锁相环路的基本工作原理
《应用于LVDS的锁相环电路研究》

《应用于LVDS的锁相环电路研究》一、引言随着现代电子技术的飞速发展,数据传输速率的要求日益提高,低电压差分信号传输(LVDS)技术因其低功耗、高速度和低噪声的特性,在高速数据传输领域得到了广泛应用。
锁相环(PLL)电路作为LVDS系统中的关键部分,其性能的优劣直接影响到整个系统的稳定性和传输质量。
因此,对应用于LVDS的锁相环电路进行研究具有重要的现实意义。
二、锁相环电路的基本原理锁相环电路是一种闭环相位控制系统,主要由鉴相器(PD)、环路滤波器(LF)和压控振荡器(VCO)三部分组成。
其基本原理是通过鉴相器比较输入信号和压控振荡器输出的信号之间的相位差,将相位差转换为电压或电流信号,经过环路滤波器的滤波后,控制压控振荡器的频率和相位,使输出信号的相位与输入信号的相位保持一致。
三、LVDS中锁相环电路的应用在LVDS系统中,锁相环电路主要用于实现数据的同步传输。
由于LVDS采用差分信号传输方式,要求发送端和接收端之间的时钟信号必须保持严格的同步。
锁相环电路通过捕获输入信号的相位信息,将其与压控振荡器输出的信号进行比对和调整,从而保证数据的准确传输。
四、应用于LVDS的锁相环电路设计要点在应用于LVDS的锁相环电路设计中,需要注意以下几个要点:1. 输入范围和稳定性:设计时应考虑到输入信号的范围、频率波动和噪声干扰等因素,确保鉴相器能够准确捕获输入信号的相位信息。
2. 环路滤波器的设计:环路滤波器的作用是滤除鉴相器输出的高频噪声和杂散信号,为压控振荡器提供稳定的控制信号。
设计时需要考虑滤波器的带宽、阶数和稳定性等因素。
3. 压控振荡器的选择:压控振荡器的性能直接影响到锁相环电路的频率和相位调整范围。
选择时需要考虑其频率范围、相位噪声、功耗和稳定性等因素。
4. 电路布局与调试:在电路布局和调试过程中,需要考虑到电磁干扰(EMI)和电磁兼容性(EMC)等问题,确保锁相环电路的稳定性和可靠性。
五、实验结果与分析通过实验验证了应用于LVDS的锁相环电路的有效性和性能。
锁相环的工作原理

锁相环的工作原理
锁相环是一种控制器件,其主要的工作原理是通过比较参考信号和反馈信号的相位差异,并通过反馈调节来达到将两个信号相位同步的目的。
具体工作原理如下:
1. 参考信号生成:锁相环中需要提供一个参考信号,一般通过参考信号发生器产生一个稳定的频率信号。
2. 相频检测与比较:通过相频检测器进行参考信号和反馈信号的相位差检测。
相频检测器通常使用一个比较器进行相位比较,输出一个误差信号,表示相位差偏离。
3. 误差调节:根据相频检测器输出的误差信号,通过滤波器和放大器等组成的控制电路进行调节。
调节的方式可以是改变反馈信号的延时、幅度或频率等。
4. 信号生成与反馈:控制电路输出的调节信号作用于振荡器或VCO(Voltage Controlled Oscillator),调节振荡器的频率、相位等,使得反馈信号与参考信号的相位差逐渐减小。
5. 循环反馈:经过一段时间的调节,反馈信号的相位与参考信号趋于同步,此时锁相环达到稳定状态。
同时,稳定状态下的输出信号也可以作为反馈信号传回控制电路,参与后续的相频检测和误差调节,形成一个闭环反馈系统。
通过反复的相频检测和误差调节,锁相环能够将输出信号与参
考信号同步,并具有抑制噪声、消除相位漂移、提高系统稳定性等优点。
它广泛应用于通信、精密测量、控制系统等领域。
简述锁相环的基本的原理

锁相环的基本原理1. 介绍锁相环(Phase Locked Loop,简称PLL)是一种广泛应用于电子领域的反馈控制系统。
它通过比较输入信号的相位和参考信号的相位差,并通过相位差的反馈控制,使得输出信号的相位与参考信号保持稳定的关系。
锁相环广泛应用于频率合成器、通信系统中的时钟恢复、频率系数调整等领域。
2. 锁相环的组成锁相环由多个组件组成,包括相位比较器、低通滤波器、电压控制振荡器(Voltage Controlled Oscillator,简称VCO)等。
