误差初步理论

合集下载

实验误差理论及基础测量实验报告

实验误差理论及基础测量实验报告

实验误差理论及基础测量实验报告1. 引言实验误差理论是实验科学中的重要基础理论之一,它用于描述实验结果与真实值之间的差异。

测量实验是实验科学中常见的实验方法之一,通过测量物理量的数值来获得实验数据。

本实验报告将详细讨论实验误差理论的基本概念和基础测量实验的进行及其结果分析。

2. 实验误差理论2.1 系统误差系统误差是指在一系列测量中出现的持续偏差,它可能由于仪器的固有缺陷、环境因素或实验操作等原因导致。

系统误差一般是确定性的,可以通过校正方法进行补偿或减小。

2.2 随机误差随机误差是指在一系列测量中出现的偶然性差异,其产生原因主要是由于测量条件的不确定性或实验者操作的不精确。

随机误差一般呈正态分布,可以通过多次测量和统计方法来估计其大小。

2.3 总误差与精确度总误差是指系统误差和随机误差之和,它反映了测量结果的准确程度。

精确度是评价测量结果的可靠程度的指标,通常用相对误差或标准偏差来表示。

3. 基础测量实验3.1 实验目的本次实验的目的是通过测量金属导线的阻值来熟悉基础测量步骤,并运用实验误差理论进行结果分析。

3.2 实验装置与步骤•实验装置:电流表、电压表、金属导线等。

•实验步骤:1.将电流表和电压表连接至电路中,保证连接正确。

2.断开电路,将金属导线与电路连接,并记录电路中的电流和电压值。

3.多次重复实验,记录不同条件下的电流和电压值。

3.3 数据处理与分析根据实验步骤所记录的电流和电压值,可以计算金属导线的阻值。

通过多次重复实验的数据,我们可以计算出平均值,并计算相对误差。

3.4 结果与讨论在本次实验中,我们测量了金属导线的阻值,并进行了数据处理和分析。

根据实验结果,我们可以得出以下结论: 1. 金属导线的阻值为XXX。

2. 根据多次重复实验的数据,计算得到的平均阻值为YYY,相对误差为ZZZ。

3. 实验误差理论的应用对于判断实验结果的可靠性具有重要意义。

4. 结论通过本次实验,我们了解了实验误差理论的基本概念,并掌握了基础测量实验的步骤和数据处理方法。

误差理论

误差理论
2 2 2 2
例8、已知半径及其中误差,求圆面积的相对中误 、已知半径及其中误差, 差。
S = πR
2
ln S = ln π + 2 ln R dS dR = 0+2 S R mS mR k= =2 S R
例9、由三角形内角和的闭合差计算测角的中误差 、
设在相同条件下, 个三角形的内角进行了观测, 设在相同条件下,对n个三角形的内角进行了观测,测角 个三角形的内角进行了观测 中误差为m, 中误差为 ,三角形内角和的闭合差也就是三角形内角 和的真误差。 和的真误差。
2 Σh 2 h1 2 h2 2 hn
mΣh = ± n mh = ± 2n m读
已知边长的中误差,求周长 例3、观测了正方形的四条边 已知边长的中误差 求周长 、观测了正方形的四条边,已知边长的中误差 的中误差是多少? 的中误差是多少
p = a1 + a2 + a3 + a4 m =m +m +m +m
[∆] = [l ] − nX [∆] = [l ] − X = x − X [∆] → 0 n→∞
n x→X n n
∆=l−X
又名最或是误差) 二、观测值的改正数(又名最或是误差 观测值的改正数 又名最或是误差
v = x−l [v] = nx − [l ]
=0
m=±
三、由观测值的改正数计算中误差
1 1 1 x = l1 + l2 + ⋯ + ln n n n 1 1 1 dx = dl1 + dl2 + ⋯ + dln n n n 1 2 2 2 m = ml1 + ml 2 + ⋯ + mln n m mx = ± n

