(完整版)高考数学《概率与统计》专项练习(解答题含答案),推荐文档
2023年高考数学复习----概率与统计的综合运算专项题练习(含答案解析)

2023年高考数学复习----概率与统计的综合运算专项题练习(含答案解析)1.(2022·全国·统考高考真题)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.【解析】(1)设甲在三个项目中获胜的事件依次记为,,A B C,所以甲学校获得冠军的概率为()()()()=+++P P ABC P ABC P ABC P ABC0.50.40.80.50.40.80.50.60.80.50.40.2=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=.0.160.160.240.040.6(2)依题可知,X的可能取值为0,10,20,30,所以,()00.50.40.80.16P X==⨯⨯=,()100.50.40.80.50.60.80.50.40.20.44P X==⨯⨯+⨯⨯+⨯⨯=,()200.50.60.80.50.40.20.50.60.20.34P X==⨯⨯+⨯⨯+⨯⨯=,()300.50.60.20.06P X==⨯⨯=.即X的分布列为E X=⨯+⨯+⨯+⨯=.期望()00.16100.44200.34300.06132.(2022·全国·统考高考真题)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间[20,70)的概率;(3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50)的人口占该地区总人口的16%.从该地区中任选一人,若此人的年龄位于区间[40,50),求此人患这种疾病的概率.(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的概率,精确到0.0001).【解析】(1)平均年龄(50.001150.002250.012350.017450.023x=⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯⨯=(岁).550.020650.017750.006850.002)1047.9(2)设A={一人患这种疾病的年龄在区间[20,70)},所以=−=−+++⨯=−=.P A P A()1()1(0.0010.0020.0060.002)1010.110.89(3)设B=“任选一人年龄位于区间[40,50)”,C=“从该地区中任选一人患这种疾病”,则由已知得:()()16%0.16,0.1%0.001,(|)0.023100.23P B P C P B C =====⨯=,则由条件概率公式可得从该地区中任选一人,若此人的年龄位于区间[40,50),此人患这种疾病的概率为()(|)()()0.0010.23(|)0.00143750.0014()0.16P BC P C P B C C B P B B P P ⨯====≈. 3.(2022·全国·统考高考真题)甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d −=++++,()2P K k …0.100 0.050 0.010 k2.7063.8416.635【解析】(1)根据表中数据,A 共有班次260次,准点班次有240次, 设A 家公司长途客车准点事件为M , 则24012()26013==P M ; B 共有班次240次,准点班次有210次,设B 家公司长途客车准点事件为N , 则210()27840==P N . A 家公司长途客车准点的概率为1213; B 家公司长途客车准点的概率为78.(2)列联表22()()()()()n ad bc K a b c d a c b d −=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯−⨯≈>⨯⨯⨯, 根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.4.(2022·全国·统考高考真题)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:并计算得22i i i ii=1i=1i=10.038, 1.6158,0.2474x y x y===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数i i(1.377)()nx x y yr−−=≈∑.【解析】(1)样本中10棵这种树木的根部横截面积的平均值0.60.0610x==样本中10棵这种树木的材积量的平均值 3.90.3910y==据此可估计该林区这种树木平均一棵的根部横截面积为20.06m,平均一棵的材积量为30.39m(2)()()1010i i i i10x x y y x y xyr−−−==∑∑0.01340.970.01377==≈≈则0.97r≈(3)设该林区这种树木的总材积量的估计值为3mY,又已知树木的材积量与其根部横截面积近似成正比,可得0.06186=0.39Y,解之得3=1209mY.则该林区这种树木的总材积量估计为31209m5.(2022·北京·统考高考真题)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到950m .以上(含950m .)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m ): 甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25; 乙:9.78,9.56,9.51,9.36,9.32,9.23; 丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立. (1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X 是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X 的数学期望E (X ); (3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明) 【解析】(1)由频率估计概率可得甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5, 故答案为0.4(2)设甲获得优秀为事件A 1,乙获得优秀为事件A 2,丙获得优秀为事件A 3 1233(0)()0.60.50.520P X P A A A ===⨯⨯=, 123123123(1)()()()P X P A A A P A A A P A A A ==++80.40.50.50.60.