岩体力学第6章

合集下载

岩石力学 第六章 地下空间开挖围岩稳定性分析

岩石力学 第六章 地下空间开挖围岩稳定性分析

行支护达到人工稳定; 支护和破裂岩体本应是相互影响、共同作用的,但 现在还做不到完全用共同作用理论为指导来解决支 护设计问题; 古典地压学说:1907年,普氏学说——俄罗斯学者; 1942年,太沙基学说——美国学者; 在60年代,共同作用理论提出以后的30多年,弹塑 性力学的研究方法在岩石力学研究中一直占据主导 的地位,古典地压学说则被冷落一旁;
r , r p0

解析表达式
R02 1 2 p0 r r
净水压力下围岩应力分布
2019/1/20
《岩石力学》
7

讨论
开巷(孔)后,应力重新分布,也即次生应力场;
, 均为主应力,径向与切向平面为主平面; r
应力大小与弹性常数 周边
2019/1/20
c cot
《岩石力学》
24
塑性区半径
( p0 c cot )(1 sin ) R p R0 P c cot 1

1sin 2 sin
讨论
R p与 R0 成正比,与 p0 成正变,与 c 、
塑性区应力与原岩应力
900 , 2700 处, p0 (3 1) ; 0 0 p0 (3 ) ; 在巷道的侧边,即 0 , 180 处,
在巷道的顶、底板,即
2019/1/20
《岩石力学》
14

应力集中系数与 , 的关系
2019/1/20
《岩石力学》
15

巷道周边位移
o
开挖后(周边)
u (1 ) p 0 R0 E
《岩石力学》
11
2019/1/20

《岩体力学》第六章岩体的力学性质

《岩体力学》第六章岩体的力学性质

图6.1 岩体的压力--变形曲线第六章 岩体的力学性质岩体的力学性质包括岩体的变形性质、强度性质、动力学性质和水力学性质等方面。

岩体在外力作用下的力学属性表现出非均质性、非连续、各向异性和非弹性。

岩体的力学性质取决于两个方面: 1)受力条件;2)岩体的地质特征及其赋存环境条件。

其中地质特征包括岩石材料性质、结构面的发育情况及性质(影响岩体的力学性质不同于岩块的本质原因);赋存环境条件包括天然应力和地下水。

第一节 岩体的变形性质一、 岩体变形试验及其变形参数确定变形参数包括变形模量和弹性模量。

按静力法得到静E ,动力法得到动E 。

⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧法波地震声波法动力法轴压缩试验法双单水压洞室法钻孔变形法扁千斤顶法狭缝法承压板法静力法按原理和方法分原位岩体变形试验)()()( )(1.承压板法刚性承压板法和柔性承压板法 各级压力P -W (岩体变形值)曲线 按布西涅斯克公式计算岩体的变形模量E m (Mpa )和弹性模量E me (Mpa )。

⎪⎪⎩⎪⎪⎨⎧-=-=e m mem m W W PD E W W PD E )1()1(22μμ式中:P —承压板单位面积上的压力(Mpa ); D —承压板的直径或边长(cm );W,W e—为相应P下的总变形和弹性变形;ω—与承压板形状、刚度有关系数,圆形板ω=0.785,方形板ω=0.886。

μm—岩体的泊松比。

★定义:岩体变形模量(E m):岩体在无侧限受压条件下的应力与总应变之比值。

岩体弹性模量(E me):岩体在无侧限受压条件下的应力与弹性应变之比值。

图6.2 钻孔变形试验装置示意图②可以在地下水位以下笔图6.3 狭缝法试验装置如图6.3所示。

二、岩体变形参数估算现场原位试验费用昂贵,周期长,一般只在重要的或大型工程中进行,因此,岩体变形参数的很多情况下必须进行估算。

两种方法:① 现场地质调查→建立适当的岩体地质力学模型→室内小试件试验资料→进行估算; ② 岩体质量评价和大量试验资料→建立岩体分类指标与变形参数间的经验关系→进行估算。

