2015级初一上期第1学月月考数学试题ES
七年级上学期第一次月考数学试卷

2015-2016学年七年级上学期第一次月考数学试卷(试卷满分为120 分,考试时间为120 分钟)班级: 姓名: 得分:题号 一 二 三 总分 得分温馨提示:认真思考 仔细答题 字迹工整 卷面整洁 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的序号填入下面的方格里每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案1、2015的相反数是( ) A 、-2015 B 、20151- C 、2015 D 、20151 2、计算:-3+4的结果是( ) A 、 -7 B 、-1 C.、1 D 、7 3、下列计算中,正确的是( )A、(-2)-(-5)=-7 B、(-2)+(-3)=-1C、(-2)×(-3)=6 D、(-12)÷(-2)=-64、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )-11abA 、800 mB 、200 mC 、2400 mD 、-200 m5、比较-3,1,-2的大小,下列判断正确的是( )A 、-3<-2<1B 、-2<-3<1C 、1<-2<-3D 、1<-3<-2 6、一个数的倒数等于它本身的数是( )A 、1B 、-1C 、 ±1D 、 ±1 和 0 7、若 ▏a ▏=5,b=-3,则a-b=( )A 、2或8B 、-2或8C 、2或-8D 、-2或-8 8、有理数a,b 在数轴上的对应点的位置如图所示: 则( ) A 、 a+b >0 B 、 a+b <0 C.、a-b <0 D 、 a-b=0 二、填空题(把答案填写在题中横线上. 每小题3分,共36分) 9、在数 -8,+4.3,-︱-2︱,0 ,50,-21,3 中 是正数, 是负数, 是负整数。
2015七年级(上)第一次月考数学试卷 附答案

七年级(上)第一次月考数学试卷一、选择题(每小题3分,共15分)1.把一个正方体展开,不可能得到的是()A.B.C.D.2.如图,是由几个相同的小正方体组成的几何体,则它的俯视图是()A.B.C.D.3.下列各式中,计算结果为正的是()A.(﹣7)+(+4)B.2.7+(﹣3.5)C.(﹣)+D.0+(﹣)4.用一个平面去截圆柱体,则截面形状不可能是()A.梯形B.正方形C.长方形D.圆5.下列说法中,不正确的是()A.零没有相反数B.最大的负整数是﹣1C.互为相反数的两个数到原点的距离相等D.没有最小的有理数二、填空题(每小题3分,共24分)6.长方体是一个立体图形,它有个面,条棱,个顶点.7.|﹣5|=,|2.1|=,|0|=.8.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体.9.数轴上与﹣1的距离等于3个单位长度的点所表示的数为.10.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到个三角形.11.如果收入2万元记作+2万元,那么﹣1万元表示.12.硬币在桌面上快速地转动时,看上去象球,这说明了.13.如果﹣a=2,则a=.三、解答题14.画出数轴,把下列各数:﹣5、3、0、﹣在数轴上表示出来,并用“<”号从小到大连接.15.计算:36﹣76+(﹣23)﹣105.16.|﹣21.76|﹣7.26+﹣3.17.某矿井下有A、B、C三处的标高为A:﹣29.3米,B:﹣120.5米,C:﹣38.7米.哪处最高?哪处最低?最高处与最低处相差多少?18.如图是一个正方体盒子的展开图,要把﹣8、10、﹣12、8、﹣10、12些数字分别填入六个小正方形,使得按虚线折成的正方体相对面上的两个数相加得0.19.小明同学在计算60﹣a时,错把“﹣”看成是“+”,结果得到﹣20,那么60﹣a的正确结果应该是多少?20.某部队新兵入伍时,对新兵进行“引体向上”测试,以50次为标准,超过50次用正数表示,不足50次用负数表示,第二小队的10名新兵的成绩如下表:3 ﹣5 0 8 7 ﹣1 10 1 ﹣4 5求第二小队的平均成绩.21.计算:1﹣2+3﹣4+5﹣6…+99﹣100 (要求写出必要的过程)22.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.23.a、b、c在数轴上的位置如图,则:(1)用“>、<、=”填空:a0,b0,c0.(2)用“>、<、=”填空:﹣a0,a﹣b0,c﹣a0.3)化简:|﹣a|﹣|a﹣b|+|c﹣a|.参考答案与试题解析一、选择题(每小题3分,共15分)1.把一个正方体展开,不可能得到的是()A.B.C.D.考点:几何体的展开图.分析:根据平面图形的折叠及正方体的展开图解题.注意带“田”字的不是正方体的平面展开图.解答:解:A、C、D、都是正方体的展开图,故选项错误;B、带“田”字格,由正方体的展开图的特征可知,不是正方体的展开图.故选:B.点评:本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.2.如图,是由几个相同的小正方体组成的几何体,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从上面看易得第一行有3个正方形,第二行最左边有一个正方形.故选:D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.下列各式中,计算结果为正的是()A.(﹣7)+(+4)B.2.7+(﹣3.5)C.(﹣)+D.0+(﹣)考点:有理数的加法.专题:计算题.分析:原式各项利用加法法则计算得到结果,即可找出判断.解答:解:A、原式=﹣3,不合题意;B、原式=﹣0.8,不合题意;C、原式=,符合题意;D、原式=﹣,不合题意,故选C点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.4.用一个平面去截圆柱体,则截面形状不可能是()A.梯形B.正方形C.长方形D.圆考点:截一个几何体.分析:根据圆柱的特点,考虑截面从不同角度和方向截取的情况.解答:解:本题中用平面截圆柱,横切就是圆,竖切就是长方形,如果这个圆柱特殊点,底面圆的直径等于高的话,那有可能是正方形,唯独不可能是梯形.故选:A.点评:本题考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.5.下列说法中,不正确的是()A.零没有相反数B.最大的负整数是﹣1C.互为相反数的两个数到原点的距离相等D.没有最小的有理数考点:有理数;相反数.分析:根据相反数、数轴以及有理数的分类的知识求解即可求得答案.注意排除法在解选择题中的应用.解答:解:A、零的相反数是0,故本选项错误;B、最大的负整数是﹣1,故本选项正确;C、互为相反数的两个数到原点的距离相等,故本选项正确;D、没有最小的有理数,故本选项正确.故选A.点评:此题考查了相反数、数轴以及有理数的分类.注意熟记定义是解此题的关键.二、填空题(每小题3分,共24分)6.长方体是一个立体图形,它有6个面,12条棱,8个顶点.考点:认识立体图形.分析:根据长方体的特征,长方体有6个面,相对的米面积相等;有12条棱互相平行的一组4条棱的长度相等;有8个顶点.解答:解:长方体有6个面,12条棱,8个顶点.故答案为:6,12,8.点评:此题主要考查认识立体图形的知识,解题的关键是了解长方体的特征.7.|﹣5|=5,|2.1|= 2.1,|0|=0.考点:绝对值.分析:根据绝对值的性质即可求解.解答:解:|﹣5|=5,|2.1|=2.1,|0|=0.故答案为:5,2.1,0.点评:考查了绝对值,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.某个立体图形的三视图的形状都相同,请你写出一种这样的几何体球(答案不唯一)..考点:由三视图判断几何体.专题:开放型.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:球的3个视图都为圆;正方体的3个视图都为正方形;所以主视图、左视图和俯视图都一样的几何体为球、正方体等.故答案为:球(答案不唯一).点评:本题考查了几何体的三种视图,掌握常见几何体的三视图是关键.9.数轴上与﹣1的距离等于3个单位长度的点所表示的数为﹣4或2.考点:数轴.分析:根据数轴上与一点距离相等的点有两个,可得答案.解答:解:数轴上与﹣1的距离等于3个单位长度的点所表示的数为﹣4或2.故答案为:﹣4或2.点评:本题考查了数轴,数轴上于一点距离相等的点有两个,以防漏掉.10.一个多边形有8条边,从其中的一个顶点出发,连接这个点和其他顶点,可以得到6个三角形.考点:认识平面图形.分析:从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个多边形分割成(n ﹣2)个三角形.解答:解:如图所示:8﹣2=6,故答案为:6.点评:本题主要考查多边形的性质,从n边形的一个顶点出发,分别连接这个点与其余各顶点,形成的三角形个数为n﹣2.11.如果收入2万元记作+2万元,那么﹣1万元表示支出1万元.考点:正数和负数.专题:计算题.分析:收入与支出是两个相反意义的量,根据正数与负数的意义得到收入2万元记作+2万元,﹣1万元表示支出1万元.解答:解:∵收入2万元记作+2万元,∴﹣1万元表示支出1万元.故答案为支出1万元.点评:本题考查了正数与负数:利用正数与负数表示两个相反意义的量.12.硬币在桌面上快速地转动时,看上去象球,这说明了面动成体.考点:点、线、面、体.分析:这是面动成体的原理在现实中的具体表现.解答:解:硬币在桌面上快速地转动时,看上去象球,这说明了面动成体.故答案为:面动成体.点评:本题考查了点、线、面、体,主要利用了面动成体.13.如果﹣a=2,则a=﹣2.考点:相反数.分析:根据相反数的概念解答即可.解答:解:∵﹣a=2,∴a=﹣2.故答案为:2.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.三、解答题14.画出数轴,把下列各数:﹣5、3、0、﹣在数轴上表示出来,并用“<”号从小到大连接.考点:有理数大小比较;数轴.分析:首先在数轴上表示出各数,然后再根据当数轴方向朝右时,右边的数总比左边的数大可得答案.解答:解:根据题意画图如下:用“<”号从小到大连接为:﹣5<<0<.点评:此题主要考查了有理数的比较大小,以及数轴,关键是掌握当数轴方向朝右时,右边的数总比左边的数大.15.计算:36﹣76+(﹣23)﹣105.考点:有理数的加减混合运算.专题:计算题.分析:原式结合后,相加即可得到结果.解答:解:原式=﹣40+(﹣23)﹣105=﹣63﹣105=﹣168.点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.16.|﹣21.76|﹣7.26+﹣3.考点:有理数的加减混合运算;绝对值.专题:计算题.分析:原式利用绝对值的代数意义变形,计算即可得到结果.解答:解:原式=21.76﹣7.26+﹣3=14.5+﹣3=17﹣3=14.点评:此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.17.某矿井下有A、B、C三处的标高为A:﹣29.3米,B:﹣120.5米,C:﹣38.7米.哪处最高?哪处最低?最高处与最低处相差多少?考点:正数和负数.分析:根据正数与负数的意义得到A:﹣29.3米,表示在井下29.3米处;B:﹣120.5米,表示在井下120.5米处;C:﹣38.7米,表示在井下38.7米处,于是可确定最高处与最低处,然后用120.5米减去29.3米得到最高处与最低处相差的高度.解答:解:∵A:﹣29.3米,表示在井下29.3米处;B:﹣120.5米,表示在井下120.5米处;C:﹣38.7米,表示在井下38.7米处,∴A处最高,B处最低,最高处与最低处相差120.5米﹣29.3米=91.2米.点评:本题考查了正数与负数:利用正数与负数表示两个相反意义的量.18.如图是一个正方体盒子的展开图,要把﹣8、10、﹣12、8、﹣10、12些数字分别填入六个小正方形,使得按虚线折成的正方体相对面上的两个数相加得0.考点:专题:正方体相对两个面上的文字.分析:先根据正方体及其表面展开图的特点,找到相对的面,再相加得0的两个数填入即可.解答:解:﹣8和8,﹣12和12,﹣10和10互为相反数,所作图形如下:.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.19.小明同学在计算60﹣a时,错把“﹣”看成是“+”,结果得到﹣20,那么60﹣a的正确结果应该是多少?考点:代数式求值.分析:先利用错误的结果求出a的值,再把a代入计算正确的结果即可.解答:解:60+a=﹣20则a=(﹣20)﹣60=﹣80,所以,60﹣a=60﹣(﹣80)=140,答:60﹣a的正确结果应该是140.点评:本题主要考查代数式的求值,由条件求出a的值是解题的关键.20.某部队新兵入伍时,对新兵进行“引体向上”测试,以50次为标准,超过50次用正数表示,不足50次用负数表示,第二小队的10名新兵的成绩如下表:3 ﹣5 0 8 7 ﹣1 10 1 ﹣4 5求第二小队的平均成绩.考点:有理数的混合运算;正数和负数.专题:图表型.分析:平均成绩=50+其余正负数相加总次数÷总人数,把相关数值代入即可求解.解答:解:第二小队的平均成绩=50+(3﹣5+8+7﹣1+10+1﹣4+5)÷10=52.4.点评:解决本题的关键是得到求平均成绩的等量关系.用到的知识点为:平均成绩=标准数+其余数的平均数.21.计算:1﹣2+3﹣4+5﹣6…+99﹣100 (要求写出必要的过程)考点:有理数的加减混合运算.分析:按照顺序,两两结合,每一次计算的结果都是﹣1,一共有100÷2=50个﹣1,由此算出结果即可.解答:解:1﹣2+3﹣4+5﹣6…+99﹣100=(1﹣2)+(3﹣4)+(5﹣6)+…+(99﹣100)=﹣1﹣1﹣1﹣1﹣…﹣1=﹣50.点评:此题考查有理数的加减混合运算,注意合理分组,也可以按正、负分组计算.22.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.考点:作图-三视图;由三视图判断几何体.分析:主视图有3列,每列小正方形数目分别为3,2,4;左视图有3列,每列小正方形数目分别为2,3,4.依此画出图形即可求解.解答:解:如图所示:点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.23.a、b、c在数轴上的位置如图,则:(1)用“>、<、=”填空:a<0,b<0,c>0.(2)用“>、<、=”填空:﹣a>0,a﹣b<0,c﹣a>0.3)化简:|﹣a|﹣|a﹣b|+|c﹣a|.考点:有理数大小比较;数轴;绝对值.分析:(1)根据数轴得出a<b<0<c,|a|>|c|>|b|,再判断大小即可;(2)根据数轴得出a<b<0<c,|a|>|c|>|b|,再判断大小即可;(3)根据数轴得出a<b<0<c,|a|>|c|>|b|,再去掉绝对值符号,求出即可.解答:解:从数轴可知:a<b<0<c,|a|>|c|>|b|,(1)a<0,b<0,c>0,故答案为:<,<,>;(2)﹣a>0,a﹣b<0,c﹣a>0,故答案为:>,<,>;(3)|a|﹣|a﹣b|+|c﹣a|=﹣a+a﹣b+c﹣a=c﹣b﹣a.点评:本题考查了数轴和有理数的大小比较,有理数的化简的应用,题目比较好,难度不大.。