误差理论第一章绪论

误差理论第一章绪论
9
§1-3 精度
精度:反映测量结果与真值接近程度的量, 精度 反映测量结果与真值接近程度的量,与误差的大小相 反映测量结果与真值接近程度的量 对应。误差小则精度高,误差大则精度低。 对应。误差小则精度高,误差大则精度低。 分为: 分为: 反映测量结果中系统误差的影响程度。 ①准确度:反映测量结果中系统误差的影响程度。 准确度 反映测量结果中系统误差的影响程度 ②精密度:反映测量结果中随机误差的影响程度。 精密度:反映测量结果中随机误差的影响程度。 ③精确度:反映测量结果中系统误差和随机误差综合的影响 精确度: 程度。 程度。 一般可用测量的不确定度(或极限误差)来表示。 一般可用测量的不确定度(或极限误差)来表示。对具体的 测量,精密度高的而准确度不一定高, 测量,精密度高的而准确度不一定高,准确度高的而精密度 也不一定高,但精确度高,则精密度和准确度都高。 也不一定高,但精确度高,则精密度和准确度都高。
第一种方法的相对误差为: v1 50.004 − L1 0.004 = = = 0.008% L1 L1 50
v2 80.006 − L2 0.006 第二种方法的相对误差为: = = = 0.0075% L2 L2 80
可见,尽管第二种方法的绝对误差大,但相对误差却较小, 可见,尽管第二种方法的绝对误差大,但相对误差却较小, 故第二种方法的精度较高。 故第二种方法的精度较高。 引用误差 误差: ③ 引用误差:是一种简化和实用方便的仪器仪表示值的相对 误差,是以某一刻度点的示值误差为分子, 误差,是以某一刻度点的示值误差为分子,以测量范围上限 5 值或全量程为分母,比值即为引用误差。 值或全量程为分母,比值即为引用误差。
测量结果应保留的位数原则是 测量结果应保留的位数原则是:其最末一位数字是不可靠 保留的位数原则 的,而倒数第二位数字应是可靠的,测量误差一般取1~2 而倒数第二位数字应是可靠的,测量误差一般取 位有效数字。 位有效数字。 在比较重要的测量中, 在比较重要的测量中,测量结果和测量误差可比上述原则 再多取一位数字作为参考,如结果 再多取一位数字作为参考,如结果15.214±0.042,倒 ± , 数第一位数为参考数字,倒数第二位为不可靠数字, 数第一位数为参考数字,倒数第二位为不可靠数字,而倒 数第三位是可靠数字。 数第三位是可靠数字。 二、数据舍入规则 ①若舍去部分的数值,大于保留部分的末位的半个单位, 若舍去部分的数值,大于保留部分的末位的半个单位, 则末位加1; 则末位加 ; ②若舍去部分的数值,小于保留部分的末位的半个单位, 若舍去部分的数值,小于保留部分的末位的半个单位, 则末位不变; 则末位不变;

误差理论的基本知识

误差理论的基本知识



个数 k
46 41 33 21 16 13 5 2 0

差 相对个数 k/n
0.128 0.115 0.092 0.059 0.045 0.036 0.014 0.006 0.000
0″.0 ~ 0″.2 0″.2 ~ 0″.4 0″.4 ~ 0″.6 0″.6 ~ 0″.8 0″.8 ~ 1″.0 1″.0 ~ 1″.2 1″.2 ~ 1″.4 1″.4 ~ 1″.6 1″.6 ~以上
1
二.评定精度的指标
• 1.方差和中误差 由数理统计知,表示随机变量分布离散性的数字特征是方 2 差或标准差 2 D ( ) E[ E( )]
2 E( 2 )[ E( )] E( 2 )
测量上习惯用中误差表示
2 2 2 2 n M 2 D() 2 lim 1 lim n n n n
y
y=f(△)
-△
+△
1. σ与观测误差△及偶然误差概率密度f(△)的关系
D() f ()d
2 2 1 2 2 e d 2 2 2
§6-3
评定真误差精度的指标
• 一.精度的含义 一定的观测条件 确定的误差分布 条件好,误差分布密集,即离散度 2 0 小,误差曲线比较陡峭,顶峰较高----质量好---精度高,反之,则相反 •精度的含义:误 右图为不同的两组观测对应着的两条 差分布的密集与 离散程度。即离 不同的误差分布曲线。 散度 若1<2,则第一组观测,误差 分布密集,图形陡峭,精度较高; 凡能反映误差分布 第二组观测,误差分布离散,图形平 离散度大小的量, 都可作为衡量精度 缓,精度较低。 的指标。

误差初步理论

误差初步理论

误差初步理论(1)(选自《资料分析模块宝典》五版)在我们后面将要介绍的“十大速算技巧”里,我们可以粗略的分成两类:一类称为“无偏速算”,包括直除法、放缩法、化同法、插值法、差分法、综合法六种方法,这样的方法带我们得到的结果是无偏的、确定的;另一类称为“有偏速算”,包括估算法、截位法、凑整法这三种方法,这样的方法往往都是以“截位”为基本操作方式,计算的结果往往是有偏差、非确定的。