2.1 相位比较器相位比较器是锁相环的核心部件,用于测量输入信号和参考信号之间的相位差。
常见的相位比较器有边沿比较器、数字比较器和模拟比较器等。
2.2 低通滤波器低通滤波器的作用是将相位比较器输出的脉冲信号转化为直流信号,并滤除不需要的高频成分。
低通滤波器一般采用RC电路实现。
2.3 电压控制振荡器电压控制振荡器(VCO)是锁相环的关键部件,它产生一个电压信号,用于控制输出信号的频率和相位。
VCO的输出频率与输入电压成正比。
一般VCO采用LC谐振电路实现。
2.4 分频器分频器的作用是将VCO的高频信号分频为参考信号的频率,以便与输入信号进行相位比较。
2.5 反馈环反馈环将VCO的输出信号与输入信号进行相位比较,并通过控制电压调整VCO的输出频率和相位。
同时,由于VCO输出信号被分频,所以经过一段时间后,输出信号的相位将与参考信号保持一致。
3. 锁相环的工作原理锁相环按照以下步骤工作:3.1 初始状态锁相环初始状态下,VCO的频率与输入信号的频率存在较大的差异,相位比较器输出的误差信号较大。
3.2 相位比较相位比较器对输入信号和参考信号进行相位比较,得到误差信号,误差信号的幅度与输入信号和参考信号之间的相位差有关。
3.3 误差信号滤波误差信号经过低通滤波器滤除高频成分,得到一个平滑的直流信号。
3.4 控制电压调整滤波后的误差信号作为控制电压,调整VCO的频率和相位。
锁相环的工作原理

锁相环的工作原理
锁相环是一种电子反馈控制系统,其主要用于信号的频率和相位同步。
它的工作原理基于相频检测和调整的闭环反馈机制。
锁相环由三个主要组件组成:相频检测器、相位比较器和控制电路。
其基本工作原理如下:
1. 相频检测器:锁相环将输入信号和一个参考信号送入相频检测器。
相频检测器通过比较两个信号之间的差异来确定输入信号的频率差异。
它产生一个输出信号,该信号的频率与输入信号的频率差异成正比。
2. 相位比较器:相位比较器用于将输入信号的相位与参考信号的相位进行比较。
它输出一个表示相位差异的信号。
3. 控制电路和振荡器:控制电路接收相频检测器和相位比较器的输出信号,并根据这些信号来调整一个振荡器的频率和相位。
振荡器可以是电压控制振荡器(VCO)或其他类型的振荡器。
控制电路通过改变振荡器的频率和相位,以使其与参考信号同步。
锁相环通过反馈和调整的过程,逐渐减小输入信号与参考信号之间的相位和频率差异,从而实现同步。
一旦输入信号与参考信号同步,锁相环将保持该同步状态。
锁相环在通信、测量和控制等领域中有广泛应用。
锁相技术知识点

第一章锁相环路的基本工作原理:1.锁相环路是一个闭环的相位控制系统;锁相环路(PLL)是一个相位跟踪系统,它建立了输出信号顺时相位与输入信号瞬时相位的控制关系。
2. 若输入信号是未调载波,θi(t)即为常数,是u i(t)的初始相位;若输入信号时角调制信号(包括调频调相),θi(t)即为时间的函数。
3.ωo是环内被控振荡器的自由振荡角频率;θo(t)是以自由振荡的载波相位ωo t为参考的顺时相位,在未受控制以前它是常数,在输入信号控制之下,θo(t)即为时间的函数。
4. 输入信号频率与环路自由振荡频率之差,称为环路的固有频率环路固有角频差:输入信号角频率ωi与环路自由振荡角频率ωo之差。
瞬时角频差:输入信号频率ωi与受控压控振荡器的频率ωv之差。
控制角频差:受控压控振荡器的频率ωv与自由振荡频率ωo之差。
三者之间的关系:瞬时频差=固有频差-控制频差。
5. 从输入信号加到锁相环路的输入端开始,一直到环路达到锁定的全过程,称为捕获过程。
6. 对一定环路来说,是否能通过捕获而进入同步完全取决于起始频差。
7. 锁定状态又叫同步状态:①同频②相位差固定8. 锁定之后无频差,这是锁相环路独特的优点。
9. 捕获时间T p的大小除决定于环路参数之外,还与起始状态有关。
10.若改变固有频差∆ωo,稳定相差θe(∞)会随之改变。
11.锁相环路基本构成:由鉴相器(PD)、环路滤波器(LF)和电压控制振荡器(VCO)组成。