岩石力学-第六章-岩石地下工程

岩石力学-第六章-岩石地下工程

(2)情况Ⅱ的解:
边界条件,对于内边界,r=R0,σr=τrθ=0 对于外边界,应用莫尔圆应力关系,有
r
1
3
2
1
3
2
cos 2
r
1 3
2
sin 2
1 p 3 p
90
r 时
r p cos 2 r psin 2
外边界条件
21
岩石力学
三、深埋圆形巷道一般压力下弹性分析
m 2
1
( 1) 应照顾顶点 ( 1) 应照顾两帮中点
33
岩石力学
五、非圆形巷道周边弹性应力状态
地下工程中的非圆形巷道主要有梯形、拱顶直 墙、椭圆等。
1、基本解题方法 原则上,地下工程比较常用的单孔非圆巷道围 岩的平面问题弹性应力分布,都可用弹性力学的 复变函数方法解决。
34
岩石力学
五、非圆形巷道周边弹性应力状态
次生应力或诱发应力:经应力重分布形成的新的 平衡应力。
6
岩石力学
一、基本概念
地下岩石工程稳定的条件:
max S
umax U
式中,S和U为围岩或支护体所允许的最大应力(极限强 度)和最大位移(极限位移)。
7
岩石力学
一、基本概念
岩石地下工程根据埋入的深浅: 浅埋地下工程的工程影响范围可达到地表,因而 在力学处理上要考虑地表界面的影响。 深埋地下工程可处理为无限体问题,即在远离岩 石地下工程的无穷远处,仍为原岩体。
R02 r
4(1 )(1 )
R02 r
cos 2
(1
)
R04 r3
cos
2
]
(3)其他巷道无通式。
39
岩石力学

第六章 断层

第六章  断层

第六章断层1.什么叫断层、断层面、断层线、断盘?断层:断层是岩石受力发生破裂,两侧岩石沿破裂面发生明显位移的断裂构造。

断层面:断层的断裂滑动面,断层面可以是一个平面也可以是一个曲面,大型断层的断层面并不是一个单一的断裂面,往往是具有一定宽度的破碎带,简称断层带。

断层线:断层面与地表或地下某层面的交线称为断层线。

断盘是断层面两侧的岩层或岩体。

描述方法如:东盘、西盘;上升盘、下降盘。

2.什么是相当点、相当层?相当点:是指未断之前的一个点在断层位移后出现在两盘上的两个点。

相当层:指出现在断层两盘的同一地层。

3.断距和滑距各有哪些类型?各指什么?两相当点之间的距离是断层的真位移,称为总滑距。

总滑距的分量及再分量也都是真位移的分量,均以滑距称之。

依据相当层测算的断层位移是视位移,称为断距。

断距类型:地层断距:指断层两盘相当层层面之间的垂直距离。

铅直地层断距:指两盘相当层层面之间的铅直距离。

水平断距:指两盘相当层层面之间的水平距离。

滑距类型:水平滑距:总滑距的水平投影。

走向滑距:总滑距在断层面走向线上的分量。

倾斜滑距:总滑距在断层面倾斜线上的投影。

铅直滑距:也称断层落差,是总滑距的铅直分量。

倾向滑距:倾斜滑距的水平投影。

4.按形态、力学成因和组合关系,断层可分为哪些类型?各有何特征?1)按断层与有关构造的几何关系分类a)根据断层产状和所在岩层产状的关系分类:走向断层:断层走向与地层走向相同倾向断层:断层走向与地层倾向相同斜向断层:断层走向与地层走向斜交顺层断层:断层面与地层层面平行根据断层产状和岩层产状关系的断层分类示意图a-走向断层;b-倾向断层;c-斜向断层;d-顺层断层b)根据断层走向与褶皱轴向的关系分类:纵断层:断层走向与褶皱轴向平行横断层:断层走向与褶皱轴向垂直斜断层:断层走向与褶皱轴向斜交F 1-纵断层;F2-横断层;F3-斜断层2)按断层两盘相对运动方向分类正断层:上盘相对下盘向下滑动的断层。