事实上,不管是哪种“无偏速算”,我们都经常需要通过“截位”来简化计算,于是也会存在误差。

因此,计算误差在资料分析的速算里是普遍存在的,那么对速算方法中存在的误差进行有效的分析和利用,就是我们学习的重要内容。

首先+我们从一个简单的例子开始,来一步步阐述费们的课差初步理论:4S-^ 531?I4~5在上面这个计亶中,我们对数字进讦了近似.从而简化了计算饋+这是资料分析速算当中经常使用的方法.但针对上面这个过程,智生不禁会提出下面这样四个垂要的问题:1. 这样近似的结果可靠吗?结果是变大还是变小了?误差有多大?2. 在什么情形下可以这样近似?又在什么情形下,这样近似会得到错误的答案?3. 还有没有其它方法,可以使计算量变得更小,但又不要影响最后的答案?4. 还有没有其它方法,在不增加计算量的前提下,可以得到更高的精度?带着这样四个问题,我们先学习什么叫“相对误差率”、绝对误差与相对误差率如果真实值为10,经过估算得到的结果为11,那么这个结果是有误差的。

通过计算“11-10=1 ”可知:我们估算结果的误差为“ 1”,我们把这样的误差称为“绝对误差”,即估算值与真实值的差。

然而,“绝对误差”在误差理论当中并不是最重要的概念,我们更加需要分析的是估算值与真实值之间的相对差异,我们把“绝对误差十真实值”称为估算的“相对误差率”,也常常简称为“相对误差”,这是我们误差理论当中最重要的概念,也是我们研究和学习的重点。

譬如将“ 10”估算为“11”的相对误差即为:(11-10)十10=10%。

第七章 误差理论的基本知识

第七章  误差理论的基本知识
27
设用长度为L 设用长度为L的钢尺量距,共丈量了 n个尺段,已知每尺段量距的中误差为m, 个尺段,已知每尺段量距的中误差为m 求全长S的中误差m 求全长S的中误差mS。 解:因为:S=L+L+… 解:因为:S=L+L+…+L (式中共有n个L) (式中共有n 而L的中误差为m,则得: 的中误差为m
中误差关系式: mZ=kmx
即:观测值与常数乘积的中误差 即:观测值与常数乘积的中误差,等于观测 观测值与常数乘积的中误差, 值中误差乘常数。 值中误差乘常数。
23
例题:在1 500比例尺地形图上,量得A 例题:在1:500比例尺地形图上,量得A、 B两点间的距离d=163.6mm,其中误差 两点间的距离d=163.6mm,其中误差 md=±0.2mm。求A、B两点实地距离D及 0.2mm。求A 两点实地距离D 其中误差m 其中误差mD。 解:D=kd=500×163.6(mm) 解:D=kd=500×163.6(mm) =81.8( =81.8(m) (k为比例尺分母) mD=kmd=±500×0.2(mm) 500×0.2(mm) =±0.1(m) 0.1( ∴ D=81.8±0.1(m) D=81.8±0.1(m)
11
频率直方图
12
用概率论解释偶然误差特性
按概率论的观点,符合上述特性的误差服从 正态分布 概率论研究随机事件的统计规律。 随机变量取某个值就相当于某个随机事件。 随机变量的特征
– 取值是随机的 – 取具体值的概率是确定的
13
正态分布数学表达:
正态分布曲线的数学方程式为:
2π σ σ 为标准差,标准差的平方σ 2为方差 :
河南工程学院 土木工程系
1

大学物理误差理论

大学物理误差理论

多源误差综合
研究多源误差的综合影响和作用机制, 提高系统误差的评估和控制水平。
智能化误差处理
结合人工智能和机器学习方法,实现 误差的智能化识别、评估和补偿。
THANKS FOR WATCHING
感谢您的观看
产生原因
随机误差的产生通常与测量条件、环 境因素、测量者的操作习惯等偶然因 素有关。
减小方法
可以通过增加测量次数,取多次测量 的平均值来减小随机误差。
系统误差
定义
产生原因
系统误差是由于测量系统本身的不完善、 测量设备的不准确、测量方法的局限性等 因素引起的测量结果偏差。
系统误差的产生通常与测量设备、测量方 法、环境条件等有关,具有一定的规律性 和重复性。
特性
粗大误差具有明显性和不可预 测性,通常表现为异常值或离 群值。
减小方法
在数据处理过程中,应识别并 剔除粗大误差,通过加强操作 规范和数据审核来避免粗大误
差的出现。
误差的传递与合成
误差传递
误差的传递是指一个测量结果中包含的各个误差分量对最终 结果的影响。通过误差传递公式,可以计算出各个误差分量 对最终结果的贡献。
特性
减小方法
系统误差具有重复性、规律性和可预测性 ,即多次测量的结果呈现相同或相似的偏 差,可以通过校准和修正来减小。
可以通过校准测量设备、改进测量方法、 控制环境条件等方法来减小系统误差。
粗大误差
定义
粗大误差是由于测量过程中出 现异常情况或人为错误引起的
明显偏差。
产生原因
粗大误差的产生通常与测量者 的疏忽、操作错误、记录错误 等有关。
不确定度评定方法
不确定度的评定方法包括A类和B类两种,A类方法基于多 次测量结果,B类方法基于经验和标准。

