电信传输原理及应用微波网络基础

合集下载

微波技术第5章微波网络基础

微波技术第5章微波网络基础

j= 1
ak
散射矩阵元素的定义为:i≠j
Sij =
bi aj
ak = 0,k? j
对于 ak=0, 指对于端 口的入射波为零,则 要求k端口: 1)无源; 2)无反射;
Zk=Z0k
b1
Z01 Z01
b2
Z02
Z02
bi Z0i
Z0i
Z0k
bk
1 Z0k
bN Z0N
Z0N
N端 口 网 络
aj
Z0j
Sij
对于各参量: Sij S ji
2)无耗网络散射矩阵的幺正性
对于一个 N 端口无耗无源网络,传入系统的功率等于 系统的出射功率:
得到散射矩阵的幺正性:
[S]t [S]* [U ]
式中
[U ] =
轾 犏 犏 犏 犏 犏 犏 臌100M
0 1
L
L L O L
0 0
1
为单位矩阵。
对于互易网络,由互易性可得: [S][S]* = [U ]
即有
åN
k= 1
Ski Sk*j
=
dij
=
ìïïíïïî
1 0
i= j i¹ j
即若 i = j,
N
åS
ki
S
* ki
=
1
k= 1
若 i¹ j
N
å Ski Sk*j = 0
k= 1
上两式说明[S]矩阵的任一列与该列的共轭值的点 乘积等于1,而任一列与不同列的共轭值的点乘积 等于零(正交)。
3)传输线无耗条件下,参考面移动S参数幅值的 不变性
Vi+ Z0i
=
1 2
轾 犏 犏 犏 臌ViZ( z0 i)