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=, 123123123(2)()()()P X P A A A P A A A P A A A ==++70.40.50.50.40.50.50.60.50.520=⨯⨯+⨯⨯+⨯⨯=, 1232(3)()0.40.50.520P X P A A A ===⨯⨯=. ∴X 的分布列为∴38727()0123202020205E X =⨯+⨯+⨯+⨯= (3)丙夺冠概率估计值最大.因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为14,甲获得9.80的概率为110,乙获得9.78的概率为16.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.6.(2022·全国·统考高考真题)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R . (ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B =⋅;(ⅱ)利用该调查数据,给出(|),(|)P A B P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.附22()()()()()n ad bc K a b c d a c b d −=++++,【解析】(1)由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d −⨯−⨯==++++⨯⨯⨯, 又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异. (2)(i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅,所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅ 所以(|)(|)(|)(|)P A B P A B R P A B P A B =⋅,(ii)由已知40(|)100P A B =,10(|)100P A B =, 又60(|)100P A B =,90(|)100P A B =, 所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =⋅。
高考数学《概率与统计》专项练习(解答题含答案)(可编辑修改word版)

500x - 5700,x >19 《概率与统计》专项练习(解答题)1.(2016 全国Ⅰ卷,文 19,12 分)某公司计划购买 1 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个 200 元.在机器使用期间,如果备件不足再购买,则每个 500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:件件24201610161718192021件件件件件件件件记 x 表示 1 台机器在三年使用期内需更换的易损零件数,y 表示 1 台机器在购买易损零件上所需的费用(单位:元),n 表示购机的同时购买的易损零件数. (Ⅰ)若 n =19,求 y 与 x 的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于 n ”的频率不小于 0.5,求 n 的最小值;(Ⅲ)假设这 100 台机器在购机的同时每台都购买 19 个易损零件,或每台都购买 20 个易损零件,分别计算这 100 台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买 1 台机器的同时应购买 19 个还是 20 个易损零件?解:(Ⅰ)当 x ≤19 时,y =3800当 x >19 时,y =3800+500(x -19)=500x -5700∴y 与 x 的函数解析式为 y ={3800, x ≤ 19(x ∈N )(Ⅱ)需更换的零件数不大于 18 的频率为 0.46,不大于 19 的频率为 0.7∴n 的最小值为 19(Ⅲ)①若同时购买 19 个易损零件则这 100 台机器中,有 70 台的费用为 3800,20 台的费用为 4300,10 台的费用为 48001∴平均数为100(3800×70+4300×20+4800×10)=4000 ②若同时购买 20 个易损零件则这 100 台机器中,有 90 台的费用为 4000,10 台的费用为 4500 1∴平均数为100(4000×90+4500×100)=4050 ∵4000<4050∴同时应购买 19 个易损零件2.(2016 全国Ⅱ卷,文 18,12 分)某险种的基本保费为 a (单位:元),继续购买该险种的投保∑ i =17( y - y )2i7 n(Ⅱ)记 B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的 160%”,求P (B )的估计值;(Ⅲ)求续保人本年度的平均保费估计值. 解:(Ⅰ)若事件 A 发生,则一年内出险次数小于 260 + 50 则一年内险次数小于 2 的频率为 P (A )= ∴P (A )的估计值为 0.55200=0.55(Ⅱ)若事件 B 发生,则一年内出险次数大于 1 且小于 430 + 30 一年内出险次数大于 1 且小于 4 的频率为 P (B )= ∴P (B )的估计值为 0.3(Ⅲ)续保人本年度的平均保费为1200=0.3200(0.85a ×60+a ×50+1.25a ×30+1.5a ×30+1.75a ×20+2a ×10)=1.1925a3.(2016 全国Ⅲ卷,文 18,12 分)下图是我国 2008 年至 2014 年生活垃圾无害化处理量(单位:亿吨)的折线图(Ⅰ)由折线图看出,可用线性回归模型拟合 y 与 t 的关系,请用相关系数加以说明; (Ⅱ)建立 y 关于 t 的回归方程(系数精确到 0.01),预测 2016 年我国生活垃圾无害化处理量. 附注:77参考数据: ∑ y i = 9.32 , ∑t i y i = 40.17 ,=0.55, ≈2.646.i =1i =1∑(ti- t )( y i - y )参考公式:相关系数 r回归方程y =a +b t 中斜率和截距的最小二乘估计公式分别为:∑(ti- t )( y i - y )b = i =1,a =y -btn∑(tii =1- t )21解:(Ⅰ)由折线图中数据得t =7(1+2+3+4+5+6+7)=4… ................... 1 分n28 ∑ i =17( y - y )2i∑ n (t - t ) ( y - y )22 i i =1∑ i ni =1∑ n(t - t )2⨯( y - y )2i i =1∑ i ni =128 ⨯ 0.55∑ i =17(t - t )2i 77 77由附注中参考数据得∑(ti- t )( y i - y ) = ∑t i y i - t ∑ y i =40.17-4×9.32=2.89i =1i =1i =1………………………………………………………………………2 分= =........................................................................................................ 