1. 误差理论基础

1. 误差理论基础
例:用两种方法测量 L1=100 mm 的尺寸,其测量误差分别为 E1 10 μ m ,
E 2 8 μ m ,根据绝对误差定义,可知后者的测量准确度高。但若用第三
种方法测量 L2=80 mm 的尺寸,其测量误差为 E3 7 μ m ,此时用绝对误差 就难以评定它与前两种方法准确度的高低,必须采用相对误差来评定。
第一节 误差的基本概念
四、误差与偏差
(一)误差 1.绝对误差 测量值和真值之差称为绝对误差,通常简称为误差。 绝对误差(E)=X-T 式中 X——测量值; T——真实值。
第一节 误差的基本概念
对于多次测量的数值,求其准确度时,可按下式计算:
x1 x 2 x n i 1 算术平均值( x )= = n n
第一节 误差的基本概念
由于测量值可能大于真值,也可能测量值小 于真值,所以,绝对误差和相对误差都有正负之 分。严格来说,真值是不可能知道的。在实际工 作中,将标准物质的标准值或总体平均值当作真 值。为了表示或比较准确度的高低,有时用绝对 误差比较清楚,有时用相对误差更显得直观。
第一节 误差的基本概念
第一节 误差的基本概念
在计算测量结果的准确度时,对上述四个方 面的误差来源,必须进行全面的分析,力求不遗 漏、不重复,特照误差的特点与性质,误差可分为系统误 差、偶然误差两类。 1、系统误差 系统误差是指试验过程中,由于某些恒定因 素影响而出现的一种保持恒定或可以预知方式变 化的误差。
第一节 误差的基本概念
真值是指在测量一个量时,该量本身所 具有的真实大小。它是客观存在的,但不 可能准确知道的,是一个理想的概念。真 值一般是不可知的,只有在某些特定条件 下,真值才是可知的。
第一节 误差的基本概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

误差初步理论(1)(选自《资料分析模块宝典》五版)在我们后面将要介绍的“十大速算技巧”里,我们可以粗略的分成两类:一类称为“无偏速算”,包括直除法、放缩法、化同法、插值法、差分法、综合法六种方法,这样的方法带我们得到的结果是无偏的、确定的;另一类称为“有偏速算”,包括估算法、截位法、凑整法这三种方法,这样的方法往往都是以“截位”为基本操作方式,计算的结果往往是有偏差、非确定的。

事实上,不管是哪种“无偏速算”,我们都经常需要通过“截位”来简化计算,于是也会存在误差。

因此,计算误差在资料分析的速算里是普遍存在的,那么对速算方法中存在的误差进行有效的分析和利用,就是我们学习的重要内容。

1.这样近似的结果可靠吗?结果是变大还是变小了?误差有多大?2.在什么情形下可以这样近似?又在什么情形下,这样近似会得到错误的答案?3.还有没有其它方法,可以使计算量变得更小,但又不要影响最后的答案?4.还有没有其它方法,在不增加计算量的前提下,可以得到更高的精度?带着这样四个问题,我们先学习什么叫“相对误差率”一、绝对误差与相对误差率如果真实值为10,经过估算得到的结果为11,那么这个结果是有误差的。

通过计算“11-10=1”可知:我们估算结果的误差为“1”,我们把这样的误差称为“绝对误差”,即估算值与真实值的差。

然而,“绝对误差”在误差理论当中并不是最重要的概念,我们更加需要分析的是估算值与真实值之间的相对差异,我们把“绝对误差÷真实值”称为估算的“相对误差率”,也常常简称为“相对误差”,这是我们误差理论当中最重要的概念,也是我们研究和学习的重点。