简述电信号的传输原理及应用

简述电信号的传输原理及应用

简述电信号的传输原理及应用1. 电信号的传输原理电信号是指通过电信系统传输的信号,可以是用来传递信息的电流或电压。

电信号的传输原理基于电流和电压的传导和转换。

主要的电信号传输原理包括以下几个方面:1.1 信号的产生电信号的产生是通过信号源进行的。

信号源可以是电路中的振荡器、发生器或传感器等。

这些设备将一定形式的电信号转换为电流或电压的变化。

1.2 信号的调制信号的调制是将要传输的信息转换为适合传输的信号形式。

常见的调制方式包括模拟调制和数字调制。

模拟调制是将原始信号与载波信号相乘得到调制信号,而数字调制是将原始信号数字化,并将数字信号与载波信号相乘得到调制信号。

1.3 信号的传输传输信号的方式一般有有线传输和无线传输两种。

•有线传输:有线传输是指通过电缆、电线等物理介质进行信号传输的方式。

常见的有线传输方式有同轴电缆、双绞线和光纤等。

有线传输具有稳定性好、传输距离远等优点。

•无线传输:无线传输是指通过无线电波进行信号传输的方式。

无线传输具有灵活性高、传输距离远等优点。

1.4 信号的解调信号的解调是将调制后的信号恢复为原始信号的过程。

解调过程中会使用滤波器将噪声、干扰等因素去除,使信号恢复为原始信息。

2. 电信号的应用电信号的传输在现代通信系统中有着广泛的应用。

以下是几个常见的应用领域:2.1 电话通信电话通信是电信号传输最为常见的应用之一。

电话通信通过将音频信号转换为电信号进行传输,使得用户可以通过远程通信进行交流。

电话通信使用了模拟调制技术,目前也有越来越多的数字电话系统。

2.2 数据通信数据通信是指通过电信号进行数据的传输和交换。

在计算机网络和互联网中,数据通信通过将数字信号转换为电信号进行传输,实现了信息的快速传递和共享。

数据通信常用的传输媒介有网线、光纤等。

2.3 无线通信无线通信使用电信号通过无线电波进行传输。

无线通信可以分为广播、通信和卫星通信等。

广播通过调制和解调技术,将音频或视频信号转换为无线电波进行传输,可以覆盖大范围的区域。

电信传输原理及应用第二章微波网络基础5

电信传输原理及应用第二章微波网络基础5
二、 二端口微波网络参量的性质
一般情况下,二端口网络的五种网络参量均有四个独立参量, 但当网络具有某种特性(如对称性或可逆性等)时,网络的独立 参量个数将会减少。
(一) 可逆网络
如前所述,可逆网络具有互易特性
Z12 Z21 Y12 Y21
或 或
~ Z~12
~ Z~21
Y12 Y21
其它几种网络参量的互易特性为
第2章 传输线理论
3.转移参量
用T2面上的电压、电流来表示T1面上的电压和电流的网络方程, 且规定电流流进网络为正方向,流出网络为负方向。则有
转移参量的定义为
U1
I1
A11
A21
A12 U 2
A22
I
2
A11
U1 U2
I2 0
A12
U 1 I2
U2 0
A21
I1 U2
I2 0
A22
T12U~i 2
U r1 T21U r2 T22U i2
U~~i1
U r1
T11 T21
T12 T22
U~~r 2 U i2
~
T11
U ~
i1
Ur2
~ Ui2 0
1 S21
表示表示T2面接匹配负载时,T1面 至T2面的电压传输系数的倒数, 其余参量没有直观的物理意义。
第2章 传输线理论
如果参考面位置改变,则网络参数也随之改变。
第2章 传输线理论
二、不均匀区等效为微波网络
微波元件对电磁波的控制作用是通过微波元件内部的不均匀区 (不连续性边界)和填充媒质的特性来实现的。将不均匀区等效为 微波网络,需要用到电磁场的唯一性原理和线性叠加原理。
线性叠加原理

电信传输原理及应用第三章 微波传输线 3微带线.

电信传输原理及应用第三章 微波传输线 3微带线.
可以通过保角变换及复变函数求得Zα0及εe的严格解, 但结果仍为 较复杂的超越函数, 工程上一般采用近似公式。 下面给出一组 实用的计算公式。
(1) 导带厚度为零时的空气微带的特性阻抗Zα0及有效介电常
数εe
59.952ln( 8h w )( w 1)
w 4h 4h
z 0
119.904
H jwE
E jwuH 由于理想介质表面既无传导电流, 又无自由电荷, 故由连续 性原理, 在介质和空气的交界面上, 电场和磁场的切向分量均连 续, 即有
Ex1=Ex2 , Ez1=Ez2 Hx1=Hx2 , Hz1=Hz2
第3章 微波传输线 y
h
x
图 3 – 5 微带线及其坐标
当不存在介质基片即空气填充时, 这时传输的是纯TEM波, 此 时的相速与真空中光速几乎相等, 即vp≈c=3×108m/s; 而当微 带线周围全部用介质填充, 此时也是纯TEM波, 其相速vp=c/ r
第3章 微波传输线
由此可见, 实际介质部分填充的微带线(简称介质微带)
的相速vp必然介于c和c/ r 之间。为此我们引入有效介电常数
C1=εeC0

e

C1 C0
可见, 有效介电常数εe就是介质微带线的分布电容C1和空
气微带线的分布电容C0之比。
于是,介质微带线的特性阻抗Z0与空气微带线的特性阻抗Zα0
有如下关系:
z0
z 0
e
第3章 微波传输线
由此可见, 只要求得空气微带线的特性阻抗Zα0及有效介电 常数εe, 则介质微带线的特性阻抗就可由式(3 - 1 - 25)求得。