3 分=0.55… ...................................................................4 分∑(ti- t )( y i - y )2.892.89r ==1==≈0.99………………………………………………………………………5 分∵y 与 t 的相关关系 r 近似为 0.99,说明 y 与 t 的线性相关程度相当高 ∴可以用线性回归模型拟合 y 与 t 的关系 ....................................... 6 分 ∑ yi(Ⅱ)y = i =1=9.32≈1.331 ....................................................................... 7 分77n∑(t i - t )(y i - y ) b =i =1n2.89= 28 ≈0.103................................................... 8 分∑(tii =1- t )2a =y -bt ≈1.331-0.103×4≈0.92 ................................................... 9 分∴y 关于 t 的回归方程为y =0.92+0.103t ....................................... 10 分 2016 年对应的 t =9… ....................................................................... 11 分 把 t =9 代入回归方程得y =0.92+0.103×9=1.82 ∴预测 2016 年我国生活垃圾无害化处理量将约 1.82 亿吨 ........... 12 分4.(2015 全国Ⅰ卷,文 19,12 分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 x (单位:千元)对年销售量 y (单位:t )和年利润 z (单位:千元)的影响.对近 8 年的年宣传费 x i 和年销售量 y i (i =1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xyw888 8∑ (x i -x )2∑ (w i -w )2∑ (x i -x )(y i -y ) ∑ (w i -w )(y i -y )i =1i =1i =1i =1n (t 1 - 4) + (t - 4) + (t - 4) + (t - 4) + (t - 4) + (t - 4) + (t - 4) 2 2 2 2 2 2 22 3 4 4 6 7x 8 ∑ ( ix w 1 表中 w i = i , = ∑ w i .i =1(Ⅰ)根据散点图判断,y =a +bx 与 y =c +d x 哪一个适宜作为年销售量 y 关于年宣传费 x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立 y 关于 x 的回归方程;(Ⅲ)已知这种产品的年利润 z 与 x ,y 的关系为 z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费 x =49 时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费 x 为何值时,年利润的预报值最大?附:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线 v =α+βu 的斜率和截距的n∑ (u i -u )(v i -v )i =1 最小二乘估计分别为β=nu -u )2i =1 ,α=v -βu .解:(Ⅰ)y =c +d x 适宜作为 y 关于 x 的回归方程类型………………………………………………………………………………………2 分 (Ⅱ)令 w = x ,先建立 y 关于 w 的回归方程8^∑ (w i -w)(y i -y)108.8由于d =i =1 = =68… ....................... 3 分8 - 21.6 ∑ (wi w) i =1^^c =y -dw =563-68×6.8=100.6… ....................... 4 分^∴y 关于 w 的回归方程为y =100.6+68w ........................... 5 分^∴y 关于 x 的回归方程为y =100.6+68 (Ⅲ)(ⅰ)由(Ⅱ)知,当 x =49 时^x........................... 6 分 y 的预报值y =100.6+68 49=576.6… ....................... 7 分^z 的预报值z =576.6×0.2-49=66.32… ....................... 9 分(ⅱ)根据(Ⅱ)的结果知^z 的预报值z =0.2(100.6+68 13.6x )-x =-x +13.6 ^x +20.12……10 分 ∴当 = 2 =6.8,即 x =46.24 时,z 取得最大值 ........................... 11 分 ∴年宣传费为 46.24 千元时,年利润的预报值最大 ........................... 12 分5.(2015 全国Ⅱ卷,文 18,12 分)某公司为了解用户对其产品的满意度,从 A ,B 两地区分别随机调查了 40 个用户,根据用户对产品的满意度评分,得到 A 地区用户满意度评分的频率分布直方图和 B 地区用户满意度评分的频数分布表.^^ ^(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);满意度评分低于70 分70 分到89 分不低于90 分满意度等级不满意满意非常满意由.解:(Ⅰ)…………4 分B 地区的平均值高于A 地区的平均值............... 5 分B 地区比较集中,而A 地区比较分散............... 6 分(Ⅱ)A 地区不满意的概率大 ............... 7分记C A表示事件:“A 地区用户的满意度等级为不满意”C B表示事件:“B 地区用户的满意度等级为不满意” ................... 9分由直方图得P(C A)=(0.01+0.02+0.03)×10=0.6…........... 10 分P(C B)=(0.005+0.02)×10=0.25…........... 