12.鉴相器是一个相位比较装置,鉴相器的电路总的可以分为两大类:第一类是相乘器电路,第二类是序列电路。
13.环路滤波器具有低通特性。
常见的环路滤波器有RC积分滤波器、无源比例积分滤波器和有源比例积分滤波器三种。
(会推导它们的传输算子)14.电压振荡器是一个电压-频率变换装置,它的振荡频率应随输入控制电压u c(t)线性的变化。
15.压控振荡器应是一个具有线性控制特性的调频振荡器。
要求压控振荡器的开环噪声尽可能低,设计电路时应注意提高有载品质因素和适当增加振荡器激励功率,降低激励级的内阻和振荡管的噪声系数。
锁相环工作原理

锁相环工作原理锁相环路是一种反馈电路,锁相环的英文全称是Phase-Locked Loop,简称PLL。
其作用是使得电路上的时钟和某一外部时钟的相位差同步。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
在数据采集系统中,锁相环是一种非常有用的同步技术,因为通过锁相环,可以使得不同的数据采集板卡共享同一个采样时钟。
因此,所有板卡上各自的本地 80MHz和20MHz时基的相位都是同步的,从而采样时钟也是同步的。
因为每块板卡的采样时钟都是同步的,所以都能严格地在同一时刻进行数据采集。
锁相环路是一个相位反馈自动控制系统。
它由以下三个基本部件组成:鉴相器(PD)、环路滤波器(LPF)和压控振荡器(VCO)。
锁相环的工作原理:1. 压控振荡器的输出经过采集并分频;2. 和基准信号同时输入鉴相器;3. 鉴相器通过比较上述两个信号的相位差(注顾名思义为相位差,非频率差),然后输出一个直流脉冲电压;4. 控制VCO,使它的频率改变;5. 这样经过一个很短的时间,VCO 的输出就会稳定于某一期望值。
锁相环可用来实现输出和输入两个信号之间的相位差同步。
当没有基准(参考)输入信号时,环路滤波器的输出为零(或为某一固定值)。
这时,压控振荡器按其固有频率fv进行自由振荡。
当有频率为fR的参考信号输入时,uR 和uv同时加到鉴相器进行鉴相。
如果fR和fv相差不大,鉴相器对uR和uv进行鉴相的结果,输出一个与uR和uv的相位差成正比的误差电压ud,再经过环路滤波器滤去ud中的高频成分,输出一个控制电压uc,uc将使压控振荡器的频率fv(和相位)发生变化,朝着参考输入信号的频率靠拢,最后使fv= fR,环路锁定。
环路一旦进入锁定状态后,压控振荡器的输出信号与环路的输入信号(参考信号)之间只有一个固定的稳态相位差,而没有频差存在。
第1章锁相环路的基本工作原理

《 锁相技术》
图1-13 锁相环路的相位模型
第1章 锁相环路的基本工作原理
第3节 环路的动态方程
按图1-13的环路相位模型,不难导出环路的动态方程
e (t) 1(t) 2(t)
2 (t )
KoUd
F
( p) p
sine
(t
)
将(1-27)式代入(1-26)式得
(1-26) (1-27)
pe (t) p1(t) KoUd F ( p) sine(t) (1-28)
负号对环路的工作没有影响,分析时可以不予考虑。 故传输算子可以近似为
F ( p) 1 p 2 p1
(1-22)
式中τ1=R1C。(1-22)式传输算子的分母中只有一个 p,是一个积分因子,故高增益的有源比例积分滤波器又 称为理想积分滤波器。显然,A越大就越接近理想积分 滤波器。此滤波器的频率响应为
《 锁相技术》
第1章 锁相环路的基本工作原理
第2节 环路组成
锁相环路为什么能够进入相位跟踪,实现输出与输 入信号的同步呢?因为它是一崐个相位的负反馈控制 系统。这个负反馈控制系统是由鉴相器(PD)、环路滤 波器(LF)和电压控制振荡器(VCO)*三个基本部件组成 的,基本构成如图1-4。
《 锁相技术》
F ( p) A1 p 2 1 p1
式中τ1=(R1+AR1+R2)C;τ2=R2C; A是运算放大器无反馈时的电压增益。 若运算放大器的增益A很高,则
《 锁相技术》
第1章 锁相环路的基本工作原理
图1-9 无源比例积分滤波器的组成与对数频率特性