jw 0 E x 2
由边界条件可得

电信通信工作原理

电信通信工作原理

电信通信工作原理随着现代科技的不断发展,电信通信已经成为了人们生活中不可或缺的一部分。

在我们享受到无线网络、电话通讯以及电视直播等各种通信服务的同时,你是否曾好奇过电信通信是如何实现的呢?本文将为你详细介绍电信通信的基本原理。

一、无线网络通信原理无线网络通信是指通过无线电波进行信息传递的通信方式。

无线网络通信的原理基于微波和无线电波在空间中的传播。

首先,发送端将待传输的数据转换为电信号,并通过无线电发射器将电信号转换为无线电波,然后通过天线将无线电波发送出去。

接收端的天线接收到无线电波后,同样通过无线电接收器将无线电波转换为电信号,再经过解码和处理,最终得到发送端传输的原始数据。

二、电话通信原理电话通信是指通过电话设备进行语音对话的通信方式。

电话通信的原理基于模拟信号的传输。

当你拨打电话时,声音信号首先会传输到电话交换机。

电话交换机负责连接发送方和接收方之间的通信链接,它通过模拟信号传输的方式,将你的声音信号转换为电信号,并将其传输给接收方所使用的电话设备。

接收方的电话设备接收到信号后,再通过扬声器播放出声音信号,使你们能够进行通话。

三、电视广播通信原理电视广播通信是指通过无线电波传播电视信号的通信方式。

电视广播的原理基于调制解调技术和信道传输原理。

首先,电视信号经过调制器将其转换为载波信号,然后通过天线将载波信号以无线电波的形式传输到接收地点。

接收地点的电视机通过天线接收无线电波,并通过解调器将其转换为原始的电视信号。

最后,电视机将信号进行解码并显示在屏幕上,使观众能够收看电视节目。

四、数据传输通信原理数据传输通信是指通过网络将数据传输到远程位置的通信方式。

数据传输通信的原理基于计算机网络技术和数据包交换原理。

首先,发送端将待传输的数据划分为小的数据包,并通过网络传输到目标位置。

数据包在传输过程中,会经过路由器、交换机等网络设备进行中转,通过互联网或者局域网完成数据传输的过程。

接收端将接收到的数据包进行重新组装,还原为原始的数据,从而实现数据的传输。

第4章微波网络基础ppt课件

第4章微波网络基础ppt课件
I(z)= A 1 [1-Γ(z)]
Ze
式中, Ze为等效传输线的等效特性阻抗。 传输线上任意一 点输入阻抗为
1 (z)
Zin(z)=Ze 1 ( z )
任意点的传输功率为
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
由电磁场理论可知, 各模式的传输功率可由下式给出:
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
第4章 微波网络基础
P k1 2R e E K (x,y,z)H K (x,y,z)ds 1 2R e[U k(z)I (z) ] e K (x ,y) h K (x ,y)ds
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
第4章 微波网络基础
Et(x, y,z) ek(x, y)Uk(z)
Ht(x, y,z) hk(x, y)Ik(z)
式中ek(x, y)、hk(x, y)是二维实函数, 代表了横向场的模式横 向分布函数, Uk(z)、Ik(z)都是一维标量函数, 它们反映了横向电 磁场各模式沿传播方向的变化规律, 故称为模式等效电压和模 式等效电流。值得指出的是这里定义的等效电压、等效电流是 形式上的, 它具有不确定性, 上面的约束只是为讨论方便, 下面 给出在上面约束条件下模式分布函数应满足的条件。
单口 网络
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目

电信传输原理及应用第三章微波传输线4谐振腔

电信传输原理及应用第三章微波传输线4谐振腔

第3章 微波传输线 下面对线节型谐振器加以简单分析。 TEM模式, 对于终端开路的一段长为l的微带线, 由传输线理论, 其输入阻抗为 Zin=-jZ0 tanβl 式中
2 / g
l pg 0 2
, λg为微带线的带内波长。
根据并联谐振条件Yin=0,
或者 g 0 pl 2 p 1, 2,3.......
第3章 微波传输线 3.7
在低频(300MHz)电路中, 谐振回路是一种基本元件, 它是由电感和电容串
联或并联而成。
在振荡器中作为振荡回路,用以控制振荡器的频率; 在放大器中用作谐振 回路; 在带通或带阻滤波器中作为选频元件等。
在微波频率上, 也有上述功能的器件, 这就是微波谐振器件, 它的结构是根
p l
由规则波导理论得
u (
2
2
g
) (
2
2
c
ห้องสมุดไป่ตู้
)2
第3章 微波传输线 故谐振频率为
v p 2 2 2 12 f0 [( ) ( ) ] 2 l c
式中,v为媒质中波速,λc为对应模式的截止波长。 可见谐振频率由振荡模式、腔体尺寸以及腔中填充介质(μ, ε)所 确定, 而且在谐振器尺寸一定的情况下, 与振荡模式相对应有无 穷多个谐振频率。
0W
0W

0
Qe
第3章 微波传输线 于是
Q0 Q1 1
这说明τ越大, 耦合越紧, 有载品质因数越小; 反之, τ越小, 耦合越松, 有载品质因数Ql越接近无载品质因数Q0。
2.
矩形空腔谐振器是由一段长为l、 两端短路的矩形波导组 成,如图 3 - 27 所示。与矩形波导类似, 它也存在两类振荡模 式,即TE和TM模式。