11 分∴A 地区不满意的概率大 ............... 12 分6.(2014 全国Ⅰ卷,文18,12 分)从某企业生产的某种产品中抽取100 件,测量这些产品的一质量指标值分组[75,85) [85,95) [95,105) [105,115) [115,125)频数 6 26 38 22 8(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代100 方差为 S 2 2 2 2 表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于 95的产品至少要占全部产品 80%”的规定?解:(Ⅰ)…………4 分(Ⅱ)平均数为x =80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=1001= [6×(80-100) +26×(90-100) +38×(100-100) +22×(110-100)2+8×(120-100)2] =104∴平均数为 100,方差为 104… ........... 8 分 (Ⅲ)质量指标值不低于 95 的比例为 0.38+0.22+0.08=0.68… ........... 10 分∵0.68<0.8… ........... 11 分∴不能认为该企业生产的这种产品符合“质量指标值不低于 95 的产品至少要占全部产品的 80%”的规定 ............... 12 分7.(2014 全国Ⅱ卷,文 19,12 分)某市为了考核甲、乙两部门的工作情况,随机访问了 50 位市(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于 90 的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价. 解:(Ⅰ)甲的评分由小到大排序,排在第 25,26 位的是 75,7575+75∴样本中位数为 2 =75 ∴甲的中位数是 75乙的评分由小到大排序,排在第 25,26 位的是 66,6866+68 ∴样本中位数为 2 =67 ∴乙的中位数是 67 (Ⅱ)甲的评分高于 905 0.1 的概率为 =5020201010乙的评分高于9080.16的概率为=50∴甲、乙的评分高于90 的概率分别为0.1,0.16(Ⅲ)甲的中位数高于对乙的中位数甲的标准差要小于对乙的标准差甲的评价较高、评价较为一致,对乙的评价较低、评价差异较大8.(2013 全国Ⅰ卷,文18,12 分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20 位患者服用A 药,20 位患者服用B 药,这40 位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20 位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B 药的20 位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?解:(Ⅰ)设A 的平均数为x,B 的平均数为y1x=(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+29.+3.0+3.1+3.2+3.5)=2.31y=(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+24.+2.5+2.6+2.7+3.)=1.6∴x>y∴A 药的疗效更好(Ⅱ)茎叶图如下:从茎叶图可以看出7A 的结果有的叶集中在茎2,3 上7B 的结果有的叶集中在茎0,1 上∴A 药的疗效更好9.(2013 全国Ⅱ卷,文19,12 分)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500 元,未售出的产品,每1t 亏损300 元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57 000 元的概率.∴T ={85,n ≥ 17 100(55×10 85,n ≥ 17 100(55×10解:(Ⅰ)当 X ∈[100,130)时,T =500X -300(130-X )=800X -39000当 X ∈[130,150]时,T =500×130=65000800X -39000,100 ≤ X <130 65000,130 ≤ X ≤ 150(Ⅱ)由(Ⅰ)知利润 T 不少于 57000 元,当且仅当 120≤X ≤150由直方图知需求量 X ∈[120,150]的频率为 0.7∴下一个销售季度内的利润 T 不少于 57000 元的概率的估计值为 0.710.(2012 全国卷,文 18,12 分)某花店每天以每枝 5 元的价格从农场购进若干枝玫瑰花,然后以每枝 10 元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理. (Ⅰ)若花店一天购进17 枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(Ⅱ(ⅰ(单位:元)的平均数;(ⅱ)若花店一天购进 17 枝玫瑰花,以 100 天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于 75 元的概率.解:(Ⅰ)当日需求量 n ≥17 时,利润 y =85当日需求量 n <17 时,利润 y =10n -85所以 y 关于 n 的函数解析式为 y ={10n -85,n <17(n ∈N ) (Ⅱ)(ⅰ)解法一:由表格可得有 10 天的日利润为 5×14-5×3=55 元有 20 天的日利润为 5×15-5×2=65 元有 16 天的日利润为 5×16-5×1=75 元有 16+15+13+10=54 天的日利润为 85 元∴这 100 天的日利润的平均数为 1+65×20+75×16+85×54)=76.4 (ⅰ)解法二:由(Ⅰ)y ={10n -85,n <17(n ∈N )得当 n =14 时,10 天的日利润为 10n -85=10×14-85=55 元当 n =15 时,20 天的日利润为 10n -85=10×15-85=65 元当 n =16 时,16 天的日利润为 10n -85=10×16-85=75 元当 n ≥17 时,54 天的日利润为 85 元∴这 100 天的日利润的平均数为 1+65×20+75×16+85×54)=76.4 (ⅱ)利润不低于 75 元,当且仅当日需求量不少于 16 枝∴当天的利润不少于 75 元的概率为 P =0.16+0.16+0.15+0.13+0.1=0.711.(2011 全国卷,文 19,12 分)某种产品的质量以其质量指标值衡量,质量指标值越大表明{100质量越好,且质量指标值大于或等于 102 的产品为优质品.现用两种新配方(分别称为 A 配方和 B 配方)做试验,各生产了 100 件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:(Ⅱ)已知用 B 配方生产的一件产品的利润 y (单位:元)与其质量指标值 t 的关系式为-2,t <94y = 2,94 ≤ t <102,估计用 B 配方生产的一件产品的利润大于 0 的概率,并求用 B 配4,t ≥ 102方生产的上述 100 件产品平均一件的利润.解:(Ⅰ)A 22+8配方的优质品的频率为 100 =0.3∴A 配方的优质品率为 0.332+10B 配方的优质品的频率为 100 =0.42 ∴B 配方的优质品率为 0.42(Ⅱ)用 B 配方的利润大于 0,当且仅当 t ≥94∵t ≥94 的频率为 0.96∴B 配方的利润大于 0 的概率为 0.961B 配方的利润为 ×[4×(-2)+54×2+42×4]=2.68(元)。
