数据的分析_ppt课件1

合集下载

常用数据分析方法PPT课件

常用数据分析方法PPT课件

序号 1 2 3 4 5
合计
产品 A B C D
其他
损耗 130 35 10
8 12 195
占损耗比率(%) 累积比率(%)
排列图:练习
39
序号 1 2 3 4 5
合计
产品 A B C D
其他
损耗 130 35 10
8 12 195
占损耗总数比率(%)
66.7 17.9 5.1 4.1 6.2 100
❖ 对帐单(检查表); ❖ 流程图; ❖ 散布图; ❖ 直方图; ❖ 排列图; ❖ 控制图; ❖ 因果分析图;
统计分析工具
4
第一部 数据分析概述
5
1、什么是数据?
数据是对图书销售业务全过程记录下来的、 可以以鉴别的符号。数据是销售业务全过 程的属性数量、位置及相通关系等等的抽 象表示。
数据表现形式
3K
直到 N为止
当出版商批量发货及产品特别多时,并且易作某种次序的整理时, 系统抽样比分层抽样好;
抽样方法
24
总体
管 理
结论
抽样 分析
样本 测 试
数据
总体、样本、数据间的关系
25
抽样的目的是通过样本来反映总体。 在书业公司经营管理中,常常将测试的样本数据,通过整理加工,找 出它们的特性,从而推断总体的变化规律、趋势和性质。 一批数据的分布情况,可以用中心倾向及数据的分散程度来表示,表 示中心倾向的有平均值、中位值等,表示数据分散程度的有方差、标 准偏差、极差等。
数据
500
12月
1月
2月
3月
4月
5月
6月
7月
8月
9月
10月
11月
列表

数据分析PPT课件

数据分析PPT课件

描述性分析是对数据进行基础处 理,包括数据清洗、整理、分类 和汇总等,以揭示数据中的基本
特征和规律。
描述性分析主要通过统计指标, 如均值、中位数、众数、方差等, 来描述数据的集中趋势和离散趋
势。
描述性分析还可以通过绘制图表, 如柱状图、折线图、饼图等,直 观地展示数据的分布特征和变化
趋势。
推断性分析
感谢您的观看
数据科学将成为一门独立的学科
随着数据的重要性日益凸显,数据科学将逐渐成为一门独立的学科, 拥有自己的知识体系和人才培养体系。
数据共享和开放将成为趋势
随着数据的重要性和价值被越来越多的人所认识,数据共享和开放将 成为一种趋势,推动数据创新和产业发展。
提高数据分析能力的建议
加强学习和培训
通过参加培训课程、阅读专业书籍和文 章等方式,不断学习和掌握新的数据分
是指基于数据和分析结果进行决策的方法, 它强调数据在决策中的重要性,帮助企业和 组织更好地理解业务、市场和客户。
数据科学家
是指专门从事数据分析工作的人员,他们 具备统计学、编程和商业知识,能够运用 数据分析工具和算法解决实际问题。
数据分析的流程
数据收集
是指通过各种方式获取数据的过程,包括 调查、观察、实验等。
数据分析ppt课件
目 录
• 数据分析概述 • 数据来源与收集 • 数据预处理与探索 • 数据分析方法与技术 • 数据分析应用案例 • 数据分析的挑战与未来发展
01 数据分析概述
数据分析的定义
数据分析
是指通过统计方法和分析工具对大量 数据进行分析,从而提取出有价值的 信息和洞见的过程。
数据驱动决策
Tableau
Tableau是一款可视化数据分析工具, 它能够帮助用户快速创建各种图表和报 表,直观地展示数据和分析结果。

数据分析(培训完整)ppt课件

数据分析(培训完整)ppt课件
对数据进行初步分析,了解数据 的分布、特征和关系。
结果解释和应用
将分析结果转化为业务洞察和行 动计划,并应用到实际业务中。
模型评估和优化
对模型进行评估和优化,以提高 预测准确性和业务洞察力。
建立模型
根据分析目标,选择合适的数据 分析方法和模型。
02
CATALOGUE
数据收集与整理
数据来源
01
02
格式统一
将不同格式的数据统一 为标准格式,便于后续
分析。
数据转换
对数据进行必要的转换 ,以满足分析需求。
数据存储与备份
选择合适的存储介质
根据数据量、访问频率和安全 性要据进行备份,以防数 据丢失。
数据归档
将不常用的数据归档到低成本 存储设备上。
数据迁移
随着数据量的增长,适时迁移 数据到更高级的存储设备。
03
04
内部数据
公司数据库、CRM系统、日 志文件等。
外部数据
市场调查、公共数据、第三方 数据提供商等。
社交媒体数据
社交媒体平台上的用户生成内 容。
IoT数据
物联网设备产生的数据。
数据清洗与整理
缺失值处理
删除缺失值过多、无法 获取有效信息的记录。
异常值处理
识别并处理异常值,如 离群点、错误数据等。
简洁明了
避免图表过于复杂,突出核心信息 ,减少不必要的元素。
选择合适的图表类型
根据数据特点选择合适的图表类型 ,如柱状图、折线图、饼图、散点图 等。
色彩和字体选择
使用易于阅读的颜色和字体,确保 图表清晰易读。
数据可视化案例分享
销售趋势分析
使用折线图展示不同时间段内的销售数据, 分析销售趋势。