微波通信基础课件

微波通信基础课件
散 Nhomakorabea传输技术
散射传输技术是指将微波信号通过散射体进行传输的技术。这种技术主要应用于山区、丘陵等复杂地 形地区的通信,其优点是可以实现非视距通信,同时可以利用现有的散射网络进行传输。
散射传输技术通常采用散射天线进行信号散射,从而实现远距离的传输。这种技术的缺点是传输过程 中可能会出现信号衰减和干扰等问题,需要采取相应的措施进行解决。此外,散射传输技术还需要建 设大量的散射站点,因此成本较高。
交互和智能化发展。
微波通信发展趋势与新技术应用
5G技术的发展
随着5G技术的不断推进,微波 通信将发挥重要作用,实现更
高速、更可靠的数据传输。
智能反射面技术
通过智能反射面的设计,实现 对微波信号的智能调控和优化, 提高通信性能。
量子通信技术
利用量子纠缠等量子特性,实 现更加安全、高效的通信方式, 微波通信将在其中发挥关键作用。
比ASK有更好的抗噪声性能。
数字调制技术
相移键控(PSK) 用载波的相位偏移来代表数字信号的0、1比特。
比ASK和FSK有更好的抗噪声性能。
多路复用技 术
时分复用(TDM)
将时间划分为多个时隙,每 个时隙传输一路信号。
可以同时传输多路信号。
频分复用(FDM)
将频率划分为多个频带,每 个频带传输一路信号。 可以同时传输多路信号。
微波通信的历史与发展
01
02
03
起源
20世纪40年代,随着雷达 和电子管技术的快速发展, 人们开始利用微波频段进 行通信。
发展历程
经历了从模拟信号到数字 信号,从固定站到移动站, 从模拟调制到数字调制等 阶段。
现代应用
广泛应用于移动通信、卫 星通信、广播电视等领域。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z 01 Z 02 Z 21
Z 01 Z 02
第2章 传输线理论
2. 导纳参量 用T1和T2两个参考面上的电压表示两个参考面上的电流,其网 络方程为
I1
I
2
Y11 Y21
各导纳参量元素定义如下
Y12 U1
Y22
U
2
Y11
I1 U1
U2 0
Y22
I2 U2
U1 0
Y12
I1 U2
2
Y21
Y22
Y2n
U
2
I
n
Yn1 Yn2
Ynn
U
n
U ZI
I YU
第2章 传输线理论
唯一性原理
在一个封闭区域的边界上,切向电场或者切向磁场如果 是确定的,那么区域内的电磁场就被唯一确定
不连续性区域的边界是由导体及网络参考面构成的,参 考面上的模式电压和模式电流正比于横向电场和横向 磁场的幅度函数,如果网络参考面上的电压确定了, 则网络内的电磁场就唯一地确定
~ ~~ ~~ ~I1 Y~11U~1 Y~12U~2
I 2 Y21U1 Y22U 2
~ U1
U1 Z01
~ Y11
Y11 Y01
~ U2
U2 Z 02
~ Y12
Y12 Y01Y02
~ I1 I1 Z01
~ Y21
Y21 Y01Y02
~ I2 I2 Z02
~ Y22
Y22 Y02
U1 0
Y21
I2 U1
U2 0
表示T2面短路时,端口(1)的输入导纳; 表示T1面短路时,端口(2)的输入导纳 表示T1面短路时,端口(2)至端口(1)的转移 导纳;
表示T2面短路时,端口(1)至端口(2)的转移 导纳。
第2章 传输线理论
如果T1和T2参考面所接传输线的特性导纳分别为Y01和Y02, 则归一化表示式为
第2章 传输线理论
3.转移参量
用T2面上的电压、电流来表示T1面上的电压和电流的网络方程, 且规定电流流进网络为正方向,流出网络为负方向。则有
转移参量的定义为
U1
I1
A11
A21
A12 U 2
A22
I
2
A11
U1 U2
I2 0
A12
U 1 I2
U2 0
A21
I1 U2
I2 0
A22
I n Yn1U1 Yn2U 2 YnnU n
式中Ymn为导纳参量,若m=n称它为自导纳,若mn称它为转移导纳。