【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
高考数学复习专题训练—统计与概率解答题(含解析)

高考数学复习专题训练—统计与概率解答题1.(2021·广东广州二模改编)根据相关统计,2010年以后中国贫困人口规模呈逐年下降趋势,2011~2019年全国农村贫困发生率的散点图如下:注:年份代码1~9分别对应年份2011年~2019年.(1)求y 关于t 的经验回归方程(系数精确到0.01);(2)已知某贫困地区的农民人均年纯收入X (单位:万元)满足正态分布N (1.6,0.36),若该地区约有97.72%的农民人均纯收入高于该地区最低人均年纯收入标准,则该地区最低人均年纯收入标准大约为多少万元?参考数据与公式:∑i=19y i =54.2,∑i=19t i y i =183.6. 经验回归直线y ^=b ^t+a ^的斜率和截距的最小二乘估计分别为b ^=∑i=1n t i y i -nt y ∑i=1n (t i -t )2 ,a ^=y −b ^t . 若随机变量X 服从正态分布N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5,P (μ-3σ≤X ≤μ+3σ)≈0.997 3.2.(2021·湖北黄冈适应性考试改编)产品质量是企业的生命线.为提高产品质量,企业非常重视产品生产线的质量.某企业引进了生产同一种产品的A,B 两条生产线,为比较两条生产线的质量,从A,B 生产线生产的产品中各自随机抽取了100件产品进行检测,把产品等级结果和频数制成了如图的统计图.(1)依据小概率值α=0.025的独立性检验,分析数据,能否据此推断是否为一级品与生产线有关.(2)生产一件一级品可盈利100元,生产一件二级品可盈利50元,生产一件三级品则亏损20元,以频率估计概率.①分别估计A,B生产线生产一件产品的平均利润;②你认为哪条生产线的利润较为稳定?并说明理由.附:①参考公式:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.②临界值表:3.(2021·福建宁德模拟改编)某工厂为了检测一批新生产的零件是否合格,从中随机抽测100个零件的长度d(单位:mm).该样本数据分组如下:[57,58),[58,59),[59,60),[60,61),[61,62),[62,63],得到如图所示的频率分布直方图.经检测,样本中d大于61的零件有13个,长度分别为61.1,61.1,61.2,61.2,61.3,61.5,61.6,61.6,61.8,61.9,62.1,62.2,62.6.(1)求频率分布直方图中a,b,c的值及该样本的平均长度x(结果精确到1 mm,同一组数据用该区间的中点值作代表);(2)视该批次样本的频率为总体的概率,从工厂生产的这批新零件中随机选取3个,记ξ为抽取的零件长度在[59,61)的个数,求ξ的分布列和数学期望;(3)若变量X满足|P(μ-σ≤X≤μ+σ)-0.682 7|<0.03且|P(μ-2σ≤X≤μ+2σ)-0.954 5|≤0.03,则称变量X满足近似于正态分布N(μ,σ2)的概率分布.如果这批样本的长度d满足近似于正态分布N(x,12)的概率分布,则认为这批零件是合格的,将顺利出厂;否则不能出厂.请问,能否让该批零件出厂?4.(2021·山东潍坊期末)在一个系统中,每一个设备能正常工作的概率称为设备的可靠度,而系统能正常工作的概率称为系统的可靠度,为了增加系统的可靠度,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络服务器系统采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.设三台设备的可靠度均为r(0<r<1),它们之间相互不影响.(1)要使系统的可靠度不低于0.992,求r的最小值;(2)当r=0.9时,求能正常工作的设备数X的分布列;(3)已知某高科技产业园当前的计算机网络中每台设备的可靠度是0.7,根据以往经验可知,计算机网络断掉可能给该产业园带来约50万元的经济损失.为减少对该产业园带来的经济损失,有以下两种方案:方案1:更换部分设备的硬件,使得每台设备的可靠度维持在0.9,更新设备硬件总费用为8万元; 方案2:对系统的设备进行维护,使得设备可靠度维持在0.8,设备维护总费用为5万元.请从期望损失最小的角度判断决策部门该如何决策?答案及解析1.解 (1)t =1+2+3+4+5+6+7+8+99=5, y =12.7+10.2+8.5+7.2+5.7+4.5+3.1+1.7+0.69≈6.02, b ^=∑i=19t i y i -9t y∑i=19(t i -5)2=183.6-270.960≈-1.46,a ^=y −b ^t =6.02-(-1.46)×5=13.32.故y 关于t 的经验回归方程为y ^=-1.46t+13.32.(2)因为P (μ-2σ≤X ≤μ+2σ)≈0.954 5,所以P (X>μ-2σ)=0.954 5+1-0.954 52=0.977 25. 因为某贫困地区的农民人均年纯收入X 满足正态分布N (1.6,0.36),所以μ=1.6,σ=0.6,μ-2σ=0.4,P (X>0.4)=0.977 25,故该地区最低人均年纯收入标准大约为0.4万元.2.解 (1)根据已知数据可建立列联表如下:零假设为H 0:是否为一级品与生产线无关.χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d )=200×(20×65-35×80)255×145×100×100≈5.643>5.024=x 0.025,依据小概率值α=0.025的独立性检验,推断H 0不成立,即认为是否为一级品与生产线有关.(2)A 生产线生产一件产品为一、二、三级品的概率分别为15,35,15.记A 生产线生产一件产品的利润为X ,则X 的取值为100,50,-20,其分布列为B生产线生产一件产品为一、二、三级品的概率分别为720,25 ,14.记B生产线生产一件产品的利润为Y,则Y的取值为100,50,-20, 其分布列为①E(X)=100×15+50×35+(-20)×15=46,E(Y)=100×720+50×25+(-20)×14=50.