譬如将“10”估算为“11”的相对误差即为:(11-10)÷10=10%。

在资料分析的速算中,我们一定要分清“绝对误差”和“相对误差(率)”的区别和联系,这是速算方法精度估计的重要基础。

譬如将“8%”估算为“9%”,绝对误差应该为“1%”,而相对误差不是“1%”,而是“1%÷8%=12.5%”。

正因如此,如果两个选项分别为“9%”和“8%”,那么在计算当中出现“1%左右”的相对误差并不会太影响最后的结果。

我们在速算当中务必遵循以下两条最基本的原则:1.加减运算,考虑“绝对误差”;2.乘除运算,考虑“相对误差”。

二、加减运算中的误差控制加减运算和“绝对误差”并不是我们误差理论的重点,因为考生一般已经具备在加减运算当中运用“绝对误差”分析和控制的能力。

我们仅仅举两个简单的例子即可。

[例1]2009年1-8月,某地区对外出口额分别为9951.23、6776.89、3119.86、4250.48、9137.21、7417.93、7300.68、2678.17万美元。

请问该地区2009年前八个月对外出口总额为多少亿美元?A.4.76B.5.06C.5.36D.5.66[答案]B[解析]选项间的“绝对差异”为:0.3亿美元=3000万美元,那么我们将八个数字相加的时候,每个数字取到“百万”量级,就不会影响最后结果的判定,我们以“百万”为单位对这八个数字进行“截位”相加(运用“四舍五入”):100+68+31+43+91+74+73+27=507(百万美元),结合选项,选择B[注释]通过上面的分析我们知道,在多个数字进行的加减运算中,如果各个数字近似产生的误差要比选项间的差距小一个量级,这样近似得到的值一般不会影响最后结果的判定。

[例2]2008年,某地区国内生产总值和第二产业产值分别为673、384亿元;2009年,该地区国内生产总值和第二产业产值分别达到803、427亿元。

请问该地区第二产业产值在GDP当中的比重下降了几个百分点?A.3.08B.3.48C.3.88D.4.28[答案]C三、乘除运算中的误差分析前面我们提到过,“乘除运算”当中我们应该考虑“相对误差”,而这是我们误差分析最为重要的内容。

那么,如果相乘或者相除的两个数分别发生一定程度的近似,它们的乘积或者商又会发生什么样的变化呢?我们首先先给出两个重要的结论:1.两个数相乘,那么这两个数的相对误差之和,近似为总体的相对误差;2.两个数相除,那么这两个数的相对误差之差,近似为总体的相对误差。

我们先举两个相乘的例子:注:上面分析的所有误差指的都是“相对误差”,因为只有“相对误差”才能在乘除运算当中保持近似的加减关系。

四、近似误差与选项差异通过上面的分析我们知道,近似的计算会产生一定的误差,那么这种误差会不会对最后结果的判定产生影响呢?这就取决于近似误差(“近似误差”指的是数字近似后产生的相对误差,在与“选项差异”进行大小比较时,指其绝对值)与选项差异之间的相对关系了,通俗的讲就是:选项差别大,估算可大胆;选项差别小,估算需谨慎。

但我们需要的不仅仅是这样一句定性的描述,我们更加需要的是定量的结论。

首先,我们对两个数字之间的“相对差异”进行一个定义:我们以两个数字当中较大的数字为真实值,较小的数字为估算值,这样计算得到的“相对误差”的绝对值,我们称之为这两个数字之间的“相对差异”。

譬如“4”和“5”,我们以5为真实值,以4为估算值,得到的“相对误差”为“-20%”,那么我们就说“4和5之间的相对差异为20%”。

再譬如说,9和12之间的相对差异为25%,15和18之间的相对差异为16.7%等等。

然后,我们对“选项差异”进行一个定义:所谓“选项差异”,是指四个选项中任意两个数值之间的“相对差异”的最小值。

具体操作时,我们仅需要考虑相邻数字之间(是指大小相邻,非而位置相邻)的相对差异即可。

我们看下面这样的选项设置:A.20B.24C.28D.32我们考虑相邻数字之间的相对差异:20与24之间的相对差异为16.7%,24与28之间的相对差异为14.3%,28与32之间的相对差异为12.5%。