岩土力学总复习

岩土力学总复习

岩土力学总复习内容与要求第一部分土体力学绪论第1章土体中的应力第2章地基变形计算第3章土压力理论第4章土的抗剪强度与地基承载力第5章土坡稳定性分析第二部分岩体力学绪论第1章岩块、结构面、岩体的地质特性简介第2章岩石(块)的物理、水理与热学性质第3章岩块(石)的变形与强度第4章结构面的变形与强度第5章岩体的力学性质第6章岩体中的天然应力第7章地下洞室围岩稳定性分析第8章岩体边坡稳定性分析符号说明:◆掌握(含记住)▲理解△了解第一部分土体力学绪论◆土力学的研究对象、研究内容、研究任务及土体的工程特性(与一般连续体相比)▲土体在工程建筑中的三种用途第1章土体中的应力§1.1 概述▲地基附加应力σz是引起地基变形破坏的根源§1.2 土体的自重应力(σcz)◆σcz的概念◆σcz的计算方法(含有地下水与不透水层的情况)§1.3 基底压力(p)与基底附加压力(p 0)◆p 、p 0的概念◆影响p 的因素有哪些?◆计算、的已知斜向偏心荷载竖向偏心荷载竖向中心荷载0p p e ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎭⎬⎫,P13式1-14要求记住。

§1.4 地基中的附加应力(σz )◆布氏解的假设前提及其适用范围◆局部荷载下σz 的影响因素◆矩形基础在⎪⎩⎪⎨⎧竖向梯形荷载竖向三角形荷载竖向均布荷载下σz 的计算其中注意B 边的取法与角点法、等效均布荷载法的应用◆条基均布荷载与三角形荷载下σz 的计算◆圆形基础均布荷载与三角形荷载下σz 的计算(前者r 范围,后者基底投影内)说明:σz 计算中,地基附加应力系数可查表!若遇到,会给出表。