2015—2016学年度第一学期初一第一次月考

2015—2016学年度第一学期初一第一次月考数学试题(考试时间:90分钟 满分:120分)一、选择题(每小题3分,共36分) 1、下面几何体中,表面都是平面的是( ) A 、圆柱 B 、圆锥 C 、棱柱 D 、球 2、计算1—(—2)的结果为 ( ) A 、—1 B 、1 C 、3 D 、—3 3、在数轴上与—3的距离等于4的点表示的数是( ) A 、1 B 、—7 C 、—1或7 D 、1或—7 4、圆锥的侧面积展开图是( )A 、长方形B 、正方形C 、圆D 、扇形 5、下列说法正确的是( )A 、最小的整数是0B 、最小的正整数是0C 、最大的负数是—1D 、绝对值最小的有理数是0 6、—3的相反数是( )A 、31B 、—3C 、—31D 、37、下列式子中,正确的是( ) A 、|—5|=5B 、—|—5|=5C 、|—0.5|=—21 D 、—|—21|=218、某物体的三视图是如图(1)所示的图形,那么该图形的形状是( ) A 、长方形 B 、圆锥体 C 、正方体 D 、圆柱体图(1) 图(2)9、棱长是1cm 的小立方体组成如图(2)所示的几何体,那么这个几何体的表面积是( )A 、36cm 2B 、33 cm 2C 、30 cm 2D 、27 cm 210、校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家北边100米,张明同学从家里出发,向北走了50米,接着又向北走了—70米,此时张明的位置在( ) A 、在家 B 、在学校 C 、在书店 D 、不在上述地方 11、下列说法正确的是( )A 、整数包括正整数和负整数;B 、零是整数,但不是正数,也不是负数C 、分数包括正分数、负分数和零D 、有理数不是正数就是负数 12、下面平面图形经过折叠不能围成正方体的是( )A B C D二、填空题(每小题3分,共18分)13、如果向东走6米记作+6米,那么向西走10米记作 ;如果产量减少5%记作—5%,那么20%表示14、秒针旋转一周时,形成一个圆面,说明了 15、比较大小—87 —65(填>,=,<) 16、一个平面去截一个圆柱,图甲中截面的形状是 ,图乙中截面的形状是17、绝对值不大于2的所有整数是18、如图,是由一些相同的小正方体构成的立体图形的三视图这些相同的小正方体的个数是三、解答题(66分)19、图中是由几个小立方块搭成的几何体的俯视图,小正方体中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图和左视图(5分)20、画出数轴,在数轴上表示下列各数,并用“<”连接。
2015-2016七年级上数学第一次月考试卷(附答案)

2015-2016七年级上数学第一次月考试卷(附答案)尚干中学2015-2016七年级上数学第一次月考试卷一、选择:(每题2分共20分)1、在数轴上原点左边的点表示的数一定是() A 、正数 B 、负数 C 、正整数 D 、负整数2、-2的相反数是() A 、21-B 、2C 、21D 、-23、43-的倒数是()A 、43B 、34-C 、34D 、43-4、最小的整数是()A 、0B 、-1C 、不存在D 、1 5、下面说法正确的是()A 、正整数和负整数统称整数B 、正整数和正分数统称正有理数C 、正分数、负分数、负整数统称有理数D 、分数包括整数6、下列各式中等号不成立的是()A 、5-=5 B 、5-=5-- C 、5-= 5 D 、5--=5 7、若x =y ,则x 、y 的关系是() A 、相等 B 、相反 C 、相等或相反 D 、不一定8、一个数的绝对值是最小的正整数,这个数是() A 、1 B 、-1 C 、+1或-1 D 、09.如果a >0,b <0,且|a |<|b |,则下列正确的是( ) A .a +b <0B .a +b >0C .a +b =0D .ab =010.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画一条长15厘米的线段AB ,则AB 盖住的整数点的个数共有( )个.A .13或14个B .14或15个C .15或16个D .16或17个二、填空(每空1分共14分):1.如果把存入3万元记作+3万元,那么取出0.5万元记作 2.X +3与-1互为相反数,则X = . 3.绝对值等于5的数是 .4.-3的相反数是,绝对值是,倒数是5.比较大小:-(+3.5)|-4.5|,41 -(-51),32(-2)3 6.已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值为1,则a +b +cd +x 的值等于7.如图,是一个简单的数值运算程序,当输入x 的值为﹣1时,则输出的数值为__________.8.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是__________,最小的积是__________.9.按规律填数:,__________.三、操作实践(5+1+1×4共10分):已知一组数:4,-3, 5,212,214-,0,-1,0.75. (1)画一条数轴,并把这些数用数轴上的点表示出来:(2)把这些数按照从小到大的顺排列:(3)把这些数分别填在下面相应的集合中:负数集合(… )正数集合(… )分数集合(… )非正数集合(… )四、简单计算(每题3分共18分):(1) 17)8(+- (2)966---(3))4()85(-?- (4))51()5(-÷-(5)163464?- (6)32)3(32-?五、计算(每题4分共24分)(1) )21()76()314(-?-?- (2)(-4)×(-6.25)-120÷(-5)(3)(-48)×(1-16 + 34 )(4)-81÷)16(9449-÷?5)-18÷(-3)2-3 ×(-2 ) 36)-14-[(1-21)×(-65)-81] ÷(-241)六、解答:(7分+7分=14分)1.若|a|=2,b=﹣3,c 是最大的负整数,求a+b ﹣c 的值;2.小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.(1)这10枝钢笔的最高的售价和最低的售价各是几元?(2)当小亮卖完钢笔后是盈还是亏?盈或亏多少元?参考答案一、1.B 2.B 3.B 4.C 5.B 6.D 7.C 8.C 9.A 10.C二:1.-0.5万元; 2.-2;3.±5; 4. 3,3,-31;5.<,>,<;6.±1;7. 1;8. 75,-30;9. -376三:(1)略;(2)略(3)负数集合:-3,214-,-1,﹍;正数集合:4,5,212,0.75,﹍分数集合:212,214-, 0.75,﹍;非正数集合:-3,214-,0,-1,﹍;四、(1)9 ⑵ -21 ⑶ 10 ⑷ 25 ⑸ -18434 ⑹-36五、(1)-2 (2)49 (3)-76 (4)92(5) 22 (6) -14 六:1、解:因为∣a ∣=2 所以a=±2又因为c 是最大的负整数,所以c=-1,① a=2时,则a+b-c=2+(-3)-(-1)=2-3+1=0;② a=-2时,则a+b-c=-2+(-3)-(-1)=-2-3+1=-4答:a+b-c 的值是0或42、解:(1)最高售价为15元,最低售价为3.9元。
2015年七年级(上)第一次月考数学试卷(解析版)

2015~2016学年度七年级上学期第一次月考数学试卷一、选择题(共10小题)1.下列各数中,在﹣2和0之间的数是()A.﹣1 B.1 C.﹣3 D.32.下列运算正确的是()A.﹣9÷2×=﹣9 B.6÷(﹣)=﹣1 C.1﹣1÷=0 D.﹣÷÷=﹣83.下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③无理数在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点,其中正确的是()A.①②③④B.②②③④C.③④D.④4.任何一个有理数的绝对值一定()A.大于0 B.小于0 C.不大于0 D.不小于05.在下列数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有()A.2个B.3个C.4个D.5个6.一个数的相反数比它的本身大,则这个数是()A.正数B.负数C.0 D.负数和07.下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数和负分数C.在有理数中,不是负数就是正数D.零是整数,但不是自然数8.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.c>a>0>b B.a>b>0>c C.b>0>a>c D.b>0>c>a9.某天上午6:00柳江河水位为80.4米,到上午11:30水位上涨了5.3米,到下午6:00水位又跌了0.9米,下午6:00水位应为()A.76米B.84.8米C.85.8米D.86.6米10.下列结论正确的是()A.两数之和为正,这两数同为正B.两数之差为负,这两数为异号C.几个数相乘,积的符号由负因数的个数决定D.正数的任何次幂都是正数,负数的偶次幂是正数二、填空题(共8小题)(除非特别说明,请填准确值)11.(1)﹣180+90=﹣26﹣(﹣15)=(3)﹣3﹣6=(4)﹣15+(﹣37)=.12.4.3与互为相反数,﹣的相反数是,﹣的倒数是.13.比较大小:﹣π﹣3.14;﹣﹣(选填“>”、“=”、“<”)14.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃,这时气温是℃.15.如果正午(中午12:00)记作0小时,午后3点钟记作+3小时,那么上午8点钟可表示为.16.规定a﹡b=5a+2b﹣1,则(﹣4)﹡6的值为.17.若|﹣a|=5,则a=.18.数轴上一点A表示的数为﹣5,将点A先向右移2个单位,再向左移10个单位,则这个点表示的数是.三、解答题(共6小题)(选答题,不自动判卷)19.泰州出租车司机小李,一天下午以车站为出发点,在南北走向的路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣13,+10,﹣7,﹣8,+12,+4,﹣5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发车站多远?在车站的什么方向?(2)若每千米的价格为3元,这天下午小李的营业额是多少?20.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录可知前三天共生产辆;产量最多的一天比产量最少的一天多生产辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?21.某冷冻厂的一个冷库的室温原来是﹣5℃,经过5小时室温降到﹣25℃.(1)这个冷库的室温平均每小时降低多少℃?若把该冷库的室温降到﹣50℃,则还需经过多长时间?22.给出下列各数:,﹣6,3.5,﹣1.5,0,4,﹣,(1)在这些数中,整数是;负分数是.在数轴上表示出这些数,并指出与原点距离最远的数是.(3)把这些数用“<”连接起来.23.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数的点之间的距离.试探索:(1)求|5﹣(﹣2)|=.若|x﹣3|=|x+1|,则x=.(3)同样道理|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是.24.计算题(1)﹣5+6﹣7+8 (2)6+(﹣5)﹣2﹣(﹣3)(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)42×(﹣)+(﹣)÷(﹣0.25)(5)(﹣36)×(﹣+﹣)(6)(﹣99)×8.无锡市宜兴市丁蜀学区六校联考2014~2015学年度2015~2016学年度七年级上学期第一次月考数学试卷》参考答案与试题解析一、选择题(共10小题)1.下列各数中,在﹣2和0之间的数是()A.﹣1 B.1 C.﹣3 D.3考点:有理数大小比较.分析:根据有理数的大小比较法则比较即可.解答:解:A、﹣2<﹣1<0,故本选项正确;B、1>0,1不在﹣2和0之间,故本选项错误;C、﹣3<﹣2,﹣3不在﹣2和0之间,故本选项错误;D、3>0,3不在﹣2和0之间,故本选项错误;故选A.点评:本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.2.下列运算正确的是()A.﹣9÷2×=﹣9 B.6÷(﹣)=﹣1 C.1﹣1÷=0 D.﹣÷÷=﹣8考点:有理数的混合运算.专题:计算题.分析:各项计算得到结果,即可做出判断.解答:解:A、原式=﹣9××=﹣,错误;B、原式=6÷(﹣)=6×(﹣6)=36,错误;C、原式=1﹣×=1﹣=﹣,错误;D、原式=﹣×4×4=﹣8,正确,故选D点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③无理数在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点,其中正确的是()A.①②③④B.②②③④C.③④D.④考点:数轴.分析:①根据数轴的定义,可判断①,②数轴上的点与数的关系,可判断②,③根据实数与数轴的关系,可判断③,④根据数轴与有理数的关系,可判断④解答:解:①规定了原点、单位长度、正方向的直线是数轴,故①错误;②数轴上的每一个点表示一个有理数,故②错误;③无理数可以在数轴上表示出来,故③错误;④有理数都可以用数轴上的点表示,故④正确;故选:D.点评:本题考查了有理数,利用了数轴与有理数的关系,数轴与无理数的关系.4.任何一个有理数的绝对值一定()A.大于0 B.小于0 C.不大于0 D.不小于0考点:非负数的性质:绝对值.专题:推理填空题.分析:由绝对值的定义可知,任何一个有理数的绝对值一定大于等于0,从而求解.解答:解:由绝对值的定义可知,任何一个有理数的绝对值一定大于等于0.题中题中选项只有D符合题意.故选D.点评:考查绝对值的性质,即任何一个数的绝对值都大于等于0,此题是一道基础题.5.在下列数﹣,+1,6.7,﹣14,0,,﹣5,25%中,属于整数的有()A.2个B.3个C.4个D.5个考点:有理数.分析:根据分母为一的数是整数,可得整数集合.解答:解:+1,﹣14,0,﹣5是整数,故选:C.点评:本题考查了有理数,分母为一的数是整数.6.一个数的相反数比它的本身大,则这个数是()A.正数 B.负数 C.0 D.负数和0考点:相反数.分析:根据相反数的定义和有理数的大小比较解答.解答:解:∵一个数的相反数比它的本身大,∴这个数是负数.故选B.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.7.下列说法正确的是()A.整数就是正整数和负整数B.分数包括正分数和负分数C.在有理数中,不是负数就是正数D.零是整数,但不是自然数考点:有理数.分析:根据有理数的分类,采用排除法来判断.解答:解:0也是整数,A错误;分数包括正分数和负分数,B正确;0也是有理数,C错误;0也是自然数,D错误.