故A,B生产线生产一件产品的平均利润分别为46元、50元.②D(X)=(100-46)2×15+(50-46)2×35+(-20-46)2×15=1 464.D(Y)=(100-50)2×720+(50-50)2×25+(-20-50)2×14=2 100.因为D(X)<D(Y),所以A生产线的利润更为稳定.3.解(1)由题意可得P(61≤d<62)=10100=0.1,P(62≤d≤63)=3100=0.03,P(59≤d<60)=P(60≤d<61)=12(1-2×0.03-0.14-0.1)=0.35,所以a=0.031=0.03,b=0.11=0.1,c=0.351=0.35.x=(57.5+62.5)×0.03+58.5×0.14+(59.5+60.5)×0.35+61.5×0.1=59.94≈60.(2)由(1)可知从该工厂生产的新零件中随机选取1件,长度d在(59,61]的概率P=2×0.35=0.7,且随机变量ξ服从二项分布ξ~B(3,0.7),所以P(ξ=0)=C30×(1-0.7)3=0.027,P(ξ=1)=C31×0.7×(1-0.7)2=0.189,P(ξ=2)=C32×0.72×(1-0.7)=0.441,P(ξ=3)=C33×0.73=0.343,所以随机变量ξ的分布列为E(ξ)=0×0.027+1×0.189+2×0.441+3×0.343=2.1.(3)由(1)及题意可知x=60,σ=1.所以P(x-σ≤X≤x-σ)=P(59≤X≤61)=0.7.|P(x-σ≤X≤x+σ)-0.682 7|=|0.7-0.682 7|=0.017 3≤0.03,P(x-2σ≤X≤x-2σ)=P(58≤X≤62)=0.14+0.35+0.35+0.1=0.94,|P(x-2σ≤X≤x+2σ)-0.954 5|=|0.94-0.954 5|=0.014 5≤0.03.所以这批新零件的长度d满足近似于正态分布N(x,12)的概率分布.所以能让该批零件出厂.4.解(1)要使系统的可靠度不低于0.992,则P(X≥1)=1-P(X<1)=1-P(X=0)=1-(1-r)3≥0.992,解得r≥0.8,故r的最小值为0.8.(2)X为正常工作的设备数,由题意可知,X~B(3,r),P(X=0)=C30×0.90×(1-0.9)3=0.001,P(X=1)=C31×0.91×(1-0.9)2=0.027,P(X=2)=C32×0.92×(1-0.9)1=0.243,P(X=3)=C33×0.93×(1-0.9)0=0.729,从而X的分布列为(3)设方案1、方案2的总损失分别为X1,X2,采用方案1,更换部分设备的硬件,使得设备可靠度达到0.9,由(2)可知计算机网络断掉的概率为0.001,不断掉的概率为0.999,故E(X1)=80000+0.001×500 000=80 500元.采用方案2,对系统的设备进行维护,使得设备可靠度维持在0.8,由(1)可知计算机网络断掉的概率为0.008,故E(X2)=50 000+0.008×500 000=54 000元,因此,从期望损失最小的角度,决策部门应选择方案2.。
2021年高考数学分项汇编 专题11 概率与统计(含解析)

2021年高考数学分项汇编专题11 概率与统计(含解析)一.选择题1. 【xx年普通高等学校招生全国统一考试湖北卷12】某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样2.【xx年普通高等学校招生全国统一考试湖北卷6】为了了解学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如右图所示,根据此图,估计该校xx名高中男生中体重大于70.5公斤的人数为()A.300B.350C.420D.4503. 【2011年普通高等学校招生全国统一考试湖北卷5】有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间内的频数为( ) A .18 B .36 C .54 D .724.【xx 年普通高等学校招生全国统一考试湖北卷2】容量为20的样本数据,分组后的频数如下表:分组 频数2345420.19 0.150.05 0.02样本数据则样本数据落在区间的频率为()A.0.35 B.0.45 C.0.55 D.0.65【答案】B【解析】试题分析:由频率分布表可知:样本数据落在区间内的頻数为2+3+4=9,样本总数为5. 【xx年普通高等学校招生全国统一考试湖北卷10】如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆. 在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A.B.C.D.【答案】C【解析】试题分析:如图,不妨设扇形的半径为2a,如图,记两块白色区域的面积分别为S1,S2,两块阴影部分的面积分别为S3,S4,则S1+S2+S3+S4=S扇形OAB=①,而S 1+S 3 与S 2+S 3的和恰好为一个半径为a 的圆,即S 1+S 3 +S 2+S 3②. ①-②得S 3=S 4,由图可知S 3=221()2OEDC EOD S S S a a π+-=-正方形扇形扇形COD ,所以. . 由几何概型概率公式可得,此点取自阴影部分的概率6.【xx 年普通高等学校招生全国统一考试湖北卷4】四名同学根据各自的样本数据研究变量之间的相关关系,并求得回归直线方程,分别得到以下四个结论: ① y 与x 负相关且; ② y 与x 负相关且; ③ y 与x 正相关且; ④ y 与x 正相关且. 其中一定不正确...的结论的序号是( ) A .①②B .②③C .③④D . ①④7.【xx 年普通高等学校招生全国统一考试湖北卷5】随机投掷两枚均匀的投骰子,他们向上的点数之和不超过5的概率为,点数之和大于5的概率为,点数之和为偶数的概率为,则( ) A. B. C. D. 【答案】C 【解析】试题分析:依题意,,,,所以.选C. 考点:古典概型公式求概率,容易题.8.【xx 年普通高等学校招生全国统一考试湖北卷6】根据如下样本数据:3 4 5 6 7 84.02.50.5得到的回归方程为,则( ) A. , B. , C. , D. , 【答案】A【解析】试题分析:作出散点图,如图所示,观察图像可知,回归直线的斜率,当时,.故选A.考点:根据已知样本数判断线性回归方程中的与的符号,容易题.9. 【xx高考湖北,文2】我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石 B.169石 C.338石 D.1365石10. 【xx高考湖北,文8】在区间上随机取两个数,记为事件“”的概率,为事件“”的概率,则()A.B.C.D.【答案】.【解析】由题意知,事件“”的概率为,事件“”的概率,其中,,所以,故应选.【考点定位】本题考查几何概型和微积分基本定理,涉及二元一次不等式所表示的区域和反比例函数所表示的区域.11. 