◆非均质地基中的附加应力集中现象与附加应力扩散现象及其概念第2章 地基变形计算§2.1 概述◆地基变形按成因的分类◆地基变形按计算原理的主要方法§2.2 分层总与法(应力比法)◆计算原理与主要计算步骤▲具体计算方法§2.3 规范法◆计算原理与计算步骤▲具体计算方法▲平均附加应力系数的含义△规范法的优点§2.4 相邻荷载对地基变形的影响▲采用分区后叠加法§2.5 e-lg σ法(考虑应力历史法)◆正常固结土、超固结土、欠固结土变形计算中的压缩、再压缩与压缩指数(Cc)、回弹指数(Ce)的应用(公式不需死记)§2.6 弹性力学公式法(三向变形效应法)△一般了解§2.7 饱与粘性土的渗透固结▲渗透固结的影响因素及研究意义▲一维渗透固结理论的基本假设△固结方程的推导过程◆固结度的概念及其应用、固结层厚度(H)的取法第3章土压力理论§3.1 挡土墙上的土压力◆土压力的概念及其影响因素◆土压力的类型p0、p a、p p◆静止土压力的计算§3.2 朗肯土压力理论◆朗肯土压力理论的前提假设◆无粘性土、粘性土的主动土压力与被动土压力的计算方法◆填土分层、有地下水与表面有均布荷载情况下朗肯土压力的计算§3.3 库仑土压力理论◆基本假设◆无粘性土的库仑土压力计算原理△粘性土的库仑土压力计算原理◆坦墙的概念第4章土的抗剪强度与地基承载力§4.1 土的抗剪强度◆土的抗剪强度概念及剪切破坏本质与破坏条件△测定抗剪强度的常用方法◆掌握库仑公式的总应力法与有效应力法的表示方法◆莫尔-库仑强度理论的公式法与图解法◆直剪试验条件对实际排水条件的模拟△孔隙水压力系数A、B的确定方法◆应力路径的概念及正常固结土与超固结土应力路径的不同§4.2 (浅基础)地基承载力概述◆地基破坏的基本模式、阶段与界限荷载◆地基承载力与地基承载力特征值的概念§4.3 地基承载力的理论公式法◆临塑荷载公式法与临界荷载公式法的基本原理◆通过极限承载力通式分析地基承载力的组成及其影响因素§4.4 地基承载力的原位试验法与§4.5 地基承载力的经验法△一般了解第5章土坡稳定性分析§5.1 概述◆影响土坡稳定性的因素§5.2 无粘性土坡稳定性分析◆无粘性土坡稳定性分析方法§5.3 粘性土坡稳定性分析◆(瑞典)圆弧法的计算原理及确定滑弧圆心的技巧△毕肖普(圆弧)条分法的计算原理及设定圆心与分条的技巧◆掌握费伦纽斯法、毕肖普法与简化毕肖普法在计算原理上的区别△不平衡推力传递法与复合型滑面的土坡稳定性计算原理§5.4 土坡稳定性分析中的若干问题△一般了解第二部分岩体力学绪论◆岩体力学的研究对象与任务◆(工程)岩体的概念及其工程特性第1章岩块、结构面、岩体的地质特性简介§1.1 岩块的地质特性◆岩块及其结构的概念§1.2 结构面的地质特性◆结构面、软弱结构面与泥化夹层的概念▲结构面在岩体工程稳定性中的重要作用§1.3 岩体的地质特性◆岩体结构的概念及其分类方案§1.4 岩体的工程分类简介◆岩块的力学强度分类、RQD概念▲巴顿岩体质量(Q)分类中三项指标的含义第2章岩石(块)的物理、水理与热学性质§2.1 岩石的物理性质◆岩石空隙性中的n=n o+n c=(n a+ n b)+n c§2.2 岩石的水理性质◆岩石的吸水率、饱与吸水率、饱水系数、软化系数与抗冻系数的定义及其与空隙性指标的关系§2.3 