《 锁相技术》
(a)组成;(b)频率特性
第1章 锁相环路的基本工作原理
令环路增益
锁相环原理

1锁相环的基本原理1.1 锁相环的基本构成锁相环路(PLL)是一个闭环的跟踪系统,它能够跟踪输入信号的相位和频率。
确切地讲,锁相环是一个使用输出信号(由振荡器产生的)与参考信号或者输入信号在频率和相位上同步的电路。
在同步(通常称为锁定)状态,振荡器输出信号和参考信号之间的相位差为零,或者保持常数。
如果出现相位误差,一种控制机理作用到振荡器上,使得相位误差再次减小到最小。
在这样的控制系统中,实际输出信号的相位锁定到参考信号的相位,因而我们称之为锁相环。
锁相环在无线电技术的许多领域,如调制与解调、频率合成、数字同步系统等方面得到了广泛的应用,已经成为现代模拟与数字通信系统中不可缺少的基本部件。
锁相环通常由鉴相器(PD),环路滤波器(LF)和压控振荡器(VCO)三个基本部件组成。
如图1-1所示:VCOLFPD图1-1 锁相环的基本构成在PLL中,PD是一个相位比较器,比较基准信号(输入信号)(t)与输出信号(t)之间的相位偏差,并由此产生误差信号;LF是一个低通滤波器,用来滤除中的高频成分,起滤波平滑作用,以保证环路稳定和改善环路跟踪性能,最终输出控制电压;VCO是一个电压/频率变换装置,产生本地振荡频率,其振荡频率受控制,产生频率偏移,从而跟踪输入信号的频率。
整个锁相环路根据输入信号与本地振荡信号之间的相位误差对本地振荡信号的相位进行连续不断的反馈调节,从而达到使本地振荡信号相位跟踪输入信号相位的目的。
1.1.1 鉴相器鉴相器是一个相位比较器,比较两个输入信号的相位,产生误差相位,并转换为误差电压。
鉴相器有多种类型,如模拟乘法器型、取样保持型、边沿触发数字型等,其特性也可以是多种多样的,有正弦特性、三角特性、锯齿特性等,作为原理分析,通常使用正弦特性的鉴相器,理由是正弦理论比较成熟,分析简单方便,实际上各种鉴相特性当信噪比降低时,都趋向于正弦特性。
常用的正弦鉴相器可以用模拟乘法器与低通滤波器的串接作为模型,如图1-2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
环路组成
无源比例积分滤波器
环路组成
(理想)有源比例积分滤波器
如果运放增益A很大,则有:
式中的负号表示滤波器输出和输入电压之间相位相反。假如环路原来工 作在鉴相器的正斜率处,那么加入有源比例积分滤波器后就自动地工作到鉴 相器的负斜率处,其负号与有源比例积分滤波器的负号相抵消。
环路组成
K
o AB
e 路的捕获、锁定与失锁
K
o AB
e (t) 0AB
o K
A B e (t)
一阶环路的捕获、锁定与失锁
▓ 一阶环路的相关总结
一阶环路的捕获、锁定与失锁
本章作业
本章作业
本章作业
本章作业
输入信号:
输出信号:
环路的动态方程
▓ 建立环路方程
环路的动态方程
▓ 环路方程的含义
控制频差
环路的动态方程
▓ 相关结论
环路工作过程
其中,在输入信号为固定频率的情况下,固有频差在环路整个工作过程 中为一个常数。
➢ 起始时刻:瞬时频差最大,控制频差等于零; ➢ 捕获过程:控制频差逐渐加大,瞬时频差逐渐减小; ➢ 同步状态:控制频差等于固有频差,瞬时频差等于零。
稳态相差与稳态频差(输入为固定频率信号)
➢ 稳态频差:即环路在锁定状态下的瞬时频差,等于零; ➢ 稳态相差:固定值
环路的动态方程
▓ 锁相环路的阶数
稳态相差
环路的动态方程
环路的动态方程
③ 稳态相差:
环路的动态方程
或
一阶环路的捕获、锁定与失锁
一阶环路的捕获、锁定与失锁
▓ 锁相环路的图解法(相图法)
e (t)
2
d
eB
a
eA
0
t
b
2 c
eB 3 2
eA 2
结论:一阶环的捕获过程没有 周期跳跃,锁定过程是渐进的 (而不是跳跃的),且捕获时 间的长短与初始状态有关。
一阶环路的捕获、锁定与失锁
e (t) t3
t0
t4
o
K
t2 t1
2 0 2
o K
e (t)
一阶环路的捕获、锁定与失锁