故选B.点评:本题主要考查概念的理解,概念清晰了才能作出正确判断.8.如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A.c>a>0>b B.a>b>0>c C.b>0>a>c D.b>0>c>a考点:有理数大小比较;数轴.专题:综合题.分析:数轴上的数,右边的数总比左边的数大,利用这个特点可比较四个数的大小.解答:解:∵数轴上的数,右边的数总比左边的数大,∴b>0>a>c.故选C.点评:本题考查了利用数轴比较有理数的大小,也就是把“数”和“形”结合起来,注意数轴上的数右边的数总比左边的数大.9.某天上午6:00柳江河水位为80.4米,到上午11:30水位上涨了5.3米,到下午6:00水位又跌了0.9米,下午6:00水位应为()A.76米B.84.8米C.85.8米D.86.6米考点:有理数的加减混合运算.专题:应用题.分析:水位上涨用加,下跌用减,列出算式求解即可.解答:解:根据题意列算式得:80.4+5.3﹣0.9,=85.7﹣0.9,=84.8(米).故选B.点评:本题考查了负数的意义和有理数的加减混合运算,熟练掌握概念和法则是解题的关键.10.下列结论正确的是()A.两数之和为正,这两数同为正B.两数之差为负,这两数为异号C.几个数相乘,积的符号由负因数的个数决定D.正数的任何次幂都是正数,负数的偶次幂是正数考点:实数的运算.分析:A、B、C、D根据有理数的加法、减法及乘除法和乘方的运算法则计算即可判定.解答:解:A、两数之和为正,这两数同为正;错,如6+(﹣3)=3,两数为一正一负,故选项错误;B、两数之差为负,这两数为异号;错,如6﹣8=﹣2,则6和8均为正数,故选项错误;C、应为几个“非0数”数相乘,积的符号由负因数的个数决定,故选项错误;D、正数的任何次幂都是正数,负数的偶次幂是正数,故选项正确.故选D.点评:本题主要考查了有理数的加法、减法及乘除法和乘方的运算法则,解答时需要逐一分析.二、填空题(共8小题)(除非特别说明,请填准确值)11.(1)﹣180+90=﹣90﹣26﹣(﹣15)=﹣11(3)﹣3﹣6=﹣9(4)﹣15+(﹣37)=﹣52.考点:有理数的加法;有理数的减法.专题:计算题.分析:(1)原式利用异号两数相加的法则计算即可得到结果;原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则计算即可得到结果;(4)原式利用同号两数相加的法则计算即可得到结果.解答:解:(1)原式=﹣(180﹣90)=﹣90;原式=﹣26+15=﹣11;(3)原式=﹣(3+6)=﹣9;(4)原式=﹣=﹣52.故答案为:(1)﹣90;﹣11;(3)﹣9;(4)﹣52点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.4.3与﹣4.3互为相反数,﹣的相反数是,﹣的倒数是﹣.考点:相反数;倒数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,根据乘积为1的两个数互为倒数,可得一个数的倒数.解答:解:4.3与﹣4.3互为相反数,﹣的相反数是,﹣的倒数是﹣,故答案为:﹣4.3,,﹣.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.13.比较大小:﹣π<﹣3.14;﹣<﹣(选填“>”、“=”、“<”)考点:有理数大小比较.分析:根据有理数大小比较的方法,在两个负数中,绝对值大的反而小可求解.解答:解:根据在两个负数中,绝对值大的反而小这个规律可得﹣π<﹣3.14,﹣<﹣.点评:(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大.正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.14.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降11℃,这时气温是﹣1℃.考点:有理数的加减混合运算.分析:气温上升用加,下降用减,列出算式求解即可.解答:解:根据题意,列式6+4﹣11=10﹣11=﹣1.故答案为:﹣1.点评:此题主要考查正负数在实际生活中的意义,学生在学这一部分时一定要联系实际,不能死学.15.如果正午(中午12:00)记作0小时,午后3点钟记作+3小时,那么上午8点钟可表示为﹣4小时.考点:正数和负数.分析:由在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示;可首先求得上午8点钟距中午12:00有:12﹣8=4(小时),即可求得上午8点钟的表示方法.解答:解:∵正午(中午12:00)记作0小时,午后3点钟记作+3小时,又∵上午8点钟距中午12:00有:12﹣8=4(小时),∴上午8点钟可表示为:﹣4小时.故答案为:﹣4小时.点评:此题考查了正数与负数的意义.注意解题关键是理解“正”和“负”的相对性.16.规定a﹡b=5a+2b﹣1,则(﹣4)﹡6的值为﹣9.考点:有理数的混合运算.专题:新定义.分析:先根据规定得到有理数的算式,计算即可.解答:解:∵a﹡b=5a+2b﹣1,∴(﹣4)﹡6=5×(﹣4)+2×6﹣1,=﹣20+12﹣1,=﹣9.点评:本题考查的是有理数的运算能力、以及能根据代数式转化成有理数的形式的能力.17.若|﹣a|=5,则a=±5.考点:绝对值.分析:根据绝对值的性质得,|5|=5,|﹣5|=5,故求得a的值.解答:解:∵|﹣a|=5,∴a=±5.点评:绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.18.数轴上一点A表示的数为﹣5,将点A先向右移2个单位,再向左移10个单位,则这个点表示的数是﹣13.考点:数轴.分析:先设向右为正,向左为负,那么向右移2个单位就记为+2,再向左移,10个单位记为﹣810据此计算即可.解答:解:先设向右为正,向左为负,那么﹣5+2﹣10=﹣13,则这个点表示的数是﹣13故答案是:﹣13.点评:本题考查了有理数的加减混合运算,解题的关键是利用相反意义的量来解决.三、解答题(共6小题)(选答题,不自动判卷)19.泰州出租车司机小李,一天下午以车站为出发点,在南北走向的路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,﹣2,+5,﹣13,+10,﹣7,﹣8,+12,+4,﹣5,+6(1)将最后一名乘客送到目的地时,小李距下午出车时的出发车站多远?在车站的什么方向?若每千米的价格为3元,这天下午小李的营业额是多少?考点:正数和负数.分析:(1)规定向北为正,向南为负,要求他将最后一名乘客送抵目的地时,李师傅距下午出发地有多远就要把记录相加,看结果即可.要求这天下午汽车共耗油多少升就要求共走了多少千米,然后再计算.小李的营业额就是把绝对值相加,乘3即可.解答:解:(1)+15﹣2+5﹣13+10﹣7﹣8+12+4﹣5+6=17千米,∵17>0,∴小李距下午出车时的出发车站17米,在车站的北边;|+15|+|﹣2|+|+5|+|﹣13|+|+10|+|﹣7|+|﹣8|+|+12|+|+4|+|﹣5|+|+6|=87千米,87×3=261(元).答:这天下午小李的营业额是261元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.20.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录可知前三天共生产599辆;产量最多的一天比产量最少的一天多生产26辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?考点:正数和负数.分析:(1)根据有理数的加法,可得答案;根据最大数减最小数,可得答案;(3)根据实际生产的量乘以单价,可得工资,根据超出的部分或不足的部分乘以每辆的奖金,可得奖金,根据工资加奖金,可得答案.解答:解:(1)5﹣2﹣4+200×3=599(辆);16﹣(﹣10)=26(辆);(3)5﹣2﹣4+13﹣10+16﹣9=9,(1400+9)×60+9×15=84675(元).故答案为:599,26,84675.点评:本题考查了正数和负数,有理数的加法运算是解题关键.21.某冷冻厂的一个冷库的室温原来是﹣5℃,经过5小时室温降到﹣25℃.(1)这个冷库的室温平均每小时降低多少℃?若把该冷库的室温降到﹣50℃,则还需经过多长时间?考点:有理数的混合运算.专题:应用题.分析:(1)根据题意列出算式,计算即可得到结果;根据题意列出算式,计算即可得到结果.解答:解:(1)根据题意得:[﹣5﹣(﹣25)]÷5=20÷5=4,则这个冷库的室温平均每小时降低4℃;根据题意得:[﹣25﹣(﹣50)]÷4=6,则还需经过6小时.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.给出下列各数:,﹣6,3.5,﹣1.5,0,4,﹣,(1)在这些数中,整数是﹣6,0,4;负分数是﹣1.5,﹣.在数轴上表示出这些数,并指出与原点距离最远的数是﹣6.(3)把这些数用“<”连接起来.考点:有理数大小比较;有理数;数轴.分析:(1)根据整数与分数的定义进行解答即可;在数轴上表示出各数,根据各点在数轴上的位置即可得出结论;(3)从左到右用“<”把各数连接起来即可.解答:解:(1)在这些数中,整数是﹣6,0,4;负分数是﹣1.5,﹣.故答案为:﹣6,0,4;﹣1.5,﹣.各数在数轴上表示为:由图可知,与原点距离最远的数是﹣6.故答案为:﹣6;(3)由图可知,﹣6<﹣<﹣1.5<0<<3.5<5.点评:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.23.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数的点之间的距离.试探索:(1)求|5﹣(﹣2)|=7.若|x﹣3|=|x+1|,则x=1.(3)同样道理|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.考点:绝对值.分析:(1)根据5与﹣2两数在数轴上所对的两点之间的距离为7得到答案;根据题意可得方程x﹣3+x+1=0,再解即可;(3)由于|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而|x+5|+|x﹣2|=7,则x表示的点在﹣5与2表示的点之间.解答:解:(1)|5﹣(﹣2)|=|5+2|=7,故答案为:7;由题意得:x﹣3+x+1=0,解得:x=1,故答案为:1;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.∴x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2.点评:本题考查了绝对值和数轴,关键是掌握绝对值的性质:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.24.计算题(1)﹣5+6﹣7+86+(﹣5)﹣2﹣(﹣3)(3)(﹣7)×(﹣5)﹣90÷(﹣15)(4)42×(﹣)+(﹣)÷(﹣0.25)(5)(﹣36)×(﹣+﹣)(6)(﹣99)×8.考点:有理数的混合运算.专题:计算题.分析:(1)原式结合后,相加即可得到结果;原式利用减法法则变形,计算即可得到结果;(3)原式先计算乘除运算,再计算加减运算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式利用乘法分配律计算即可得到结果;(6)原式变形后,利用乘法分配律计算即可得到结果.解答:解:(1)原式=﹣5﹣7+6+8=﹣12+14=2;原式=6﹣5﹣2+3=6+3﹣2﹣5=9﹣7=2;(3)原式=35+6=41;(4)原式=﹣28+3=﹣25;(5)原式=16﹣30+21=7;(6)原式=(﹣100+)×8=﹣800+1=﹣799.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键。
2014-2015学年新人教版七年级(上)第一次月考数学试卷

2014-2015学年新人教版七年级(上)第一次月考数学试卷一、填空题(共8小题,每空4分,满分36分)1.(8分)计算:﹣=_________,=_________.2.(4分)一个水库的最深处距离地面22米,坝高10米,坝顶比水库最深处高_________米.3.(4分)已知x2=4,则x=_________.4.(4分)绝对值小于3,且大于0的整数有_________.5.(4分)(2004•富阳市模拟)已知|a|=3,且a+|a|=0,则a3+a2+a+1=_________.6.(4分)|a﹣2008|与b2互为相反数,则a+b=_________.7.(4分)定义a*b=a2+b﹣1,则(﹣8)*17=_________.8.(4分)已知有理数a,b,c满足+,则=_________.二、选择题(共8小题,每小题4分,满分32分)10.(4分)点A在数轴上距离原点3个单位长度,将A向右移动4个单位长度,再向左移动7个单位长度,此时11.(4分)已知a是有理数,则下列判断:①a是正数;②﹣a是负数;③a与﹣a必然有一个负数;④a与﹣a互为相14.(4分)(2002•西城区)人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 00015.(4分)下列等式中不成立的是()=÷1.2÷20052004三、解答题(共6小题,满分0分)17.(20分)计算:(1)(2)(3)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)](4)3.34×(﹣22)+5.84×|﹣4|18.(14分)某自行车厂一周计划每日生产400辆自行车,由于人数和操作原因,每日实际生产量分别为405辆、393辆、397辆、410辆、391辆、385辆、405辆.(1)用正负数表示每日实际生产量与计划量的增减情况;(2)该车厂本周实际共生产多少辆自行车?平均每日实际生产多少辆自行车?19.(12分)已知a,b是有理数,且(a﹣1)2+|b﹣2|=0.求的值.20.(12分)手工拉面是我国传统面食,制作时,拉面师傅将一团和好的面揉成1根长条后,手握两端用力拉长,然后长条对折,再拉长,再对折,再次对折称“一扣”,如此反复操作,连续拉扣六七次后便成了许多细细的面条.假如一共拉扣了7次,你能算出共有多少根面条吗?21.(12分)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,想一想:等式左边各个幂的底数与右边幂的底数有什么关系,并用等式表示出规律;再利用这一规律计算13+23+33+43+…+1003的值.22.(12分)写出一个各个数位上的数字都不相等的四位数,如8 631,用这个四位数中的各个数字组成一个最大数和一个最小数,并用最大数减去最小数,得到一个新的四位数,对于新的四位数,重复上面的过程,又得到一个新的四位数,…,这样一直重复下去,你发现了什么可以借助于计算器帮助自已探索.2014-2015学年新人教版七年级(上)第一次月考数学试卷参考答案与试题解析一、填空题(共8小题,每空4分,满分36分)1.(8分)计算:﹣=,=﹣5.;2.