岩石的热学性质(不作要求)第3章岩块(石)的变形与强度§3.1 概述△岩块力学属性的基本类型§3.2 岩石(块)的变形性质一、单轴压缩下的变形◆岩块的变形阶段、机理及特征指标◆动荷载、蠕变荷载、弹性滞后、应变强化、回滞环、岩石的“记忆”、疲劳破坏与疲劳强度等概念▲荷载条件对岩石变形的影响二、三轴压缩下的变形△一般了解三、岩石的蠕变性◆岩石的蠕变、流动、长期强度、极限长期强度的概念◆蠕变类型、蠕变阶段的划分▲M、K、Bu蠕变模型及其本构方程、本构曲线§3.3 岩石(块)的力学强度◆岩块单轴抗压强度(σc)概念及其影响因素◆岩块三轴抗压强度(σ1m)概念及其影响因素◆岩块单轴抗拉强度(σt)概念◆岩块抗剪强度(τf)概念及其按试验方法的分类§3.4 岩石(块)的破坏判据◆岩石破坏判据与强度理论的概念◆库仑—纳维尔判据与莫尔判据的基本原理◆格列菲斯判据与修正格列菲斯判据的本质及其区别第4章结构面的变形与强度§4.1 结构面的变形性◆结构面的法向刚度与剪切刚度的概念§4.2 结构面的力学强度(τf或c j、φj)△平直无充填结构面、粗糙起伏结构面、非贯通的断续结构面、具有软弱物充填的结构面4类结构面力学强度的主要特征第5章岩体的力学性质◆控制岩体力学性质的主要因素§5.1岩体的变形性质△岩体变形的主要试验△岩体变形参数(E m、E me)的静力载荷试验法的确定原理△岩体变形的组成、类型及其特征◆岩体变形结构效应的概念§5.2 岩体的强度性质◆岩体剪切强度的概念及其分类与主要影响因素◆岩体抗压强度的结构面产状效应:公式法与摩尔图解法▲约翰图解法第6章岩体中的天然应力§6.1 概述◆天然应力与重分布应力的概念▲研究岩体天然应力的意义§6.2 岩体中天然应力的分布特征△一般了解§6.3 岩体天然应力的量测▲量测原理§6.4 岩体中天然应力的估算不作要求第7章地下洞室围岩稳定性分析§7.1 概述◆围岩与围岩应力的概念§7.2 围岩应力的计算◆无压圆形洞室弹性围岩洞壁处应力计算及λ的影响◆无压圆形洞室弹性围岩λ=1.0时围岩应力计算及其分布规律△(其它洞形洞壁处的σθ计算一般了解)◆无压圆形洞室塑性围岩的应力分带及求塑性圈半径的修正芬纳-塔罗勃公式的应用◆掌握有压圆形洞室弹性围岩的应力计算§7.3 围岩的变形与破坏分析△围岩变形破坏的结构效应△弹性围岩与塑性围岩的位移计算▲围岩破坏区范围圈定的原理§7.4 围岩压力计算◆围岩压力的概念及其按形成机理的分类◆形变围岩压力、松动围岩压力、冲击围岩压力的概念◆形变围岩压力的修正芬纳-塔罗勃公式的应用◆岩爆的产生条件§7.5 围岩抗力与围岩极限承载力◆掌握围岩抗力、抗力系数、单位抗力系数与围岩极限承载力的概念第8章岩体边坡稳定性分析§8.1 概述△一般了解§8.2 岩体边坡的应力分布特征◆应力分布特征△影响因素§8.3 边坡岩体的变形与破坏分析简介(定性)▲掌握边坡岩体的变形类型与破坏类型△影响因素§8.4岩体边坡稳定性分析步骤△一般了解§8.5 平面滑动型岩体边坡稳定性计算(平面问题)◆考虑地下水与地震荷载的单滑面岩坡稳定性计算原理与方法▲同向双平面滑动稳定性计算原理(含滑体内有与无结构面的情况)§8.6 楔形体滑动型岩体边坡稳定性计算(空间问题)▲楔形体滑动的稳定性计算原理。