➢ 正弦鉴相器的输出波形(非正 弦差拍波)
一阶环路的捕获、锁定与失锁
瞬时频差 控制频差
一阶环路的捕获、锁定与失锁
➢ 瞬时频差
一阶环路的捕获、锁定与失锁
具体可由下面的式子表明:
含义:在大于环路增益的基础上,固有频差相对于环路增益(最大控制 频差)越小,环路的牵引作用越明显。
一阶环路的捕获、锁定与失锁
▓ 压控振荡器(VCO,Voltage Control Oscillation)
即: 或
图:压控振荡器的控制特性
环路组成
▓ 环路相位模型
对于环路当中的每一个单元,只关心该单元对信号的相位产生了什么样 的影响。这样就得到了各个单元的相位模型。
图:锁相环路的相位模型
环路组成
环路的动态方程
▓ 统一相位参考
任何一个正弦信号(或余弦信号),都可以构造成一个唯一对 应的复信号,从而以向量的方式在复平面上表示。其中:
向量的模(长度)表示信号的最大幅度; 向量与实轴之间的夹角表示信号的瞬时相位。
Im Ui
it i (t)
Re
Im
i
e
o
Re
锁定与跟踪的概念
① 相位关系的描述
锁定与跟踪的概念
预 期 车 速
锁定与跟踪的概念
▓ 区分捕获带与同步带
捕获带与同步带是两个不同的概念,可以根据其测量原理来辨 别这两个不同的概念;其中,捕获带和同步带的测量原理如下:
信号源
PD
LF
VCO
示波器
频率计
锁定与跟踪的概念
信号源
PD
LF
VCO
示波器
频率计
环路组成
PD
LF
VCO
PLL
图:锁相环路的基本组成
▓ 鉴相器(PD,Phase Detection)
锁定与跟踪的概念
对比输入信号和输出信号的表达式,可以得出以下简单结论: 在输入信号为固定频率信号的条件下,环路进入同步状态后, 输出信号与输入信号之间频差为零,相差等于一个很小的常数(稳 态相差)。即:
锁定与跟踪的概念
▓ 环路的基本性能要求
环路有两种基本的工作状态:捕获过程和同步状态。
锁定与跟踪的概念
参考相位 瞬
时 车 速 瞬 时 位 置
锁定与跟踪的概念
② 失锁状态和锁定状态
锁定与跟踪的概念
▓ 捕获过程(捕获时间、捕获带)
锁定与跟踪的概念
▓ 捕获过程(捕获时间、捕获带)
锁定与跟踪的概念
▓ 锁定状态(同步状态)
输入信号为固定频率时的稳态频差与稳态相差
锁定与跟踪的概念
将上式代入到输入信号表达式:
环路组成
环路组成
正弦鉴相器 正弦鉴相器由模拟乘法器和低通滤波器构成,其结构如下图所示 :
LPF
环路组成
2. 低通滤波器输出
3. 正弦鉴相器的数学模型
环路组成
▓ 环路滤波器(LF,Loop Filter)
环路滤波器具有低通特性,但除此之外还对环路参数调整起着 决定性的作用。常用的环路滤波器有:RC积分滤波器、无源比例积 分滤波器和有源比例积分滤波器。
o
A c• B a •A B A
2 0 d • 2
B e (t)
o K
一阶环路的捕获、锁定与失锁
b• e (t) K
o
A c• B a •A B A 2 0 d • 2
B e (t)
o K
• 锁相环路的延滞现象 若环路的起始状态处于不稳定平衡
点B,环路自身并没有能力摆脱该状 态,只有靠外力(噪声或人为扰动) 才能使环路偏离该状态而进行捕获。 一旦遇到这种情况就可能出现不稳定 平稳状态的滞留,致使捕获过程延长 。这种现象称为锁相环路的延滞现象 。(假锁)
锁相技术
Phaselock Techniques
信息科学与工程学院
通信教研室 ·施晓东
第一章 锁相环路的基本工作原理
锁定与跟踪的概念 环路组成 环路的动态方程 一阶锁相环路的捕获、锁定与失锁
锁定与跟踪的概念
PD
LF
VCO
PLL
锁定与跟踪的概念
▓ 相位关系的描述(固有频差、瞬时相差、瞬时频差)
一阶环路的捕获、锁定与失锁
b• e (t) K
o
A c• B a •A B A
2 0 d • 2
B e (t)
o K
一阶环路的捕获、锁定与失锁
b• e (t) K
o
A c• B a •A B A
2 0 d • 2
B e (t)
o K
一阶环路的捕获、锁定与失锁
b• e (t) K