(4分)一个水库的最深处距离地面22米,坝高10米,坝顶比水库最深处高32米.3.(4分)已知x2=4,则x=±2.4.(4分)绝对值小于3,且大于0的整数有±1,±2.5.(4分)(2004•富阳市模拟)已知|a|=3,且a+|a|=0,则a3+a2+a+1=﹣20.6.(4分)|a﹣2008|与b2互为相反数,则a+b=2008.7.(4分)定义a*b=a2+b﹣1,则(﹣8)*17=80.8.(4分)已知有理数a,b,c满足+,则=﹣1.+二、选择题(共8小题,每小题4分,满分32分)10.(4分)点A在数轴上距离原点3个单位长度,将A向右移动4个单位长度,再向左移动7个单位长度,此时11.(4分)已知a是有理数,则下列判断:①a是正数;②﹣a是负数;③a与﹣a必然有一个负数;④a与﹣a互为相14.(4分)(2002•西城区)人类的遗传物质就是DNA,人类的DNA是很长的链,最短的22号染色体也长达30 000=÷1.2÷==,选项错误;,所以不成立,选项正确.20052004三、解答题(共6小题,满分0分)17.(20分)计算:(1)(2)(3)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)](4)3.34×(﹣22)+5.84×|﹣4|)﹣﹣﹣×÷××(﹣,4|18.(14分)某自行车厂一周计划每日生产400辆自行车,由于人数和操作原因,每日实际生产量分别为405辆、393辆、397辆、410辆、391辆、385辆、405辆.(1)用正负数表示每日实际生产量与计划量的增减情况;(2)该车厂本周实际共生产多少辆自行车?平均每日实际生产多少辆自行车?19.(12分)已知a,b是有理数,且(a﹣1)2+|b﹣2|=0.求的值.∴++,+﹣+﹣,=﹣20.(12分)手工拉面是我国传统面食,制作时,拉面师傅将一团和好的面揉成1根长条后,手握两端用力拉长,然后长条对折,再拉长,再对折,再次对折称“一扣”,如此反复操作,连续拉扣六七次后便成了许多细细的面条.假如一共拉扣了7次,你能算出共有多少根面条吗?21.(12分)观察下列等式:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,想一想:等式左边各个幂的底数与右边幂的底数有什么关系,并用等式表示出规律;再利用这一规律计算13+23+33+43+…+1003的值..+n=22.(12分)写出一个各个数位上的数字都不相等的四位数,如8 631,用这个四位数中的各个数字组成一个最大数和一个最小数,并用最大数减去最小数,得到一个新的四位数,对于新的四位数,重复上面的过程,又得到一个新的四位数,…,这样一直重复下去,你发现了什么可以借助于计算器帮助自已探索.。
2015七年级(上)第一次月考数学试卷附答案
七年级(上)第一次月考数学试卷一、选择题(每小题3分,共30分)1.下列说法中,正确的个数是()①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.A.2个B.3个C.4个D.5个2.下面几何体截面一定是圆的是()A.圆柱B.圆锥C.球D.圆台3.某物体从不同方向看到的三种形状图如图所示,那么该物体的形状是()A.长方体B.圆锥体C.立方体D.圆柱体4.在数轴上,原点两旁与原点等距离的两点所表示的数的关系是()A.相等B.互为倒数C.互为相反数D.不能确定5.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的()A.24.70千克B.25.30千克C.24.80千克D.25.51千克6.绝对值大于2且小于5的所有的整数的和是()A.7 B.﹣7 C.0 D.57.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是()A.5 B. 6 C.7 D.88.下面每个图形都是由6个全等的正方形组成的,其中不是正方体的展开图的是()A.B.C.D.9.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A、B、C表示的数依次是()A.﹣5,﹣π,B.﹣π,5,C.﹣5,,π D.5,π,﹣10.某运动员在东西走向的公路上练习跑步,跑步情况记录如下(向东为正,单位:米):1000,﹣1200,1100,﹣800,1400,该运动员跑的路程共为()A.1500米B.5500米C.4500米D.3700米二、填空题(每小题3分,共18分)11.正方体与长方体的相同点是,不同点是.12.一艘潜艇正在﹣50米处执行任务,其正上方10米处有一条鲨鱼在游弋,则鲨鱼所处的高度为米.13.若a=﹣,则﹣a=;若m=﹣m,那么m=.14.绝对值小于4的所有非负整数是.15.若|x|=7,则x=;|3﹣π|=.16.若|x﹣6|+|y+5|=0,则x﹣y=.三、解答题17.画出下面几何体的从正面、从左面、从上面看到的形状图.18.在数轴上表示下列各数:0,﹣2.5,3,﹣2,+5,1,并用“<”号连接.19.计算:0.47﹣4﹣(﹣1.53)﹣1.20.如图所示是由几个小立方体所组成几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图、左视图.21.用小立方体搭一个几何体,使它从正面、从上面看到的形状图如图所示,这样的几何体只有一种吗?它最多需要多少个小立方体?它最少需要多少个小立方体?请你画出这两种情况下的从左面看到的形状图.22.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?参考答案与试题解析一、选择题(每小题3分,共30分)1.下列说法中,正确的个数是()①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.A.2个B.3个C.4个D.5个考点:认识立体图形.分析:根据柱体,锥体的定义及组成作答.解答:解:①柱体包括圆柱、棱柱;∴柱体的两个底面一样大;故此选项正确,②圆柱、圆锥的底面都是圆,正确;③棱柱的底面可以为任意多边形,错误;④长方体符合柱体的条件,一定是柱体,正确;⑤棱柱的侧面应是四边形,错误;共有3个正确,故选B.点评:应注意棱柱由上下两个底面以及侧面组成;上下两个底面可以是全等的多边形,侧面是四边形.2.下面几何体截面一定是圆的是()A.圆柱B.圆锥C.球D.圆台考点:截一个几何体.专题:几何图形问题.分析:根据题意,分别分析四个几何体截面的形状,解答出即可.解答:解:由题意得,圆柱的截面有可能为矩形,圆锥的截面有可能为三角形,圆台的截面有可能为梯形,圆的截面一定是圆.故选C.点评:本题考查了几何体的截面,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.3.某物体从不同方向看到的三种形状图如图所示,那么该物体的形状是()A.长方体B.圆锥体C.立方体D.圆柱体考点:由三视图判断几何体.分析:根据三视图的知识,主视图以及左视图都是矩形,俯视图为一个圆,故易判断该几何体为圆柱.解答:解:根据主视图和左视图是矩形,得出该物体的形状是柱体,根据俯视图是圆,得出该物体是圆柱体.故选:D.点评:本题考查由三视图确定几何体的形状,同时考查学生空间想象能力,从主视图、左视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状.4.在数轴上,原点两旁与原点等距离的两点所表示的数的关系是()A.相等B.互为倒数C.互为相反数D.不能确定考点:相反数;数轴.分析:根据互为相反数的定义和数轴解答.解答:解:在数轴上,原点两旁与原点等距离的两点所表示的数的关系是:互为相反数.故选C.点评:本题主要考查了相反数的定义和数轴的特点,是基础题.5.一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的()A.24.70千克B.25.30千克C.24.80千克D.25.51千克考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:“25±0.25千克”表示合格范围在25上下0.25的范围内的是合格品,即24.75到25.25之间的合格,故只有24.80千克合格.故选:C.点评:此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.6.绝对值大于2且小于5的所有的整数的和是()A.7 B.﹣7 C.0 D.5考点:有理数的加法;绝对值.分析:绝对值大于2且小于5的整数绝对值有3,4.因为±3的绝对值是3,±4的绝对值是4,又因为互为相反数的两个数的和是0,所以,绝对值大于2而小于5的整数的和是0.解答:解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选C.点评:考查了有理数的加法和绝对值,注意掌握互为相反数的两个数的绝对值相等,互为相反数的两个数的和是0.7.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是()A.5 B. 6 C.7 D.8考点:由三视图判断几何体.分析:易得这个几何体共有2层,由俯视图可得第一层正方体的个数,由主视图和左视图可得第二层正方体的个数,相加即可.解答:解:由俯视图易得最底层有6个正方体,第二层有2个正方体,那么共有6+2=8个正方体组成.故选D.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.8.下面每个图形都是由6个全等的正方形组成的,其中不是正方体的展开图的是()A.B.C.D.考点:几何体的展开图.分析:由平面图形的折叠及正方体的展开图解题.解答:解:由四棱柱四个侧面和上下两个底面的特征可知,A、B、D、可以拼成一个正方体;C、正方体的侧面不可能有5个正方形,故不是正方体的展开图.故选:C.点评:本题考查了几何体展开图.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.9.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A、B、C表示的数依次是()A.﹣5,﹣π,B.﹣π,5,C.﹣5,,π D.5,π,﹣考点:专题:正方体相对两个面上的文字.分析:正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相反数的定义求出A、B、C即可得解.解答:解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“A”与“5”是相对面,“B”与“π”是相对面,“C”与“﹣”是相对面,∵相对面上的两数互为相反数,∴A、B、C表示的数依次是﹣5,﹣π,.故选A.点评:本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.10.某运动员在东西走向的公路上练习跑步,跑步情况记录如下(向东为正,单位:米):1000,﹣1200,1100,﹣800,1400,该运动员跑的路程共为()A.1500米B.5500米C.4500米D.3700米考点:有理数的加减混合运算;正数和负数.专题:应用题.分析:该运动员跑的路程与方向无关,可列式为:|1000|+|﹣1200|+|1100|+|﹣800|+|1400|.解答:解:该运动员跑的路程共为:|1000|+|﹣1200|+|1100|+|﹣800|+|1400|=5500米.故选B.点评:此题考查正负数在实际生活中的应用,解题关键是怎样把实际问题转化为正、负数的和来解决.二、填空题(每小题3分,共18分)11.正方体与长方体的相同点是长方体和正方体都由6个面组成,都有8个顶点、12条棱,不同点是长方体是相对的面完全相同,相对的4条棱相等;而正方体的6个面都相等,并且12条棱都相等.考点:认识立体图形.分析:根据长方体和正方体的特征:长方体的特征:〔1〕长方体有6个面,每个面都是长方形,也可能相对的两个面是正方形;〔2〕长方体有12条棱,相对的棱长度相等;〔3〕长方体有8个顶点;正方体的特征:〔1〕有6个面,每个面面积相等,形状完全相同;〔2〕有8个顶点;〔3〕有12条棱,12条棱长度都相等;正方体是长方体的特殊一种,当长方体的长、宽、高相等时就是正方体;据此解答.解答:解:由长方体和正方体的特征可知:长方体和正方体都由6个面组成,都有8个顶点、12条棱;不同点:长方体是相对的面完全相同,相对的4条棱相等;而正方体的6个面都相等,并且12条棱都相等;故答案为:长方体和正方体都由6个面组成,都有8个顶点、12条棱;长方体是相对的面完全相同,相对的4条棱相等;而正方体的6个面都相等,并且12条棱都相等.点评:此题考查了长方体和正方体的特征,应注意基础知识的积累.12.一艘潜艇正在﹣50米处执行任务,其正上方10米处有一条鲨鱼在游弋,则鲨鱼所处的高度为﹣40米.考点:正数和负数.专题:应用题.分析:由于在其上方,那么一定比﹣50米的高度高.解答:鲨鱼所处的高度为﹣50+10=﹣40米.点评:此题主要考查正负数在实际生活中的应用.13.若a=﹣,则﹣a=;若m=﹣m,那么m=0.考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:若a=﹣,则﹣a=;若m=﹣m,那么m=0,固答案为:,0.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.14.绝对值小于4的所有非负整数是0,1,2,3.考点:绝对值.分析:根据概念:数轴上某个数与原点的距离叫做这个数的绝对值结合数轴可得到答案.解答:解:绝对值小于4的所有非负整数是:0,1,2,3,故答案为:0,1,2,3.点评:此题主要考查了绝对值,关键是注意非负整数包括零.15.若|x|=7,则x=±7;|3﹣π|=π﹣3.考点:绝对值.分析:根据绝对值的概念求解.解答:解:∵|x|=7,∴x=±7;|3﹣π|=π﹣3.故答案为:±7;π﹣3.点评:本题考查了绝对值的知识,解答本题的关键是掌握绝对值的性质.16.若|x﹣6|+|y+5|=0,则x﹣y=11.考点:非负数的性质:绝对值.专题:计算题.分析:先根据非负数的性质求出x、y的值,再代入x﹣y进行计算即可.解答:解:∵|x﹣6|+|y+5|=0,∴x﹣6=0,y+5=0,解得x=6,y=﹣5,∴原式=6+5=11.故答案为:11.点评:本题考查的是非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.三、解答题17.画出下面几何体的从正面、从左面、从上面看到的形状图.考点:作图-三视图.分析:(1)读图可得,主视图有4列,每列小正方形数目分别为2,1,1,1;左视图有2列,每列小正方形数目分别为2,1;俯视图有2行,每行小正方形数目分别为4,1;(2)读图可得,主视图有3列,每列小正方形数目分别为1,1,4;左视图有3列,每列小正方形数目分别为4,1,1;俯视图有3行,每行小正方形数目分别为3,1,1.解答:解:(1)如图所示:(2)如图所示:点评:本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.18.在数轴上表示下列各数:0,﹣2.5,3,﹣2,+5,1,并用“<”号连接.考点:有理数大小比较;数轴.分析:在数轴上表示出各数,再根据数轴的特点从左到右用“<”连接起来即可.