【xx 高考湖北,文4】已知变量和满足关系,变量与正相关. 下列结论中正确的是( ) A .与负相关,与负相关 B .与正相关,与正相关 C .与正相关,与负相关D .与负相关,与正相关二.填空题1.【xx 年普通高等学校招生全国统一考试湖北卷12】接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 精确到0.01) 【答案】0.94 【解析】试题分析:P =332445550.800.200.800.200.80C C ⨯⨯⨯⨯()()+()+()=0.94.2. 【xx 年普通高等学校招生全国统一考试湖北卷11】一个公司共有1 000名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为50的样本,已知某部门有200名员工,那么从该部门抽取的工人数是 . 【答案】10【解析】由分层抽样方法可知从该部门抽取的工人数满足,即10为正确答案.3. 【xx年普通高等学校招生全国统一考试湖北卷15】下图是样本容量为200的频率分布直方图。
高中数学专题训练——概率统计专项(带答案)

1.【2015高考湖北,文14】某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(Ⅰ)直方图中的a=_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【解析】由频率分布直方图及频率和等于1可得⨯+⨯+⨯+⨯+⨯+⨯=,a0.20.10.80.1 1.50.120.1 2.50.10.11解之得3⨯+⨯+⨯+⨯=,所以消费a=.于是消费金额在区间[0.5,0.9]内频率为0.20.10.80.120.130.10.6金额在区间[0.5,0.9]内的购物者的人数为:0.6100006000⨯=,故应填3;6000.2.【2015高考北京,文14】高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生.从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是;②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是.【答案】乙;数学【解析】①由图可知,甲的语文成绩排名比总成绩排名靠后;而乙的语文成绩排名比总成绩排名靠前,故填乙.②由图可知,比丙的数学成绩排名还靠后的人比较多;而总成绩的排名中比丙排名靠后的人数比较少,所以丙的数学成绩的排名更靠前,故填数学.3.【2015高考安徽,文17】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],,[80,90],[90,100](Ⅰ)求频率分布图中a 的值;(Ⅱ)估计该企业的职工对该部门评分不低于80的概率;(Ⅲ)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.【答案】(Ⅰ)0.006;(Ⅱ)0.4;(Ⅲ)110【解析】(Ⅰ)因为110)028.02022.00018.0004.0(=⨯+⨯+++a ,所以006.0=a(Ⅱ)由所给频率分布直方图知,50名受访职工评分不低于80的频率为4.010)018.0022.0(=⨯+, 所以该企业职工对该部门评分不低于80的概率的估计值为0.4.(Ⅲ)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为321,,A A A ; 受访职工评分在[40,50)的有: 50×0.004×40=2(人),即为21,B B .从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{}{}{}{},,,,,,,,21113121B A B A A A A A{}{}{}{}{}{},,,,,,,,,,,,2123132212312B B B A B A B A B A A A 又因为所抽取2人的评分都在[40,50)的结果有1种,即{}21,B B ,故所求的概率为101=p . 4.【2015高考北京,文17】(本小题满分13分)某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.(I)估计顾客同时购买乙和丙的概率;(II)估计顾客在甲、乙、丙、丁中同时购买3中商品的概率;(III)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中那种商品的可能性最大?【答案】(I)0.2;(II)0.3;(III)同时购买丙的可能性最大.【解析】试题解析:(Ⅰ)从统计表可以看出,在这1000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.2 1000=.(Ⅱ)从统计表可以看出,在在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品.所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.3 1000+=.(Ⅲ)与(Ⅰ)同理,可得:顾客同时购买甲和乙的概率可以估计为2000.2 1000=,顾客同时购买甲和丙的概率可以估计为1002003000.61000++=,顾客同时购买甲和丁的概率可以估计为1000.1 1000=,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.考点:统计表、概率.5.【2015高考福建,文18】全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05. 【解析】解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.5 5.5 6.57.5 6.0520202020⨯+⨯+⨯+⨯=. 解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=. (II )同解法一.6.【2015高考广东,文17】(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户? 【答案】(1)0.0075;(2)230,224;(3)5.【解析】试题解析:(1)由()0.0020.00950.0110.01250.0050.0025201x ++++++⨯=得:0.0075x =,所以直方图中x 的值是0.0075(2)月平均用电量的众数是2202402302+= 因为()0.0020.00950.011200.450.5++⨯=<,所以月平均用电量的中位数在[)220,240内,设中位数为a ,由()()0.0020.00950.011200.01252200.5a ++⨯+⨯-=得:224a =,所以月平均用电量的中位数是224(3)月平均用电量为[)220,240的用户有0.01252010025⨯⨯=户,月平均用电量为[)240,260的用户有0.00752010015⨯⨯=户,月平均用电量为[)260,280的用户有0.0052010010⨯⨯=户,月平均用电量为[]280,300的用户有0.0025201005⨯⨯=户,抽取比例11125151055==+++,所以月平均用电量在[)220,240的用户中应抽取12555⨯=户 7.【2015高考湖南,文16】(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球12,A A 和1个白球B 的甲箱与装有2个红球12,a a 和2个白球12,b b 的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖。