第六章岩体的初始应力状态讲义

第六章岩体的初始应力状态讲义

z z
n
z i hi i 1
若认为岩体为均质、连续且各向同性体,各岩体单 元横向变形为0,即x= y=0,则由广义胡克定律:
x

1 E
x


y z


y

1 E
y
z
x

解上式得水平应力x、 y为:
5、水压致裂法测定系统
6、应力计算
两向受不相等的均布力σ1、σ2作用时的应力分量:


1
2
2
(1
r2
2
)


1
2
2
(1
r2
2
)(1

3
r

2 2
)
cos
2
2


1
2
2
(1
r2 ) 1 2
2
2
(1
3 r 4 )cos 2 4


岩浆侵入或者随着深度的增加,温度升高,使岩 体膨胀,产生热应力,增加初始应力;
若地温梯度α=3°C/100m,岩体热膨胀系数β约 为10-5,一般岩体弹性模量E=10GPa,则地温引起的温 度应力T约为:
T =αβE Z=0.03×10-5×104 Z=0.003 Z MPa
Z为研究点处的深度,m。
x
y

1




z

z
其中λ为侧压力系数,
岩体(0.2-0.3),则(0.25-0.43);
另外, xy yz zx 0
岩体自重应力随着深度呈线性增加,浅部处 于弹性状态;超某一临界深度(砂岩500m、花岗 岩2500m),岩体处于潜塑状态或塑性状态(开 挖前为弹性,开挖后呈塑性),此时,其近于 0.5,则近于1.0,岩体所受垂直与水平应力相 等,即静水压力状态,该现象瑞士地质学家海姆 (A.Heim)1987年在研究阿尔卑斯山深大隧道时 发现,称为海姆假说。