解答:解:在数轴上表示为:用“<”号连接为:﹣2.5<﹣2<9<1<3<+5.点评:本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.19.计算:0.47﹣4﹣(﹣1.53)﹣1.考点:有理数的减法.专题:计算题.分析:先根据减去一个数等于加上这个数的相反数化简,再利用加法交换结合律进行计算即可得解.解答:解:0.47﹣4﹣(﹣1.53)﹣1=0.47﹣4+1.53﹣1=0.47+1.53﹣4﹣1=2﹣6=﹣4.点评:本题考查了有理数的减法,熟记运算法则是解题的关键.20.如图所示是由几个小立方体所组成几何体的俯视图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的主视图、左视图.考点:作图-三视图;由三视图判断几何体.专题:作图题.分析:主视图从左往右3列正方形的个数依次为4,3,1;左视图从左往右3列正方形的个数依次为3,4,1.解答:解:作图如下:点评:考查几何体三视图的画法;用到的知识点为:主视图是从几何体正面看得到的平面图形;左视图是从几何体左面看得到的图形.21.用小立方体搭一个几何体,使它从正面、从上面看到的形状图如图所示,这样的几何体只有一种吗?它最多需要多少个小立方体?它最少需要多少个小立方体?请你画出这两种情况下的从左面看到的形状图.考点:作图-三视图;由三视图判断几何体.分析:利用左视图以及主视图可以得出这个几何体最多的块数、以及最少的块数.再画出这两种情况下的从左面看到的形状图.解答:解:这样的几何体不只有一种,它最多需要2×5=10个小立方体,它最少需要2×3+2=8个小立方体.小立方体最多时的左视图有2列,从左往右依次为2,2个正方形;小立方体最少时的左视图有2种情况:①有2列,从左往右依次为1,2个正方形;②有2列,从左往右依次为2,2个正方形;如图所示:点评:考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.22.某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5 +7 ﹣3 +4 +10 ﹣9 ﹣25(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?考点:有理数的加减混合运算.专题:应用题.分析:(1)明确增加的车辆数为正数,减少的车辆数为负数,依题意列式再根据有理数的加减法则计算;(2)首先求出总生产量,然后和计划生产量比较即可得到结论;(3)根据表格可以知道产量最多的一天和产量最少的一天各自的产量,然后相减即可得到结论.解答:解:(1)本周三生产的摩托车为:300﹣3=297辆;(2)本周总生产量为(300﹣5)+(300+7)+(300﹣3)+(300+4)+(300+10)+(300﹣9)+(300﹣25)=300×7﹣21=2079辆,计划生产量为:300×7=2100辆,2100﹣2079=21辆,∴本周总生产量与计划生产量相比减少21辆;(3)产量最多的一天比产量最少的一天多生产了(300+10)﹣(300﹣25)=35,即产量最多的一天比产量最少的一天多生产了35辆.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.。
新人教版2015学年七年级上第一次月考数学试卷及答案
广东省汕头市2015学年七年级上学期第一次月考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.2B.﹣2 C.D.2.(3分)有下列各数:8,﹣6.7,0,﹣80,,﹣(﹣4),﹣|﹣3|,﹣(+62),其中属于非负整数的共有()A.1个B.2个C.3个D.4个3.(3分)一种巧克力的质量标识为“24±0.25克”,则下列巧克力中合格的是()A.23.70克B.23.80克C.24.51克D.24.30克4.(3分)比较的大小,结果正确的是()A.B.C.D.5.(3分)一个月内,小丽的体重增长﹣1千克,意思就是这个月内()A.小丽的体重减少﹣1千克B.小丽的体重增长1千克C.小丽的体重减少1千克D.小丽的体重没变化6.(3分)下列说法正确的是()A.有理数的绝对值为正数B.如果两数之和为0,则这两个数的绝对值相等C.只有正数或负数才有相反数D.任何数都有倒数7.(3分)如图所示,在数轴上点A表示的数可能是()A.1.5 B.﹣1.5 C.﹣2.6 D.2.68.(3分)在数轴上,A点和B点所表示的数分别为﹣2和1,若使A点表示的数是B点表示的数的3倍,应把A点()A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位9.(3分)p、q、r、s在数轴上的位置如图所示,若|p﹣r|=10,|p﹣s|=12,|q﹣s|=9,则|q﹣r|等于()A.7B.9C.11 D.1310.(3分)火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是()A.200 B.119 C.120 D.319二、填空题11.(4分)|x﹣3|=5,则x=.12.(4分)比较大小:,|﹣0.2|﹣0.3(填=,>,<号)13.(4分)土星表面的夜间平均气温为﹣130℃,白天比夜间高26℃,那么土星表面白天的平均气温为.14.(4分)数轴上一点A,一只蚂蚁从A出发爬了5个单位长度到了原点,则点A所表示的数是.15.(4分)数轴上的两点A、B分别表示﹣10和﹣3,那么A、B两点间的距离是.16.(4分)给定一列按规律排列的数:…,则这列数的第6、7个数是,.三、解答题17.(4分)(1)﹣23﹣6×(﹣3)(2)(+4.3)﹣|﹣4|+(﹣2.3)﹣(+4)×0.18.(4分)在数轴上表示下列有理数,并把这些数用“<”排列.,,|﹣2.5|,0,﹣1,﹣|﹣3|19.(4分)已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?四、解答题20.(6分)把下列各数填在相应的大括号内:﹣5,,﹣12,0,﹣3.14,+1.99,﹣(﹣6),(1)正数集合:{ …}(2)负数集合:{ …}(3)整数集合:{ …}(4)分数集合:{ …}.21.(6分)一辆货车从百货大楼出发负责送货,向东走了5千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了9.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.6升,那么这辆货车此次送货共耗油多少升?22.(6分)已知|a﹣4|+|3b﹣9|=0,求5a﹣2b的值.五、解答题23.(6分)有理数a、b、c在数轴上的位置如图所示,且|a|=|b|,化简式子:|b|+|a﹣c|+|b﹣c|+|a﹣b|.24.(4分)三溪中学的小卖部最近进了一批计算器,进价是每个8元,今天共卖出20个,实际卖出时以每个10元为标准,超过的记为正,不足的记为负,记录如下:超出标准的钱数(元) +3 ﹣1 +2 +1卖出计算器个数5个4个6个5个(1)这个小卖部的计算器今天卖出的平均价格是多少?(2)这个小卖部今天卖计算器赚了多少元?25.(6分)如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动,2秒后,两点相距16个单位长度.已知动点A、B的速度比为1:3(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)在数轴上标出A、B两点从原点出发运动2秒时的位置;(3)若表示数0的点记为O,A、B两点分别从(2)中标出的位置同时向数轴负方向运动,再经过多长时间,OB=2OA.广东省汕头市潮阳一中明光学校2014-2015学年七年级上学期第一次月考数学试卷参考答案与试题解析一、选择题1.(3分)﹣2的绝对值是()A.2B.﹣2 C.D.考点:绝对值.分析:根据负数的绝对值等于它的相反数解答.解答:解:﹣2的绝对值是2,即|﹣2|=2.故选:A.点评:本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.(3分)有下列各数:8,﹣6.7,0,﹣80,,﹣(﹣4),﹣|﹣3|,﹣(+62),其中属于非负整数的共有()A.1个B.2个C.3个D.4个考点:有理数.分析:非负整数即是正整数和0.先将各数化简,然后再分辨.解答:解:8是正整数;﹣6.7是负分数;0是整数;﹣80是负整数;﹣是负分数;﹣(﹣4)=4是正整数;﹣|﹣3|=﹣3是负整数;﹣(+62)=﹣62是负整数.所以非负整数有:8、0、﹣(﹣4).故选:C.点评:此题考查了有理数的分类,解题的关键是:明确非负整数即是正整数和0.3.(3分)一种巧克力的质量标识为“24±0.25克”,则下列巧克力中合格的是()A.23.70克B.23.80克C.24.51克D.24.30克考点:正数和负数.分析:计算巧克力的质量标识的范围:在24﹣0.25和24+0.25之间,即:从23.75到24.25之间.解答:解:24﹣0.25=23.75(克),24+0.25=24.25(克),所以巧克力的质量标识范围是:在23.75到24.25之间.故选:B.点评:此题考查了正数和负数,解题的关键是:求出巧克力的质量标识的范围.4.(3分)比较的大小,结果正确的是()A.B.C.D.考点:有理数大小比较.分析:根据有理数大小比较的方法即可求解.解答:解:∵﹣<0,﹣<0,>0,∴最大;又∵>,∴﹣<﹣;∴.故选A.点评:本题考查有理数比较大小的方法:①正数都大于0,负数都小于0,正数大于一切负数;②两个负数,绝对值大的反而小.5.(3分)一个月内,小丽的体重增长﹣1千克,意思就是这个月内()A.小丽的体重减少﹣1千克B.小丽的体重增长1千克C.小丽的体重减少1千克D.小丽的体重没变化考点:正数和负数.专题:应用题.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,据此可以得到正确答案.解答:解:若体重增长为正,则体重减少为负,故小丽的体重增长﹣1千克,意思就是这个月内小丽的体重减少1千克,点评:此题考查了正数和负数的知识点,解题关键是理解“正”和“负”的相对性.6.(3分)下列说法正确的是()A.有理数的绝对值为正数B.如果两数之和为0,则这两个数的绝对值相等C.只有正数或负数才有相反数D.任何数都有倒数考点:绝对值;相反数;倒数.专题:计算题.分析:利用绝对值,相反数,以及倒数的定义计算即可得到结果.解答:解:A、有理数的绝对值不一定为正数,例如|0|=0;B、如果两数之和为0,即两数互为相反数,则这两个数的绝对值相等;C、任何数都有相反数,错误;D、除0外的数有倒数,错误,故选B.点评:此题考查了绝对值,倒数,以及相反数,熟练掌握各自的定义是解本题的关键.7.(3分)如图所示,在数轴上点A表示的数可能是()A.1.5 B.﹣1.5 C.﹣2.6 D.2.6考点:数轴.分析:根据点A位于﹣3和﹣2之间求解.解答:解:∵点A位于﹣3和﹣2之间,∴点A表示的实数大于﹣3,小于﹣2.故选C.点评:本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.8.(3分)在数轴上,A点和B点所表示的数分别为﹣2和1,若使A点表示的数是B点表示的数的3倍,应把A点()A.向左移动5个单位B.向右移动5个单位C.向右移动4个单位D.向左移动1个单位或向右移动5个单位考点:数轴.分析:首先确定B点表示的数的3倍是1×3=3,再确定从﹣2到3的点需要移动的方向和单位数.解答:解:∵B点表示的数的3倍是1×3=3,A点原来所表示的数为﹣2,∴应把A点向右移动5个单位.点评:本题考查了数轴的有关内容,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.9.(3分)p、q、r、s在数轴上的位置如图所示,若|p﹣r|=10,|p﹣s|=12,|q﹣s|=9,则|q﹣r|等于()A.7B.9C.11 D.13考点:数轴.专题:分类讨论.分析:根据数轴判断p、q、r、s四个数的大小,再去绝对值,得出等式,整体代入求解.解答:解:由数轴可知:p<r,p<s,q<s,q<r,已知等式去绝对值,得r﹣p=10,s﹣p=12,s﹣q=9,∴|q﹣r|=r﹣q=(r﹣p)﹣(s﹣p)+(s﹣q)=10﹣12+9=7.故选A.点评:本题考查了数轴及有理数大小比较.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.10.(3分)火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是()A.200 B.119 C.120 D.319考点:数学常识.分析:直快列车的车次号在101~198之间,向北京开的列车为偶数.解答:解:根据题意,双数表示开往北京,101~198次为直快列车,由此可以确定答案为101﹣198中的一个偶数,杭州开往北京的某一直快列车的车次号可能是120.故选:C.点评:本题是材料题,要仔细阅读所给信息,才能正确判断.二、填空题11.(4分)|x﹣3|=5,则x=8,﹣2.考点:含绝对值符号的一元一次方程.专题:计算题.分析:根据|x﹣3|=5,去掉绝对值符号,即可求得答案.解答:解;根据|x﹣3|=5,∴x﹣3=5或x﹣3=﹣5,当x﹣3=5时,x=8;当x﹣3=﹣5时,x=﹣2.故答案为:8,﹣2.点评:本题考查了含绝对值符号的一元一次方程,比较容易,关键是正确去掉绝对值符号,不要漏解.12.(4分)比较大小:<,|﹣0.2|>﹣0.3(填=,>,<号)考点:有理数大小比较.分析:分别根据负数比较大小的法则及正数与负数比较大小的法则进行比较即可.解答:解:∵﹣=﹣,﹣=﹣,>,∴﹣<﹣,即﹣<﹣.∵|﹣0.2|=0.2>0,﹣0.3<0,∴|﹣0.2|>0.3.故答案为:<,>.点评:本题考查的是有理数大小比较,熟知有理数比较大小的法则是解答此题的关键.13.(4分)土星表面的夜间平均气温为﹣130℃,白天比夜间高26℃,那么土星表面白天的平均气温为﹣104℃.考点:有理数的加法.分析:根据条件可以列出关于白天气温的算式,再进行计算即可求得结果.解答:解:根据题意可列算式:﹣130+26=﹣104(℃),故答案为:﹣104℃.点评:本题主要考查有理数的加减运算,正确列出算式是解题的关键.14.(4分)数轴上一点A,一只蚂蚁从A出发爬了5个单位长度到了原点,则点A所表示的数是±5.考点:数轴.分析:设A点表示的数是x,再根据数轴上的点到原点的距离公式求解即可.解答:解:设A点表示的数是x,∵|x|=5,∴x=±5.故答案为:±5.点评:本题考查的是数轴,熟知数轴上各点到原点距离的定义是解答此题的关键.15.(4分)数轴上的两点A、B分别表示﹣10和﹣3,那么A、B两点间的距离是7.考点:数轴.分析:直接根据数轴上两点间的距离公式解答即可.解答:解:∵数轴上的两点A、B分别表示﹣10和﹣3,∴AB=|﹣10+3|=7.故答案为:7.点评:本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16.(4分)给定一列按规律排列的数:…,则这列数的第6、7个数是,﹣.考点:规律型:数字的变化类.分析:分子是连续的奇数,分母是两个连续自然数的乘积,奇数位置为负,偶数位置为正,第n个数表示为(﹣1)n,由此规律解决问题.