那么,这样设置下的“选项差异”就是12.5%。

事实上,我们对选项差异的计算也只需要得到一个大致的值,并不一定需要计算得非常的精确。

当我们知道了“选项差异”之后,我们就可以在近似计算中控制近似误差,使其不至于影响最后结果的判定。

下面我们再来看一个例子:[例3]706.38÷24.75=?A.20.5B.24.5C.28.5D.32.5[答案]C[解析]我们大致估算,“选项差异”高于10%,那么在近似计算中产生1%左右(或以下)的误差不会影响到最后结果的判定:706.38÷24.75≈700÷25=28由“706.38”近似到“700”减小了1%左右,由“24.75”近似到“25”增加了1%左右,这样的近似不会影响到最后结果的判定,因为“选项差异”在10%以上。

因此,我们选择离28最近的数字“28.5”,选择C。

通过上面的分析我们知道,近似估算若要不影响最后结果的判定,“近似误差”必须比“选项差异”要小,但具体要小到什么程度呢?我们大概给出下面这样的参考:我们进行的乘除计算,一般是2~3个数字的计算,当“选项差异”不到“近似误差”的4倍时,多个数字的“近似误差”就很可能影响到最后结果的判定,这时候我们不建议使用这种精度的估算。

当“选项差异”为“近似误差”的4~9倍时,我们一般会进行“有向误差分析”或者“误差抵消”以提高精度,后面我们将有专题进行讨论。

当“选项差异”为“近似误差”的9~50倍时,选择离估算结果最近的值即可,正因如此,我们一般推荐大家将“近似误差”控制在选项差异的1/10左右(或以下),更高的精度计算一般是没有必要的。

当“近似误差”不到“选项差异”的“1/50”时,我们得到的结果完全可以直接代表最终正确的答案。

[例4]38716÷84397=?A.35.37%B.40.74%C. 45.87%D.49.34%[答案]C[解析]初步估算,选项差异在在10%左右,我们可以对原数字进行1%左右(或以下)的近似:38716÷84397≈39000÷84000≈46%,选择最接近的值,即C。

[例5]9.503×5.837=?A.50.44B.55.47C.59.98D.60.28[答案]B[解析]C和D之间的相对差异很小,但我们知道:9.503×5.837<10×6=60,所以D 选项可以直接排除不予考虑。

而A、B、C之间的“选项差异”在7%以上,那么我们可以对原数字进行0.7%左右(或以下)的近似:9.503×5.837≈9.5×5.8=55.1,选择最接近的值,即B。

[例6]6405÷79934=?A.4%B.6%C.8%D.10%[答案]C[解析]6405÷79934≈6400÷80000=8%。

“选项差异”为20%,近似误差低于1‰,因此误差可以直接忽略,估算得到的值即可代表最终的真实值。

学到这里,我们把思路理清楚一下:我们在进行近似估算之前,先分析“选项差异”,然后在近似中将“近似误差”控制在“选项差异”的“1/10”左右(或以下),然后选择与计算结果最接近的选项即可。

这样一来,似乎所有的近似估算都变得特别简单,然而,如果有一个问题没有解决的话,我们的计算仍然没有得到实质的简化,那就是:如何快速判断近似估算的“近似误差”(譬如说将5.837近似为5.8,“近似误差”到底是多少?),这个问题不解决,误差分析无从谈起;这个问题掌握后,不仅“近似误差”的问题解决了,“选项差异”的估算也同时得到解决,因为两者本质是相同的。

五、近似误差的估算在学“近似误差”的估算之前,我们先强调两个重要的问题:1.我们对“近似误差”的分析只需要也只能进行“估算”,精算是没有必要也是不可行的,实际操作中我们只需要给出一个大概的值即可;2.“近似误差”一般分成两档:“1-10%”与“1-10‰”,明显低于1‰很多的一般可以忽略,明显高于10%很多的情形在近似中一般也很难见到。

我们一般运用“左移两位百分法”估算“1-10%”左右的“近似误差”。

譬如,当我们判断将“42.83”近似为“42”时产生了多大的“近似误差”时,先将绝对误差(不考虑正负号)“0.83”左移两位变为“83.00”,再与原数“42.83”进行比较,大概是2倍的关系,那么这个近似的近似误差应该大约就是“-2%”。

如下图所示:通过上面六个例子的讲述,相信大家已经掌握了“近似误差”估算的要领。

与此同时,“选项差异”的估算也是通过同样的方法进行估算的,只是在具体操作的时候有这样两点特别之处:1.“选项差异”关于“绝对误差”的计算可能较为复杂,我们一般截取前1~2位计算即可;2.“选项差异”很容易达到“相对误差”很难达到的10%以上的差异,这时候一般通过计算“绝对误差是真实值的几分之一”或者运用类似的“左移一位十分法”来进行估算。

相关文档
最新文档