6、岩体的初始应力状态

6、岩体的初始应力状态

第六章 岩体的初始应力状态第一节 初始应力状态的概念与意义岩体的初始应力,是指岩体在天然状态下所存在的内在应力,在地质学中,通常又称它为地应力。

岩体的初始应力主要是由岩体的自重和地质构造运动所引起的。

岩体的地质构造应力是与岩体的特性(例如,岩体中的裂隙发育密度与方向,岩体的弹性、塑性、粘性等)有密切关系,也与正在发生过程中的地质构造运动以及与历次构造运动所形成的各种地质构造现象(例如,断层、褶皱等)有密切关系。

因此,岩体中每一单元的初始应力状态随该单元的位置不同而有所变化。

此外,影响岩体初始应力状态的因素还有地形、地质构造形态、水、温度等,但这些因素大多是次要的,只是在特定的情况下才需考虑。

对于岩体工程来说,主要考虑自重应力和构造应力,二者叠加起来构成岩体的初始应力场。

地面和地下工程的稳定状态与岩体的初始应力状态密切相关。

岩体的初始应力状态可以指在没有进行任何地面或地下工程之前,在岩体中各个位置及各个方向所存在的应力的空间分布状态,它是不取决于人类开挖活动的自然应力场。

在岩体中进行开挖以后,改变了岩体的初始应力状态,使岩体中的应力重新分布,引起岩体变形,甚至破坏。

在高地应力地区,开挖后常会出现岩爆、洞壁剥离、钻孔缩径等地质灾害。

对于地下洞室工程来讲,我们把与洞室本身稳定密切相关的周围岩体称为围岩。

洞室的开挖引起围岩的应力重分布和变形,这不仅会影响洞室本身的稳定状态,而且为了维持围岩的稳定,需施作一定的支护结构或衬砌。

合理地设计支护结构,确定经济合理的衬砌尺寸,是与岩体的初始应力状态紧密相关。

所以,研究岩体的初始应力状态,就是为了正确地确定开挖过程中岩体的应力变化,合理地设计岩体工程的支护结构和措施。

第二节 组成岩体初始应力状态的各种应力场及其计算一、岩体自重应力场及计算地心对岩体的引力,使原岩体处于受力状态,由此而引起的岩体应力称为重力应力。

它可以通过计算获得,其计算理论一般是建立在假定岩体为均匀连续介质的基础之上的。

第6章岩石力学在油气田开发工程中的应用

第6章岩石力学在油气田开发工程中的应用
水平井最优产能方位的选择 地应力场状态下注采井网模型选择 低渗透油田开发方案的设计原则
1 6.1 地应力方向与水平井最优产能方位的选择 2 6.2 地应力场状态下注采井网模型的选择 3 6.3 地应力场状态下低渗透油田开发方案的设计原则 4 6.4 岩石力学在套损机理研究中的应用
6.1 地应力方向与水平井最优产能方位的选择
某油田岩样进行岩石力学试验结论
该地区的原地应力状态为σH>σv>σh,水平最大地应力接近垂向地应力。
由图1可以看出,随着井斜角 的增加,坍塌压力减小,说明地 层的稳定性变好,适合打斜井和 水平井。
由图2当井斜方位与最大水平 主 应 力 方 位 的 夹 角 接 近 60° 时 , 坍塌压力最小,沿此方位钻进地 层最不易坍塌。
呈雁行排列的天然裂缝; ➢ 地层渗透率各向差异很大; ➢ 低渗远油藏需要进行压裂改造,水力裂缝受地层三维应力制
约; ➢ 向井筒内的泄油内径向流变为伸向油藏的水力裂缝的直线流
道等等;
➢ 与渗透率低并且各向差异很大的关系; ➢ 水力裂缝方向与油水井排空间方位的关系; ➢ 水力裂缝长度与井距的关系; ➢ 与水力裂缝形态的关系; ➢ 与天然裂缝的关系; ➢ 与射孔的关系; ➢ 油井和水井如何排布的关系等等。
井距/m 五点法
均质
0o
22.5o
45o
七点发
见水时间/年
五点法
4.17
3.62
3.05
2.89
100 七点发
3.72
2.83
2.60
2.64
反九点法
3.37
2.34
2.46
2.94
五点法
9.73
8.19
6.85
6.50
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图6-1 轴对称圆形硐室的计算
6.2.2 弹性条件下地下岩体工程围岩应力分布
1.轴对称圆形硐室围岩的二次应力分布 2.椭圆形硐室围岩的弹性应力状态
3.矩形硐室围岩的弹性应力状态
1.轴对称圆形硐室围岩的二次应力分布
(1)侧压力系数λ=1时的情形 当侧压力系数λ=1时,如图6-2a所示,以圆孔 中心为坐标原点,在矩形域内以rb为半径作一圆形域,当rb>>ra时,由于半 径为rb的孔边处于应力集中区域以外,其上各点的应力状态与无孔时的应 力状态相同(见图6-2b),可认为圆形域周边上的压力等于均布压力p0,p0=γ H。 (2)侧压力系数λ为任意值时的情形 侧压力系数λ为任意值时,圆形硐室围 岩的二次应力分布计算简图如图6-4a所示,可由图6-4b、图6-4c所示两种情 形叠加得到。
6.3.1 地下岩体工程围岩的弹性位移
•岩体中圆形硐室条件下围岩变形可简化为有圆 孔矩形薄板变形问题,尽管弹性理论解不能完全 反映围岩变形的实际情况,圆孔周边变形通常可 作为硐室工程围岩稳定性与衬砌设计的参考依据。