解答:解:第6个数是=;第7个数是﹣=﹣.故答案为:,﹣.点评:此题考查数字的变化规律,找出数字之间的联系,得出规律,解决问题.三、解答题17.(4分)(1)﹣23﹣6×(﹣3)(2)(+4.3)﹣|﹣4|+(﹣2.3)﹣(+4)×0.考点:有理数的混合运算.分析:(1)先算乘法,再算减法即可;(2)先算乘法,再算加减即可.解答:解:(1)原式=﹣23+18=5;(2)原式=4.3﹣4﹣2.3﹣0=4.3﹣2.3﹣4=﹣2.点评:本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.18.(4分)在数轴上表示下列有理数,并把这些数用“<”排列.,,|﹣2.5|,0,﹣1,﹣|﹣3|考点:有理数大小比较;数轴.分析:先在数轴上表示各个数,再根据在数轴上表示的数,右边的数总比左边的数大比较即可.解答:解:如图所示,这些数在数轴上表示如下:把这些数用“<”排列为:﹣|﹣3|<﹢(﹣)<﹣1<0<<|﹣2.5|.点评:本题考查了数轴,绝对值,相反数和有理数的大小比较的应用,注意:在数轴上表示的数,右边的数总比左边的数大.19.(4分)已知在纸面上有一数轴(如图),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣2表示的点与数2表示的点重合;(2)若﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数﹣3表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?考点:数轴.分析:(1)根据对称的知识,若1表示的点与﹣1表示的点重合,则对称中心是原点,从而找到﹣2的对称点;(2)①若﹣1表示的点与3表示的点重合,则对称中心是1表示的点,从而找到5的对称点;②根据对应点连线被对称中心平分,则点A和点B到1的距离都是4.5,从而求解.解答:解:(1)根据题意,得对称中心是原点,则﹣2表示的点与数2表示的点重合;(2)∵﹣1表示的点与3表示的点重合,∴对称中心是1表示的点.∴①5表示的点与数﹣3表示的点重合;②若数轴上A、B两点之间的距离为9(A在B的左侧),则点A表示的数是1﹣4.5=﹣3.5,点B表示的数是1+4.5=5.5.故答案为2,﹣3,A=﹣3.5,B=5.5点评:此题综合考查了数轴上的点和数之间的对应关系以及中心对称的性质.注意:数轴上的点和数之间的对应关系,即左减右加.四、解答题20.(6分)把下列各数填在相应的大括号内:﹣5,,﹣12,0,﹣3.14,+1.99,﹣(﹣6),(1)正数集合:{ …}(2)负数集合:{ …}(3)整数集合:{ …}(4)分数集合:{ …}.考点:有理数.分析:(1)根据大于零的数是正数,可得正数集合;(2)根据小于零的数是负数,可得负数集合;(3)根据分母为的数是整数,可得整数集合;(4)根据分母不为一的数是分数,可得分数集合.解答:解:(1)正数集合:{,+1.99,﹣(﹣6),…};(2)负数集合:{﹣5,﹣12,﹣3.14…};(3)整数集合:{﹣5,﹣12,0,﹣(﹣6)…};(4)分数集合:{,﹣3.14,+1.99,…}.点评:本题考查了有理数,注意小数也是分数,把符合条件的都写上,以防遗漏.21.(6分)一辆货车从百货大楼出发负责送货,向东走了5千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了9.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明、小红、小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.6升,那么这辆货车此次送货共耗油多少升?考点:数轴.分析:(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米一辆货车从百货大楼出发,向东走了5千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了9.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是5+1.5+9.5+3=19(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.解答:解:(1)如图所示:(2)小明家与小刚家相距:5﹣(﹣3)=8(千米);答:小明家与小刚家相距8千米;(3)这辆货车此次送货共耗油:(5+1.5+9.5+3)×0.6=11.4(升).答:这辆货车此次送货共耗油11.4升.点评:考查了数轴,本题是一道典型的有理数混合运算的应用题,同学们一定要掌握能够将应用问题转化为有理数的混合运算的能力,数轴正是表示这一问题的最好工具.如工程问题、行程问题等都是这类.22.(6分)已知|a﹣4|+|3b﹣9|=0,求5a﹣2b的值.考点:非负数的性质:绝对值;代数式求值.分析:根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.解答:解:由题意得,a﹣4=0,3b﹣9=0,解得a=4,b=3,所以,5a﹣2b=5×4﹣2×3=20﹣6=14.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.五、解答题23.(6分)有理数a、b、c在数轴上的位置如图所示,且|a|=|b|,化简式子:|b|+|a﹣c|+|b﹣c|+|a﹣b|.考点:整式的加减;数轴;绝对值.专题:计算题.分析:根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.解答:解:根据数轴上点的位置得:a<0<c<b,|a|=|b|>|c|,∴a﹣c<0,b﹣c>0,a﹣b<0,则原式=b+c﹣a+b﹣c+b﹣a=3b﹣2a.点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.24.(4分)三溪中学的小卖部最近进了一批计算器,进价是每个8元,今天共卖出20个,实际卖出时以每个10元为标准,超过的记为正,不足的记为负,记录如下:超出标准的钱数(元) +3 ﹣1 +2 +1卖出计算器个数5个4个6个5个(1)这个小卖部的计算器今天卖出的平均价格是多少?(2)这个小卖部今天卖计算器赚了多少元?考点:有理数的混合运算;正数和负数.分析:(1)根据题意求出20个计算器的总共价格,求出平均值即可;(2)根据题意列出算式,计算得到结果,即可做出判断.解答:解:(1)根据题意得:10+(3×5﹣1×4+2×6+1×5)÷20=10+(15﹣4+12+5)÷20=10+28÷20=10+1.4=11.4(元);(2)根据题意得:3×5﹣1×4+2×6+1×5=15﹣4+12+5=28(元),则(10﹣8)×20+28=68(元),即赚了68元.点评:此题考查了有理数混合运算的应用,弄清题意是解本题的关键.25.(6分)如图,动点A从原点出发向数轴负方向运动,同时动点B也从原点出发向数轴正方向运动,2秒后,两点相距16个单位长度.已知动点A、B的速度比为1:3(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)在数轴上标出A、B两点从原点出发运动2秒时的位置;(3)若表示数0的点记为O,A、B两点分别从(2)中标出的位置同时向数轴负方向运动,再经过多长时间,OB=2OA.考点:一元一次方程的应用;两点间的距离.专题:动点型.分析:(1)设动点A的速度是x单位长度/秒,那么动点B的速度是3x单位长度/秒,然后根据2秒后,两点相距16个单位长度即可列出方程解决问题;(2)根据(1)的结果和已知条件即可得出.(3)此问分两种情况讨论:设经过时间为x后,B在A的右边,若A在B的右边,列出等式解出x即可;解答:解:(1)设动点A的速度是x单位长度/秒,根据题意得2(x+3x)=16∴8x=16,解得:x=2,则3x=6.答:动点A的速度是2单位长度/秒,动点B的速度是6单位长度/秒;(2)标出A,B点如图,;(3)设x秒时,OB=2OA,当B在A的右边,根据题意得:12﹣6x=2(4+2x),∴x=0.4,当A在B的右边,根据题意得:6x﹣12=2(4+2x),∴x=10∴0.4,10秒时OB=2OA.点评:此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.。
2015-2016学年七年级(上)第一次月考数学试卷
2015-2016学年七年级(上)第一次月考数学试卷一、选择题(10题,每题3分)1.下列说法中正确的是()A.有最小的正数B.有最大的负数C.有最小的整数D.有最小的正整数2.在﹣(﹣5),﹣(﹣5)2,﹣|﹣5|,(﹣5)3中负数有()A.3个B.2个C.1个D.0个3.下列计算正确的是()A.﹣22=﹣4 B.﹣(﹣2)2=4 C.(﹣3)2=6 D.(﹣1)3=14.若|a|=|b|,则a、b的关系是()A.a=b B.a=﹣b C.a+b=0或a﹣b=0 D.a=0且b=0ba=05.下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个6.1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元.A.1.1×104B.1.1×105C.11.4×103D.11.3×1037.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大8.如果一个数的相反数比它本身大,那么这个数为()A.正数B.负数C.整数D.不等于零的有理数9.已知|x|=4,|y|=5,则|x+y|的值为()A.1 B.9 C.9或1 D.±9或±110.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b二、填空题(共8小题,每小题3分,满分24分)11.如果时针顺时针方向旋转90°记作﹣90°,那么逆时针方向旋转60°记作12.将数据0.235精确到百分位为.13.用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km,气温的变化量为﹣6℃.攀登5km后,气温有什么变化?.14.在有理数中,绝对值等于它本身的数有:;相反数等于其本身的有;倒数等于其本身的有:.(填哪些数)15.把(﹣)×(﹣)×(﹣)×(﹣)写成乘方的形式,底数是,指数是.16.计算:4﹣32=,6÷(﹣3)=,(﹣3×2)2=.17.若|x﹣6|+|y+5|=0,则x﹣y=.1)﹣|﹣3|的相反数是,(2)|3.14﹣π|=.(3)比较﹣和﹣的大小:﹣﹣.三.计算题(共38分)19.﹣(﹣7)﹣(﹣5)+(﹣4)(2)22﹣|﹣7|﹣2×(﹣)(3)(﹣4)2﹣9÷+(﹣2)×(﹣1)÷(﹣)(4)﹣24+(﹣5)×[(﹣2)3+2]+(﹣4)2÷(﹣)20.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,y是数轴负半轴上到原点的距离为1的数,求代数式+x2﹣cd+y2010的值.21.若实数a、b满足|a|=4,|b|=6,且a>b,求a+b的值.22.一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,最后回到货场.(1)以货场为原点,以东为正方向,用一个单位长度表示1千米,你能在数轴上分别表示出货场A,批发部B,商场C,超市D的位置吗?(2)超市D距货场A多远?(3)此款货车每百千米耗油约10升,每升汽油约6.20元,请你计算他需多少汽油费?2015-2016学年七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(10题,每题3分)1.下列说法中正确的是()A.有最小的正数B.有最大的负数C.有最小的整数D.有最小的正整数考点:有理数.分析:利用正数、负数的定义与性质,以及整数的概念与分类(正整数,0,负整数)即可解答.解答:解:①没有最小的正数,也没有最大的正数,因此选项错误;②没有最小的负数,也没有最大的负数,因此选项错误;③整数包括正整数和负整数,没有最小的整数,因此选项错误;④最小的正整数是1,因此选项正确.故选D.点评:此题考查正数、负数的定义,整数的概念与分类(正整数,0,负整数),运用概念和性质是解决这类问题的关键.2.在﹣(﹣5),﹣(﹣5)2,﹣|﹣5|,(﹣5)3中负数有()A.3个B.2个C.1个D.0个考点:有理数的乘方.分析:根据相反数、绝对值的定义,乘方的运算法则先化简各数,再根据负数的定义求解.解答:解:∵﹣(﹣5)=5,﹣(﹣5)2=﹣25,﹣|﹣5|=﹣5,(﹣5)3=﹣125,∴﹣(﹣5)2,﹣|﹣5|,(﹣5)3都是负数,共3个.故选A.点评:此题关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、立方、绝对值,正负号的变化等知识点.3.下列计算正确的是()A.﹣22=﹣4 B.﹣(﹣2)2=4 C.(﹣3)2=6 D.(﹣1)3=1考点:有理数的乘方.专题:计算题.分析:原式各项利用乘方的意义计算得到结果,即可做出判断.解答:解:A、原式=﹣4,正确;B、原式=﹣4,错误;C、原式=9,错误;D、原式=﹣1,错误,故选A点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.4.若|a|=|b|,则a、b的关系是()A.a=b B.a=﹣b C.a+b=0或a﹣b=0 D.a=0且b=0ba=0考点:绝对值.分析:根据绝对值的性质选择.解答:解:根据绝对值性质可知,若|a|=|b|,则a与b相等或互为相反数,即a+b=0或a﹣b=0.故选C.点评:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个考点:相反数.分析:根据相反数的定义和性质回答即可.解答:解:①0的相反数是0,故①错误;②0的相反数是0,故②错误;③正确;④只有符号不同的两个数互为相反数,故④错误.故选:A.点评:本题主要考查的是相反数的定义和性质,掌握相反数的定义和性质是解题的关键.6.1999年国家财政收入达到11377亿元,用四舍五入法保留两个有效数字的近似值为()亿元.A.1.1×104B.1.1×105C.11.4×103D.11.3×103考点:科学记数法与有效数字.专题:应用题.分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.注意对一个数进行四舍五入时,若要求近似到个位以前的数位时,首先要对这个数用科学记数法表示.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数它的有效数字的个数只与a有关,而与n的大小无关.解答:解:用四舍五入法保留两个有效数字得11 377的近似值为11 000,其精确到千位,用科学记数法表示为1.1×104.故选A.点评:本题旨在考查基本概念,需要同学们熟记有效数字的概念:从一个数的左边第一个非零数字起,到精确到的数位止,所有数字都是这个数的有效数字.注意对一个数进行四舍五入时,若要求近似到个位以前的数位时,首先要对这个数用科学记数法表示.7.