U1 Z11
U 2
Z21
U
n
Zn1
Z12 Z22 Zn2
Z1n I1
Z
2n
I
2
Z nn
I
n
I1 Y11 Y12 Y1n U1
I
(1) 对于无耗网络,网络的全部阻抗参量和导纳参量均为纯虚数,
即有
Zij jX ij
Yij jBij i, j 1,2, ,n
(2) 对于可逆网络,则有下列互易特性
Zij Z ji
Yij Yji i j, i, j 1,2, ,n
(3) 对于对称网络,则有
Zii Z jj
Yii Yjj i j, i, j 1,2, ,n
~ U2
U2 Z02
~ I1 = I1 Z01 ~ I 2 = I 2 Z02
归一化
~ ~~ ~~ U~1 Z~11 I~1 Z~12 I~2
U 2 Z21 I1 Z22 I 2
归一化阻抗参量为
~ Z11
Z11 Z 01
~ Z 22
Z 22 Z 02
~ Z12 ~ Z21
Z12
I1 I2
U2 0
表示T2面开路时,端口(2)至端口(1)的电压转移 系数;
表示T2面短路时,端口(2)至端口(1)的转移阻抗; 表示T2面开路时,端口(2)至端口(1)的转移
I1 0
表示T1面开路时,端口(2)的输入阻抗;
Z12
U1 I2
I1 0
表示T1面开路时,端口(2)至端口(1)的转移阻抗;
Z21
U2 I1
I2 0
表示T2面开路时,端口(1)至端口(2)的转移阻抗。
第2章 传输线理论
特性阻抗归一化
T1和T2参考面上的归一化电ቤተ መጻሕፍቲ ባይዱ和归一化电流分别为
~ U1
U1 Z01
第2章 传输线理论
二端口微波网络
一、 二端口微波网络的网络参量 在各种微波网络中,二端口微波网络是最基本的。例如: 衰减器、移相器、阻抗变换器和滤波器等均属于二端口微 波网络。 表征二端口微波网络特性的参量可以分为两大类: 一、反映网络参考面上电压与电流之间关系的参量 二、反映网络参考面上入射波电压与反射波电压之间 关系的参量。如图所示。
第2章 传输线理论
二、不均匀区等效为微波网络
微波元件对电磁波的控制作用是通过微波元件内部的不均匀区 (不连续性边界)和填充媒质的特性来实现的。将不均匀区等效为 微波网络,需要用到电磁场的唯一性原理和线性叠加原理。
线性叠加原理
对于n端口线性网络, U1 Z11 I1 Z12 I 2 Z1n I n U 2 Z21 I1 Z22 I 2 Z2n I n
第2章 传输线理论
(一) 阻抗参量、导纳参量和转移参量
1 阻抗参量
用T1和T2两个参考面上的电流表示两个参考面上的电压,其 网络方程为
U1 U 2
Z11 Z21
Z12 I1
Z
22
I
2
各阻抗参量元素定义如下
Z11
U1 I1
I2 0
表示T2面开路时,端口(1)的输入阻抗;
Z22
U2 I2
U n Zn1 I1 Zn2 I 2 Znn I n
式中Zmn为阻抗参量,若m=n称它为自阻抗,若mn称它为转 移阻抗。
第2章 传输线理论
如果n端口网络的各个参考面上同时有电压作用时
I1 Y11U1 Y12U 2 Y1nU n
I 2 Y21U1 Y22U 2 Y2nU n
第2章 传输线理论
三、 微波网络的特性 (一) 微波网络的分类
按网络的特性进行分类
1. 线性与非线性网络 2. 可逆与不可逆网络 3. 无耗与有耗网络 4. 对称与非对称网络
按微波元件的功能来分
1.阻抗匹配网络 2.功率分配网络 3.滤波网络 4.波型变换网络
第2章 传输线理论
(二) 微波网络的性质
第2章 传输线理论
微波元件等效为微波网络 一、 网络参考面的选择
参考面的位置可以任意选,但必须考虑以下两点: (1)单模传输时,参考面的位置应尽量远离不连续性区域, 这样参考面上的高次模场强可以忽略,只考虑主模的场强; (2)选择参考面必须与传输方向相垂直,这样使参考面上 的电压和电流有明确的意义
如果参考面位置改变,则网络参数也随之改变。
相关文档
最新文档