•有圆孔矩形薄板问题的弹性变形计算,可以根 据其应力方程与几何方程求得应变,进而求得相 应的位移。
图6-11 莫尔强度包络线
1.轴对称圆形硐室围岩的弹塑性应力状态
图6-12 硐室围岩塑性圈出现前后围岩应力分布曲线
2.轴对称圆形硐室围岩塑性区半径
图6-13 塑性区半径计算简图(Ⅰ为塑性区,Ⅱ为弹性区)
6.3 地下岩体工程变形与计算
6.3.1 地下岩体工程围岩的弹性位移 6.3.2 地下岩体工程围岩的弹塑性位移
6.2 地下岩体工程的应力分布
6.2.1 地下岩体工程围岩应力重分布 6.2.2 弹性条件下地下岩体工程围岩应力分布 6.2.3 弹塑性条件下地下岩体工程围岩应力分布
6.2.1 地下岩体工程围岩应力重分布
1)围岩的二次应力状态仍保持弹性状态,除出现局部岩块松动现象外,围 岩基本稳定,弹性理论的基本定律与假设仍可适用; 2)围岩的二次应力状态若为弹、塑性分布。
图6-14 圆形硐室单轴受力状态时V=
6.3.2 地下岩体工程围岩的弹塑性位移
图6-15 圆形洞室洞壁位移分析简图 1—变形前洞室洞壁 2—变形后洞室洞壁 3—变形前塑性圈外界 4—变形后塑性圈外界
6.3.2 地下岩体工程围岩的弹塑性位移
图6-16 洞壁位移与时间关系曲线
2.椭圆形硐室围岩的弹性应力状态
图6-7 非圆形硐室围岩应力计算简图
(1)椭圆硐室洞壁应力计算公式
图6-8 椭圆硐室单向受力计算简图
(2)椭圆硐室洞壁应力分布特点
表6-3
(2)椭圆硐室洞壁应力分布特点
图6-9 椭圆硐室周壁切向正应力集中系数k分布曲线
(3)最佳椭圆截面尺寸(谐洞)
所谓硐室的最佳截面尺寸,通常应满足三个条件:首先,洞周的应力 分布应该是均匀应力,且在同一半径上其应力相等;第二,洞周的 应力应该都为压应力,在洞壁处不出现拉应力;第三,其应力值应 该是各种截面中最小的。
(2)侧压力系数λ为任意值时的情形
图6-4 任意λ值时围岩应力计算简图
图6-5 圆环外侧承受三角函数分布力的计算简图
a)
b)
表6-2 λ=0.25时圆形硐室的围岩应力
图6-6 λ=0.25时圆形硐室 围岩应力分布图
2.椭圆形硐室围岩的弹性应力状态
(1)椭圆硐室洞壁应力计算公式 图6-8是在单向应力作用时椭圆形硐室的计 算简图。 (2)椭圆硐室洞壁应力分布特点 洞壁的切向正应力σθ不仅与初始应力p0和 侧压力系数λ有关,还取决于该点与x轴的夹角θ和半轴比m的大小。 (3)最佳椭圆截面尺寸(谐洞) 所谓硐室的最佳截面尺寸,通常应满足三个 条件:首先,洞周的应力分布应该是均匀应力,且在同一半径上其应力相等; 第二,洞周的应力应该都为压应力,在洞壁处不出现拉应力;第三,其应 力值应该是各种截面中最小的。
1.轴对称圆形硐室围岩的二次应力分布
图6-2 一定埋深的圆形硐室围岩应力计算简图
(1)侧压力系数λ=1时的情形
图6-3 λ=1时圆形硐室围岩应力分布图
(1)侧压力系数λ=1时的情形
表6-1 λ=1圆形硐室围岩应力
(2)侧压力系数λ为任意值时的情形 侧压力系数λ为任意值时,圆形硐室围岩的二次应力分布计算简图 如图6-4a所示,可由图6-4b、图6-4c所示两种情形叠加得到。
第6章
6.1 概述 6.2 地下岩体工程的应力分布 6.3 地下岩体工程变形与计算 6.4 地下岩体工程围岩压力
6.1 概述
地下岩体工程通常包括在地下岩体中开挖的各种 隧道、井巷与硐室。铁路、公路、矿山、水电、 国防、城市地铁及城市建设等许多领域,都有大 量的地下岩体工程。随着科学技术及工业的发展, 地下岩体工程将会有更为广泛的新用途,如地下 油气库、地下储热库、地下储水库以及地下核废 料密闭储藏库等。
3.矩形硐室围岩的弹性应力状态
图6-10 矩形硐室(a/b=1.8)周边应力分布图
3.矩形硐室围岩的弹性应力状态
表6-4 矩形硐室周边应力的数值
6.2.3 弹塑性条件下地下岩体工程围岩应力分布
1.轴对称圆形硐室围岩的弹塑性应力状态 2.轴对称圆形硐室围岩塑性区半径
1.轴对称圆形硐室围岩的弹塑性应力状态
6.4 地下岩体工程围岩压力
6.4.1 围岩压力成因与分类 6.4.2 围岩压力计算
1.围岩压力成因 2.围岩压力分类
6.4.1 围岩压力成因与分类
1.围岩压力成因
1)对于坚硬、完整岩体,由于围岩应力一般小于岩体极限强度,所以岩体 只发生弹性变形而无塑性流动,岩体没有破坏或松动。 2)对于中等坚硬且结构面发育的岩体,即中等质量岩体,由于硐室围岩变 形较大,存在弹性变形与塑性流变,或有少量岩石破碎作用,加之围岩应 力重新分布需要一定时间,因此,硐室进行支护或设置衬砌后,围岩变形 将受到支护或衬砌的约束,围岩对支护与衬砌产生压力。 3)对于软弱、破碎岩体,由于岩体结构面极为发育、极限强度很低,硐室 开挖过程中或开挖结束后,重新分布的应力很容易超过岩体强度而引起围 岩破坏、松动与塌落。
相关文档
最新文档