如果两个有理数的积是正数,和也是正数,那么这两个有理数()A.同号,且均为正数B.异号,且正数的绝对值比负数的绝对值大C.同号,且均为负数D.异号,且负数的绝对值比正数的绝对值大考点:有理数的乘法;有理数的加法.分析:此题根据有理数的加法和乘法法则解答.解答:解:两个有理数的积是正数,说明两数同号,和也是正数,说明均为正数,A正确.故选A.点评:有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加.8.如果一个数的相反数比它本身大,那么这个数为()A.正数B.负数C.整数D.不等于零的有理数考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数,再根据正数大于,可得答案.解答:解:如果一个数的相反数比它本身大,那么这个数为负数,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数,相反数大于它本身,相反数是正数,原数是负数.9.已知|x|=4,|y|=5,则|x+y|的值为()A.1 B.9 C.9或1 D.±9或±1考点:绝对值;有理数的加法.分析:根据绝对值相等的数有两个,可得这两个数,再根据有理数的加法可求出和,再由绝对值的意义,可得和的绝对值.解答:解:|x|=4,|y|=5,x=±4,y=±5,当x=﹣4,y=﹣5时,|x+y|=9当x=﹣4,y=5时,|x+y|=1,当x=4,y=﹣5时,|x+y|=1,当x=4,y=5时,|x+y|=9,故选:C.点评:题考查了绝对值,先有绝对值求出相反数,再求出和的绝对值,注意要分分类讨论,不能漏掉.10.如图所示,A、B两点所对的数分别为a、b,则AB的距离为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b考点:两点间的距离.专题:数形结合.分析:根据AB两点之间的距离即为0到B的距离与0到A的距离之和,由数轴可知a<0,b>0,得出AB的距离为b﹣a.解答:解:∵A、B两点所对的数分别为a、b,∵a<0,b>0,∴AB之间的距离为b﹣a,故选C.点评:本题考查了两点之间的距离,图形结合,判断出a、b的符号,难度适中.二、填空题(共8小题,每小题3分,满分24分)11.如果时针顺时针方向旋转90°记作﹣90°,那么逆时针方向旋转60°记作+60°考点:正数和负数.专题:规律型.分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解答:解:由题意知顺时针旋转记作负数,那么逆时针旋转就记作正数,∴逆时针方向旋转60°记作+60°.点评:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.将数据0.235精确到百分位为0.24.考点:近似数和有效数字.分析:精确到哪位,就是对它后边的一位进行四舍五入.解答:解:0.235≈0.24,故答案为:0.24.点评:本题主要考查了近似数和有效数字,近似数与精确数的接近程度,可以用精确度表示,精确到哪一位,对它后边的一位进行四舍五入是解答此题的关键.13.用正、负数表示气温的变化量:上升为正、下降为负.某登山队攀登一座山峰,每登高1km,气温的变化量为﹣6℃.攀登5km后,气温有什么变化?气温下降30℃.考点:正数和负数.分析:根据有理数乘法的意义列出算式即可求解.解答:解:﹣6×5=﹣30(℃).故气温下降30℃故答案为:气温下降30℃.点评:考查了正数和负数和有理数乘法,解题的关键是根据题意列出算式.14.在有理数中,绝对值等于它本身的数有:正数和0;相反数等于其本身的有0;倒数等于其本身的有:±1.(填哪些数)考点:倒数;相反数;绝对值.分析:根据绝对值的性质,倒数和相反数的定义回答即可.解答:解:绝对值等于它本身的数有正数和零;相反数等于其本身的数是0;倒数等于其本身的数是±1.故答案为:正数和0;0;±1.点评:本题主要考查的是绝对值的性质,倒数和相反数的定义,掌握绝对值的性质,倒数和相反数的定义是解题的关键.15.把(﹣)×(﹣)×(﹣)×(﹣)写成乘方的形式(﹣)4,底数是﹣,指数是4.考点:有理数的乘方.专题:计算题.分析:原式利用乘方的意义化简,计算即可得到结果.解答:解:把(﹣)×(﹣)×(﹣)×(﹣)写成乘方的形式(﹣)4,底数是﹣,指数是4.故答案为:(﹣)4;﹣;4点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.16.计算:4﹣32=﹣5,6÷(﹣3)=﹣2,(﹣3×2)2=36.考点:有理数的除法;有理数的乘方.分析:先算乘方,再算乘除,最后算加减,有括号应该先算括号里面,然后运算顺序计算即可.解答:解:4﹣32=4﹣9=﹣5;6÷(﹣3)=﹣(6÷3)=﹣2;(﹣3×2)2=(﹣6)2=36.故答案为:﹣5;﹣2;36.点评:本题主要考查的是有理数的计算,掌握有理数的运算法则和运算顺序是解题的关键.17.若|x﹣6|+|y+5|=0,则x﹣y=11.考点:非负数的性质:绝对值.专题:计算题.分析:先根据非负数的性质求出x、y的值,再代入x﹣y进行计算即可.解答:解:∵|x﹣6|+|y+5|=0,∴x﹣6=0,y+5=0,解得x=6,y=﹣5,∴原式=6+5=11.故答案为:11.点评:本题考查的是非负数的性质,即任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.1)﹣|﹣3|的相反数是3,(2)|3.14﹣π|=π﹣3.14.(3)比较﹣和﹣的大小:﹣<﹣.考点:有理数大小比较;相反数;绝对值.分析:(1)先根据绝对值的性质得出|﹣3|=3,再由相反数的定义即可得出结论;(2)根据绝对值的性质即可得出结论;(3)根据负数比较大小的法则进行比较即可.解答:解:(1)∵|﹣3|=3,∴﹣|﹣3|=﹣3,∵﹣3的相反数是3,∴﹣|﹣3|的相反数是3.故答案为:3.(2)∵3.14<π,∴3.14﹣π<0,∴|3.14﹣π|=π﹣3.14.故答案为:π﹣3.14;(3)∵|﹣|==,|﹣|==,>,∴﹣<﹣.故答案为:<.点评:本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.三.计算题(共38分)19.﹣(﹣7)﹣(﹣5)+(﹣4)(2)22﹣|﹣7|﹣2×(﹣)(3)(﹣4)2﹣9÷+(﹣2)×(﹣1)÷(﹣)(4)﹣24+(﹣5)×[(﹣2)3+2]+(﹣4)2÷(﹣)考点:有理数的混合运算.分析:(1)先化简,再计算加减法;(2)(3)(4)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.解答:解:(1)(﹣3)﹣(﹣7)﹣(﹣5)+(﹣4)=﹣3+7+5﹣4=5;(2)22﹣|﹣7|﹣2×(﹣)=4﹣7+1=﹣2;(3)(﹣4)2﹣9÷+(﹣2)×(﹣1)÷(﹣)=16﹣12﹣4=0;(4)﹣24+(﹣5)×[(﹣2)3+2]+(﹣4)2÷(﹣)=﹣16+(﹣5)×[﹣8+2]+16÷(﹣)=﹣16+5×6﹣32=﹣16+30﹣32=﹣18.点评:本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.20.如果a、b互为相反数,c、d互为倒数,x的绝对值是1,y是数轴负半轴上到原点的距离为1的数,求代数式+x2﹣cd+y2010的值.考点:代数式求值;相反数;绝对值;倒数.专题:计算题.分析:利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,x与y的值,代入原式计算即可得到结果.解答:解:根据题意得:a+b=0,cd=1,x=±1,y=﹣1,则原式=0+1﹣1+1=1.点评:此题考查了代数式求值,绝对值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.21.若实数a、b满足|a|=4,|b|=6,且a>b,求a+b的值.考点:绝对值;有理数的加法.分析:首先根据条件确定a,b的值,然后再代入即可.解答:解:∵|a|=4,|b|=6,∴a=±4,b=±6,∵a>b,∴a=±4,b=﹣6,当a=4,b=﹣6时,a+b=﹣2;当a=﹣4,b=﹣6时,a+b=﹣10.点评:本题主要考查了绝对值的意义,根据a>b确定a,b的值是解答此题的关键.22.一辆货车从货场A出发,向东走了2千米到达批发部B,继续向东走1.5千米到达商场C,又向西走了5.5千米到达超市D,最后回到货场.(1)以货场为原点,以东为正方向,用一个单位长度表示1千米,你能在数轴上分别表示出货场A,批发部B,商场C,超市D的位置吗?(2)超市D距货场A多远?(3)此款货车每百千米耗油约10升,每升汽油约6.20元,请你计算他需多少汽油费?考点:数轴;正数和负数.专题:计算题.分析:(1)根据题意画出数轴,如图所示;(2)找出A与D之间的距离即可;(3)根据列出算式,计算即可得到结果.解答:解:(1)根据题意画出数轴,如图所示:(2)根据题意得:|AD|=2;(3)根据题意得:10÷10×6.20×(2+1.5+5.5)=55.8(元),则此款货车汽油费为55.8元.点评:此题考查了数轴,以及正数与负数,熟练掌握运算法则是解本题的关键.第11页(共11页)。
2015年七年级上数学第一次月考试卷(附答案和解释)
2015年七年级上数学第一次月考试卷(附答案和解释)安徽省六安市舒城县杭埠中学2014-2015学年七年级上学期第一次月考数学试卷一.精心选一选(每小题3分,共30分): 1.有理数�的倒数是() A.�2 B. 2 C. D.�2.如果“盈利10%”记为+10%,那么“亏损6%”记为() A.�16% B.�6% C. +6% D. +4%3.下列关于数轴的图示,画法正确的是() A. B. C. D.4.下列各对数中,数值相等的是() A. 32与23 B.�23与(�2)3 C.�3与(�3)2 D.(�3×2)3与�3×23 5.下列说法正确的是() A.近似数6与6.0表示的意义相同 B. 4.30万精确到百分位 C.小华身高1.7米是一个准确数 D.将7.996精确到百分位得近似数8.006.比较的大小,结果正确的是() A. B. C. D.7.规定一种新的运算x⊗y=xy+x�y,则2⊗3等于() A. 6 B. 5 C. 8 D. 118.下列计算正确的是() A.�32�(�23)=1 B.6÷3× =6 C.�×3=0 D. 2�(�1)2015=39.数轴上点A表示的数是�1,将点A沿数轴移动2个单位到点B,则点B所表示的数是() A.�3 B. 1 C.�1或3 D.�3或1 10.若ab≠0,则 + 的值不可能是() A. 2 B. 0 C.�2 D. 1 二.细心填一填(每小题4分,共24分): 11.用科学记数法表示:23450000=.12.大于�3.5而小于2.5的所有整数的和等于.13.一袋大米包装上印有“(50±0.5)千克”字样,表明这种包装的大米符合要求的质量范围是.14.计算:(�0.125)2013×82014=.15.若a�1=3,则1�a的倒数为.16.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到O A1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为.三.解答题(共66分): 17.计算:(1)(+ )�(�10)�(�)+(�10).(2)�24×(�+ �+ ).(3)�23÷ × �(�1)3.(4)(�)÷(� + �).18.将下列各数在数轴上表示出来,并用“<”连接:�22,�(�1),0,�|�2|,�2.5.|�3|.19.某冷冻厂的一个冷库的温度是�4℃,现有一批食品要在�30℃下冷藏,如果每小时冷库的温度能降温6℃,问:几小时后能降到所要求的温度?20.若a,b互为倒数,x,y互为相反数,|m|=3.求:(1)�ab+m2�8的值.(2)5ab�m+x�4+y的值.21.一只跳蚤从数轴上的原点开始,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位…按此规律跳下去,当它跳第20次后,落点在原点的哪一侧?表示的数是多少?22.请你研究以下分析过程,并尝试完成下列问题. 13=1213+23=9=32=(1+2)2 13+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2 (1)13+23+33+…+103= (2)13+23+33+…+203= (3)13+23+33+…+n3= (4)计算:113+123+133+…+203的值.安徽省六安市舒城县杭埠中学2014-2015学年七年级上学期第一次月考数学试卷一.精心选一选(每小题3分,共30分): 1.有理数�的倒数是() A.�2 B. 2 C. D.�考点:倒数.专题:计算题.分析:根据倒数的意义乘积为1的两个数互为倒数,用1除以�可得.解答:解:有理数�的倒数是:1÷(�)=�2.故选A.点评:此题考查的知识点为倒数,解答此题可根据倒数的意义乘积为1的两个数互为倒数,用1除以�可得.2.如果“盈利10%”记为+10%,那么“亏损6%”记为() A.�16%B.�6% C. +6% D. +4%考点:正数和负数.专题:计算题.分析:首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.解答:解:根据题意可得:盈利为“+”,则亏损为“ �”,∴亏损6%记为:�6%.故选:B.点评:此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.3.下列关于数轴的图示,画法正确的是() A. B. C. D.考点:数轴.分析:根据数轴的定义对各选项分析判断利用排除法求解.解答:解:A、单位长度不统一,故选项错误; B、正方向不符合习惯,故本选项错误; C、没有正方向,故本选项错误; D、画法正确,故本选项正确.故选D.点评:本题考查了数轴,熟记数轴三要素:原点、正方向、单位长度是解题的关键.4.下列各对数中,数值相等的是() A. 32与23 B.�23与(�2)3 C.�3与(� 3)2 D.(�3×2)3与�3×23考点:有理数的乘方.专题:探究型.分析:根据有理数的乘方分别计算出各式的值,再进行解答即可.解答:解:A、由有理数的乘方可知,32=9≠23=8,故A选项错误; B、由有理数的乘方可知,�23=(�2)3=�8,故B选项正确; C、由有理数的乘方可知,(�3)2=9≠�3,故C选项错误; D、由有理数的乘方可知,(�3×2)3=�216≠�3×23=�24,故D选项错误.故选:B.点评:本题考查的是有理数的乘方,即求n个相同因数积的运算,叫做乘方.5.下列说法正确的是() A.近似数6与6.0表示的意义相同 B. 4.30万精确到百分位 C.小华身高1.7米是一个准确数 D.将7.996精确到百分位得近似数8.00考点:近似数和有效数字.分析:利用近似数及有效数字的有关定义分别判断后即可确定正确的选项.解答:解:A、近似数6与6.0表示的意义不同,故错误; B、4.30万精确到百位,故错误; C、小华身高1.7米是一个近似数,故错误; D、将7.996精确到百分位得近似数8.00,正确,故选D.点评:本题考查了近似数及有效数字的知识,属于基础题,比较简单.6.