高三数学大题专项训练 概率与统计(答案)

1.【2012高考真题辽宁理19】(本小题满分12分)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查。
下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”。
(Ⅰ)根据已知条件完成下面的22⨯列联表,并据此资料你是否认为“体育迷”与性别 有关?(Ⅱ)将上述调查所得到的频率视为概率。
现在从该地区大量电视观众中,采用随机抽 样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X 。
若每次抽取的结果是相互独立的,求X 的分布列,期望()E X 和方差()D X 。
附:22112212211212(),n n n n n n n n n χ++++-=【答案】【点评】本题主要考查统计中的频率分布直方图、独立性检验、离散型随机变量的分布列,期望()E X 和方差()D X ,考查分析解决问题的能力、运算求解能力,难度适中。
准确读取频率分布直方图中的数据是解题的关键。
9.【2012高考真题四川理17】(本小题满分12分)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和B 在任意时刻发生故障的概率分别为110和p 。
(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值; (Ⅱ)设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望E ξ。
【答案】本题主要考查独立事件的概率公式、离散型随机变量的分布列、数学期望等基础知识,考查实际问题的数学建模能力,数据的分析处理能力和基本运算能力.【解析】10.【2012高考真题湖北理】(本小题满分12分)根据以往的经验,某工程施工期间的降水量X (单位:mm )对工期的影响如下表:历年气象资料表明,该工程施工期间降水量X 小于300,700,900的概率分别为0.3,0.7,0.9. 求:(Ⅰ)工期延误天数Y 的均值与方差;(Ⅱ)在降水量X 至少是300的条件下,工期延误不超过6天的概率. 【答案】(Ⅰ)由已知条件和概率的加法公式有:(300)0.3,P X <=(300700)(700)(300)0.70.30.4P X P X P X ≤<=<-<=-=,降水量X 300X <300700X ≤< 700900X ≤<900X ≥工期延误天数Y2610(700900)(900)(700)0.90.70.2P X P X P X ≤<=<-<=-=. (900)1(900)10.90.1P X P X ≥=-<=-=.所以Y 的分布列为:于是,()00.320.460.2100.13E Y =⨯+⨯+⨯+⨯=;2222()(03)0.3(23)0.4(63)0.2(103)0.19.8D Y =-⨯+-⨯+-⨯+-⨯=.故工期延误天数Y 的均值为3,方差为9.8. (Ⅱ)由概率的加法公式,(300)1(300)0.7P X P X ≥=-<=,又(300900)(900)(300)0.90.30.6P X P X P X ≤<=<-<=-=.由条件概率,得(6300)(900300)P Y X P X X ≤≥=<≥(300900)0.66(300)0.77P X P X ≤<===≥.故在降水量X 至少是300mm 的条件下,工期延误不超过6天的概率是67.11.【2012高考江苏25】(10分)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=. (1)求概率(0)P ξ=;(2)求ξ的分布列,并求其数学期望()E ξ.【答案】解:(1)若两条棱相交,则交点必为正方体8个顶点中的一个,过任意1个顶点恰有3条棱,∴共有238C 对相交棱。
高考数学(理):专题07 概率与统计(含解析)

7.概率与统计1.【2018年浙江卷】设0<p<1,随机变量ξ分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D点睛:2.【2018年理新课标I卷】下图来自古希腊数学家希波克拉底所研究几何图形.此图由三个半圆构成,三个半圆直径分别为直角三角形ABC斜边BC,直角边AB,AC.△ABC三边所围成区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A【解析】分析:首先设出直角三角形三条边长度,根据其为直角三角形,从而得到三边关系,之后应用相应面积公式求得各个区域面积,根据其数值大小,确定其关系,再利用面积型几何概型概率公式确定出p1,p2,p3关系,从而求得结果.详解:设,则有,从而可以求得面积为,黑色部分面积为,其余部分面积为,所以有,根据面积型几何概型概率公式,可以得到,故选A.点睛:该题考查是面积型几何概型有关问题,题中需要解决是概率大小,根据面积型几何概型概率公式,将比较概率大小问题转化为比较区域面积大小,利用相关图形面积公式求得结果.【2018年理新课标I卷】某地区经过一年新农村建设,农村经济收入增加了一倍.实现翻番.为3.更好地了解该地区农村经济收入变化情况,统计了该地区新农村建设前后农村经济收入构成比例.得到如下饼图:则下面结论中不正确是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入总和超过了经济收入一半【答案】A详解:设新农村建设前收入为M,而新农村建设后收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入综合占经济收入,所以超过了经济收入一半,所以D正确;故选A.点睛:该题考查是有关新农村建设前后经济收入构成比例饼形图,要会从图中读出相应信息即可得结果.4.【2018年全国卷Ⅲ理】某群体中每位成员使用移动支付概率都为,各成员支付方式相互独立,设为该群体10位成员中使用移动支付人数,,,则A. 0.7B. 0.6C. 0.4D. 0.3【答案】B点睛:本题主要考查二项分布相关知识,属于中档题。