广泛。
【3】早期用于CH4-CO2重整的冷等离子体主要有电晕放电、介质阻挡放电、微波放电、大气压辉光放电和滑动弧放电。
,从成本方面考虑,人们通常避免真空放电而选择大气压下的电晕放电等离子体和介质阻挡放电等离子体。
但由于这些放电技术存在放电不均匀、平均电子密度低和反应器难以放大等问题,均没有实现工业化的生产。
【7】(二)热等离子体重整CH4-CO2由电弧产生的热等离子体是一种持续均匀的等离子体,其高热焓值、高温度、高电子密度的特点使得其具有热效应和化学效应双重效应,因而有着广泛的工业应用。
目前常用的热等离子体重整装置有:直流电弧等离子体炬(DC)、交流电弧等离子体炬(AC)、射频等离子体炬(RF)和高频等离子体炬等,其中直流电弧炬应用最多。
近年来,大量研究者运用多种装置对CH4-CO2重整反应就行了研究,如①白玫瑰等采用大功率双阳极热等离子体装置,对CH4-CO2 重整制合成气进行了实验研究。
实验采用两种不同的原料气输入方式:一种是使原料气(CH4 和CO2 的混合气体)作为等离子体放电气体全部通入第1 阳极与第2 阳极间的放电区,直接参与放电;另一种是保持前述状态,再附加另一部分原料气通入从等离子体发生器喷出的等离子体射流区;②兰天石等利用15 kW 的实验室装置,进行了天然气和二氧化碳在氢等离子体射流作用下重整制合成气研究。
实验中考察了输入功率、原料气流量和原料配比对反应转化率、产物选择性的影响。
结果表明:转化率主要由输入功率和原料气流量决定,产品的选择性与原料气的配比密切相关;③Yan 等利用直流电弧等离子体进行了甲烷二氧化碳重整制合成气的实验研究。
在直流电弧等离子体提供的高温环境中,同时得到了高的原料转化率和产物合成气的选择性,并且实验发现,增加输入功率可以提高原料的转化率。
【3】当然,现今的等离子体技术重整甲烷-二氧化碳还有待提高,在开发高效率等离子体发生器和合理设计反应器上,还需投入更多的研究,争取早日实现等离子体重整技术的工业化。
三、等离子体协同催化剂重整CH4-CO2技术等离子体协同催化剂作用于甲烷和二氧化碳重整制合成气,不仅可以提高能量利用率,还可以提高催化剂的选择性活化以提高产物的分布。
研究者们分别就冷等离子体催化耦合CH4-CO2和热等离子体催化耦合CH4-CO2做了部分研究。
(一)冷等离子体协同催化剂重整CH4-CO2常压下,电晕等离子体与催化剂协同作用下的重整反应,主要是自由基在等离子体反应中起到了重要影响。
使用这些催化剂时,有更多的烃和含氧化合物生成。
当催化剂被放置在等离子体活性区域的不同的位置时,重整效果有很大的差别。
当催化剂被放置在等离子体活性区域的尾部和活性区域外时,等离子体和催化剂之间的协同作用很小,甚至重整效果比单独等离子体作用、单独催化剂作用时还要差。
但是,当催化剂放置在等离子体活性区域中心时,等离子体和催化剂间的协同效应得到了明显体现。
【3】(二)热等离子体协同催化剂重整CH4-CO2冷等离子催化耦合重整存在处理量较小、能量利用率低的缺陷。
而热等离子体具有高温热源和化学活性粒子源的双重作用,可为强吸热反应过程提供足够的能量并加速化学反应进程,所以相比较于冷等离子而言,更有利于CH4 和CO2 的重整反应。
①孙艳朋等利用实验室制备的Ni-Ce/Al2O3 催化剂,进行了热等离子单独重整与热等离子体催化耦合重整CH4 和CO2 制合成气的实验研究,结果表明:随原料气总流量的增加,CH4 和CO2 转化率降低,H2 和CO 选择性无明显变化,C2H2 选择性和催化剂积碳速率增加。
②印永祥等进行了热等离子体协同催化剂重整甲烷二氧化碳方面的研究,结果表明:在等离子体与催化剂协同作用下,反应物转化率、产物选择性及能量利用效率都比单独等离子体作用提高10%~20%;与冷等离子体过程相比,用氮热等离子体重整CH4和CO2制合成气,处理量大、能量产率高,具有较好的应用前景。
【8】四、等离子体重整甲烷-二氧化碳制合成气实验方法【2】等离子体是部分或全部电离的气体,是由电子、离子、原子、分子和自由基等高活泼性粒子组成的集合体,是物质存在的第四态。
宏观上,由于其正负电荷相等,因而称为等离子体。
热等离子体是指温度约为103~104K 的部分电离气体,具有热焓值高、温度高等特点,能提供一个能量集中、温度很高的反应环境,可为强吸热反应过程提供足够的能量并加速化学反应进程。
在化工领域,主要用于危险废弃物,如放射性废物、医疗垃圾、城市生活垃圾无害化处理,和煤化工、天然气化工等。
尽管甲烷和二氧化碳在常温下均为十分稳定的分子,但热力学计算表明,当温度超过1300K 时,两者将发生快速的化学反应,其转化率将达到90%以上,且其产物主要是合成气。
如图1所示。
CH 4 CO 2H 2COH 2OO 2C 摩尔量温度/K图1 甲烷、二氧化碳体系的热力学平衡图C/H/O=1:1.6:1.2(CH4/CO2=4:6)(一)实验步骤如下: 1、五种气体(氮气、氢气、甲烷、一氧化碳、二氧化碳)校正因子的分析: ①接通载气:先打开载气(Ar )钢瓶总阀,再打开减压阀,按要求调节压力,用盛有水的烧杯检测是否有载气通过。
②设定色谱仪参数:打开色谱仪电源,设定以下温度参数:柱箱85℃,检测器一110℃,汽化110℃,检测器一电流30mA。
等待仪器稳定在设定的参数值,大约40~60min。
③设定色谱工作站:打开电脑,点击“在线色谱工作站”通道1实验信息方法(确保实验的存储路径和文件名称正确,方法选外标法)数据采集查看基线,至基线平稳(可通过斜率测定确定)。
④测量校正因子:用气囊分别取五种气体,按氮气、氢气、一氧化碳、二氧化碳、甲烷的顺序分别进气,通过N-2000色谱工作站读出峰面积、保留时间等参数,由公式算出校正因子。
2、搭建实验流程,包括从钢瓶通过减压阀将气体输送到转子流量计,从流量计计量后分别送入等离子体发生器和反应器;检查系统安全,是否有漏电、漏气、漏水等安全隐患;3、开启系统冷却水,检查回流口十分正常出水;4、开启送气系统,减压阀输出0.3MPa,等离子体气体分别2Nm3/h,3m3/h;5、开启等离子体放电电源,正常后,调节电流为150A;6、按甲烷/二氧化碳比为4:6,原料甲烷和二氧化碳加入反应器,总流量2m3/h;7、利用气相色谱仪分析反应产生的混合气体,根据气相色谱给出的各种气体的信息,使用校正因子计算混合气体中各组分的百分含量;8、计算每次反应的转化率、选择性、收率。