比较的大小,结果正确的是() A. B. C. D.考点:有理数大小比较.分析:根据有理数大小比较的方法即可求解.解答:解:∵�<0,�<0,>0,∴ 最大;又∵ >,∴�<�;∴ .故选A.点评:本题考查有理数比较大小的方法:①正数都大于0,负数都小于0,正数大于一切负数;②两个负数,绝对值大的反而小.7.规定一种新的运算x⊗y=xy+x�y,则2⊗3等于() A. 6 B. 5 C. 8 D. 11考点:有理数的混合运算.专题:新定义.分析:根据运算“⊗”的规定列出算式即可求出结果.解答:解:∵x⊗y=xy+x�y,∴2⊗3 =2×3+2�3 =6+2�3 =5.故选B.点评:此题是定义新运算题型.直接把对应的数字代入所给的式子可求出所要的结果.解题关键是对号入座不要找错对应关系.8.下列计算正确的是() A.�32�(�23)=1 B.6÷3× =6 C.�×3=0 D. 2�(�1)2015=3考点:有理数的混合运算.专题:计算题.分析:各项计算得到结果,即可做出判断.解答:解:A、原式=�9�(�8)=�9+8=�1,错误; B、原式=6× × = ,错误; C、原式= �=�1,错误; D、原式= �(�1)= =3 ,正确.故选A.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.9.数轴上点A表示的数是�1,将点A沿数轴移动2个单位到点B,则点B所表示的数是() A.�3 B. 1 C.�1或3 D.�3或1 考点:数轴.分析:根据数轴上的点右移加,左移减,可得答案.解答:解:点A表示的数是�1,右移2个单位,得�1+2=1;点A表示的数是�1,左移2个单位,得�1�2=�3,故选:D.点评:本题考查了数轴,利用了数轴上的点右移加,左移减.10.若ab≠0,则 + 的值不可能是() A. 2 B. 0 C.�2 D. 1 考点:有理数的除法;绝对值;有理数的乘法.分析:由于ab≠0,则有两种情况需要考虑:①a、b同号;②a、b异号;然后根据绝对值的性质进行化简即可.解答:解:①当a、b同号时,原式=1+1=2;或原式=�1�1=�2;②当a、b异号时,原式=�1+1=0.则 + 的值不可能的是1.故选D.点评:此题考查的是绝对值的性质,能够正确的将a、b的符号分类讨论,是解答此题的关键.二.细心填一填(每小题4分,共24分): 11.用科学记数法表示:23450000=2.345×107.考点:科学记数法―表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:23 450 000=2.345×107,故答案为:2.345×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.大于�3.5而小于2.5的所有整数的和等于�3.考点:有理数的加法;有理数大小比较.分析:因为大于�3.5而小于2.5的整数有:�3,�2,�1,0,1,2,将这几个数加起来就可以求出其和.解答:解:由题意得:大于�3.5而小于2.5的整数有:�3,�2,�1,0,1,2 ∴(�3)+(�2)+(�1)+0+1+2=�3.故答案为:�3 点评:本题考查了有理数的加法计算,还涉及到了有理数大小的比较,将指定范围内的有理数求和.13.一袋大米包装上印有“(50±0.5)千克”字样,表明这种包装的大米符合要求的质量范围是49.5�50.5千克.考点:正数和负数.分析:根据有理数的加法,可得答案.解答:解:50�0.5=49.5(千克)50+0.5=50.5(千克),“(50±0.5)千克”字样,表明这种包装的大米符合要求的质量范围是 49.5�50.5千克,故答案为:49.5�50.5千克.点评:本题考查了正数和负数,利用了有理数的加法运算.14.计算:(�0.125)2013×82014=8.考点:有理数的乘方.分析:将(�0.125)2013×82014拆分为(�0.125)2013×82013×8 ,再根据同底数幂的乘法解答.解答:解:(�0.125)2013×82014 =(�0.125)2013×82013×8 =(�0.125×8)×8 =�1×8 =�8.故答案为8.点评:本题考查了有理数的乘方,要熟悉积的乘方和幂的乘方的运算.15.若a�1=3,则1�a的倒数为�.考点:倒数.分析:直接利用互为倒数的定义求出即可.解答:解:∵a�1=3,∴1�a=�3,∴1�a的倒数为:�.故答案为:�.点评:此题主要考查了倒数的定义,正确把握倒数的定义是解题关键.16.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到O A1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为.考点:规律型:图形的变化类.专题:压轴题.分析:根据题意,得第一次跳动到OA的中点A1处,即在离原点的处,第二次从A1点跳动到A2处,即在离原点的()2处,则跳动n次后,即跳到了离原点的处.解答:解:第n次跳动后,该质点到原点O的距离为.故答案为:.点评:本题是一道找规律的题目,这类题型在2015届中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.三.解答题(共66分): 17.计算:(1)(+ )�(�10)�(�)+(�10).(2)�24×(�+ �+ ).(3)�23÷ × �(�1)3.(4)(�)÷(� + �).考点:有理数的混合运算.专题:计算题.分析:(1)原式利用减法法则变形,结合后计算即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)先利用除数除以被除数得到结果,求出倒数即为原式的结果.解答:解:(1)原式=(2 +2 )+(10�10)= ;(2)原式=12�4+9�10=7;(3)原式=�8× × +1=�1+1=0;(4)(�+ �)÷(�)=(�+ �)×(�42)=�7+9�28+12=�35+21=�14,则原式=�.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.将下列各数在数轴上表示出来,并用“<”连接:�22,�(�1),0,�|�2|,�2.5.|�3|.考点:有理数大小比较;数轴.分析:先把各数进行化简,再在数轴上找出对应的点,最后比较大小即可.解答:解:∵�22,=�4,�(�1)=1,0,�|�2|=�2,�2.5,|�3|=3,∴�22<�2.5<�|�2|<0<�(�1)<|�3|.画图如下:点评:此题考查了有理数的大小比较,把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.19.某冷冻厂的一个冷库的温度是�4℃,现有一批食品要在�30℃下冷藏,如果每小时冷库的温度能降温6℃,问:几小时后能降到所要求的温度?考点:有理数的混合运算.专题:应用题.分析:根据题意列出算式计算即可得到结果.解答:解:根据题意得:[�4�(�30)]÷ 6= (小时),答:小时后能降到所要求的温度.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.若a,b互为倒数,x,y互为相反数,|m|=3.求:(1)�ab+m2�8的值.(2)5ab�m+x�4+y的值.考点:代数式求值;相反数;绝对值;倒数.专题:计算题.分析:利用倒数,相反数,以及绝对值的代数意义求出a+b,xy,以及m的值,代入各式计算即可得到结果.解答:解:∵a,b互为倒数,∴ab=1,∵x,y互为相反数,∴x+y=0,∵|m|=3,∴m=±3,(1)原式=0�1+9�8=0;(2)当m=3时,原式=5�3+0�4=�2;当m=�3时,原式=5×1+3+0�4=4.点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.21.一只跳蚤从数轴上的原点开始,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位…按此规律跳下去,当它跳第20次后,落点在原点的哪一侧?表示的数是多少?考点:数轴.专题:规律型.分析:由题意可以规定向右记为正,向左记为负,然后列算式,再找规律计算.解答:解:1+(�2)+3(�4)+5+…+(�20) =(�1)+(�1)+(�1)+…+(�1) =(�1)×10 =�10.因此在原点的左侧,表示的数是�10.点评:考查了数轴,此题要求学生会用正负数来表示一对具有相反意义的量.同时在计算的过程中,能正确找到规律.22.请你研究以下分析过程,并尝试完成下列问题. 13=1213+23=9=32=(1+2)2 13+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2 (1)13+23+33+…+103=3025 (2)13+23+33+…+203=44100 (3)13+23+33+…+n3= (4)计算:113+123+133+…+203的值.考点:有理数的乘方.专题:规律型.分析:根据已知一系列等式,得出一般性规律,计算即可得到结果.解答:解:(1)13+23+33+…+103=3025;(2)13+23+33+…+203=44100;(3)13+23+33+…+203= ;(4)113+123+133+…+203=41075.故答案为:(1)3025;(2)44100;(3);(4)41075 点评:此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校 班级 姓名 学号
密封线 密封线内不要答题
密封线
1
沿滩中学2011~2012学年度
2015级初一上期第一学月月考数学试题
(考试时间120分钟,总分100分)
一、选择题(每小题2分,共20分) 1、-
2
1
的相反数是 ( ) A 、2 B 、-2 C 、
21 D 、-2
1 2、向东行进-50m 表示的意义是( )
A 、向东行进50m
B 、向北行进50m
C 、向南行进50m
D 、向西行进50m 3、若a 与1互为相反数,则2+a =( )
A 、3
B 、1
C 、-1
D 、-3 4、绝对值小于4的的所有整数的和是( )
A 、5
B 、10
C 、0
D 、6 5、若|x +2|+|y -3|=0,则 x -y 的值为( ) A 、-5 B 、1 C 、-1 D 、5 6、若x x -=,则x 是( )
A 、正数
B 、负数
C 、正数或0
D 、负数或0 7、下列说法,不正确的是( )
A 、数轴上的数,右边的数总比左边的数大
B 、绝对值最小的有理数是0
C 、如果两个数的绝对值相等,那么这两个数一定相等
D 、离原点越远的点,表示的数的绝对值越大
8、已知点A 和点B 都在同一条数轴上,点A 表示2-,又知点B 和点A 相距
5个单位长度,则点B 表示的数一定是( )
A 、3
B 、7-
C 、7或3-
D 、7-或3
9、有理数a 、b 在数轴上的对应点如图所示,则下列结论中错误的是( ) A 、a +b <0 B 、ab >0 C 、-a <-b D 、a -b <0 10、下列说法中,正确的个数是( )个
①a -一定是负数 ②几个有理数相乘,积的符号由负因数的个数确定
③a 的倒数是
a
1
④自然数就是非负数 ⑤若0<a ,0>b ,0<+b a ,则b a >
A 、1
B 、2
C 、3
D 、4
二、填空题(每小题3分,共24分)。
11、化简:+(-5)= ,=--)31
3( ,=---)]5
33([ 。
12、把)2()5()4()8(---++--写成省略括号和加号的和的形式是 。
13、用“>”或“<”填空:①53-
5
4- ②-100 99 ③722
- 14.3-- 14、)3
22(+-的相反数是 ,绝对值是 ,倒数是 。
15、若13=-x ,则x =
16、观察下面的一列数:6
1514131211,,-,,-……请你找出其中排列的规律,并按此规律填空,
第2012个数是_______。
17、现定义两种运算“⊕” “*”,对于任意两个整数,1a b a b ⊕=+-,1a b a b *=⨯-,
则8*[3⊕(-5)]的结果是 。
18、某一电子昆虫落在数轴上的某点0K ,从0K 点开始跳动,第1次向左跳1个单位长度到1K ,第2
次由1K 向右跳2个单位长度到2K ,第3次由2K 向左跳3个单位长度到3K ,第4次由3K 向右跳4个单位长度到4K ……依此规律跳下去,当它跳第100次落下时,电子昆虫在数轴上的落点100K 表示的数恰好是2012,则电子昆虫的初始位置0K 所表示的数是_________________。
三、计算题(每小题4分,共20分)。
19、)6.2()523(-+- 20、7
5
8)758(-- 21、)12()872-(-÷⨯
22、)512()741()731(2.12++----- 23、)48()12
1
4136161(-⨯+-+
密封线
密封线内不要答题
密封线
2
四、解答题(共11分)。
24、(5分)画出数轴,在数轴上表示下列各数,并用“<”连接
5+ ,322-,)5.3(--,2
1
--,0,)4(-+
25、(6分)把下列各数填在相应的集合内:
-(-9),722+,0.58,10--,0,11,.3.0-,3
9
-,30%
负整数集合:{ ……} 分数集合:{ ……} 不大于10且不小于-10的整数集合:{ ……} 五、解答题(每小题6分,共12分)。
26、检修组乘汽车,沿笔直的公路检修线路,约定向东为正,向西为负,某天自A 地出发,
到收工时,行走记录为(单位:千米):+8、-9、+4、+7、-2、-10、+18、-3、+7、+5回答下列问题: (1)收工时在A 地的哪边?距A 地多少千米? (2)若每千米耗油0.5升,问从A 地出发到收工时,共耗油多少升? 27、有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,
记录如下:
(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?
六、解答题(13分)。
28、(6分)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间
的内在联系,它是“数形结合”的基础,请利用数轴回答下列问题:
①如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是_______,A 、B 两点间的距离是_______。
②如果点A 表示数3,将A 点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B 表示的数是_______,A 、B 两点间的距离是_______。
③一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动P 个单位长度,请你猜想终点B 表示的数是_______,A 、B 两点间的距离是_______。
29、(7分)观察下列等式:
211211-=⨯,3121321-=⨯,41
31431-=⨯,将以上三个等式相加得: =⨯+⨯+⨯4313212111-21+21-31+31-41=1-41=4
3。
(1)猜想并写出:
)
1(1
+n n = 。
(2)根据上面的方法,计算:
431321211⨯+⨯+⨯+…+2013
20121⨯。