《数据分析》课件

《数据分析》课件
关系型数据库、非关系型数据库等。
定期备份数据
本地备份、远程备份、增量备份等。
数据归档与过期处理
定期清理过期数据,释放存储空间。
03
CHAPTER
数据分析方法
总结词
描述性分析是数据分析的基础,它通过统计方法对数据进行整理和描述,以揭示数据的分布特征和规律。
详细描述
描述性分析主要关注数据的总体特征,如均值、中位数、众数、方差等统计量,以及数据的分布情况,如正态分布、泊松分布等。通过对数据的描述,可以初步了解数据的规律和趋势,为后续的数据分析提供基础。
数据科学教育将更加注重实践经验的积累,通过实际项目和实践课程提高学生的实际操作能力。
01
数据科学教育的重要性
随着数据分析行业的快速发展,数据科学教育将更加受到重视,培养更多具备专业素养的人才。
02
跨学科融合
数据科学教育将促进不同学科的融合,如计算机科学、统计学、经济学等,以培养具备综合素质的人才。
THANKS
R语言
02
CHAPTER
数据收集与整理
ห้องสมุดไป่ตู้
内部数据
市场调研、竞争对手分析、社交媒体数据等。
外部数据
实时数据
用户生成数据
01
02
04
03
用户调查、在线评论、社交媒体互动等。
公司内部数据库、CRM系统、销售数据等。
传感器、物联网设备、实时交易数据等。
选择合适的存储介质
硬盘、SSD、云存储等。
设计合理的数据库结构
Excel
普及度高的数据分析工具,内置数据可视化功能,适合初学者使用。
Power BI
基于云的商业智能工具,提供数据可视化、报表生成和数据分析功能。

数据分析(培训完整)ppt课件

数据分析(培训完整)ppt课件

数据安全和隐私保护
数据安全
随着数据价值的不断提升,数据安全问题也变得越来越重要。未来的数据分析将更加注重数据的安全保护,包括 数据的加密、备份、访问控制等方面,确保数据的完整性和安全性。
隐私保护
在数据分析过程中,保护用户隐私是一个重要的伦理问题。未来的数据分析将更加注重隐私保护,通过匿名化、 去标识化等技术手段,保护用户隐私不受侵犯。同时,数据分析人员也需要遵守伦理规范,确保用户隐私得到尊 重和保护。
运营效率等。
数据分析的流程
数据清洗
对数据进行预处理,包括缺失 值处理、异常值处理、数据转 换等。
建模分析
根据分析目的,选择适当的分 析方法和模型进行数据分析。
数据收集
根据分析目的,收集相关的数 据。
数据探索
对数据进行初步分析,了解数 据的分布和特征。
结果解读与报告
将分析结果进行解读,并形成 报告,以便于决策者理解和应 用。
数据集成
将多个数据源的数据进行整合,形成一个统 一的数据集。
数据清洗
缺失值处理
根据实际情况选择填充缺失值的方法 ,如使用均值、中位数、众数等。
异常值处理
通过统计方法、业务逻辑等方式识别 异常值,并采取相应的处理措施。
重复值处理
去除重复值或对重复值进行合并处理 。
格式统一
将不同格式或类型的数据统一为标准 格式,以便于后续分析。
客户细分
通过数据分析将客户群体 细分,以便更好地理解客 户需求并提供定制化服务 。
市场趋势预测
通过分析历史销售数据和 市场趋势,预测未来的市 场需求和销售情况。
产品定位与定价
通过分析市场和竞争环境 ,确定产品的定位和定价 策略。
销售数据分析

《数据分析实例》课件

《数据分析实例》课件
《数据分析实例》PPT课 件
数据分析实例PPT课件大纲:
数据分析的基本概念和应用场 景
探索数据分析的定义和重要性,以及在不同领域的广泛应用。解释如何从海 量数据中提取有价值的见解。
数据分析的方法与流程
1
设定目标
明确分析的目标和问题。
2
数据收集
获取数据源,包括内部和外部数据。
3
数据清洗和整理
处理数据中的错误、缺失和重复项。
比较数据分析和数据科学的差异和联系,解释它们在实际应用中的不同角色 和职责。
总结与展望:数据分析的未来发展路径
总结数据分析的重要性和应用价值,展望未来数据分析的发展路径和挑战。
如何构建一个高效的数据分析团队
分享构建高效数据分析团队的经验和技巧,包括人才招聘、技术培训和团队协作。
数据安全与隐私保护
介绍数据安全和隐私保护的重要性,以及数据分析过程中的合规和道德问题。
数据分析的常见误区和应对措 施
解释数据分析中常见的误区和陷阱,以及如何应对和克服这些问题。
如何转化数据分析成为可行的商业模式
实例2:使用数据分析提升用 户体验
以用户数据为基础,展示如何通过数据分析来理解用户行为和偏好,优化产 品和服务,提升用户体验。
实例3:基于数据分析提高企 业效率
以企业内部数据为例,说明如何利用数据分析技术来提高生产效率、降低成 本和优化业务流程。
实例4:数据分析在医疗领域 的应用案例分析
介绍医疗领域中数据分析的重要性和应用场景,如疾病预测、临床决策支持 和健康管理。
4
数据分析与模型建立
使用适当的分数据结果,并将其应用到实际问题中。
数据的收集、清洗、整理和存储
收集
选择合适的数据源,包括结构化和非结构化数 据。

数据分析(培训完整)ppt课件(精)

数据分析(培训完整)ppt课件(精)

01
02
Python
一种流行的编程语言,提供丰富的数 据处理和分析库,如pandas、 numpy等。
03
R语言
一种专门为数据分析和统计计算设计 的编程语言,提供强大的数据处理和 可视化功能。
05
04
SQL
一种用于管理和查询关系型数据库的 标准语言,适用于大规模数据的处理 和分析。
数据收集与预处理
分析方法
运用统计学和机器学习 算法,构建风险评分模 型,对客户进行分类和
预测。
实战步骤
数据探索与预处理、特 征选择、模型构建与验 证、模型部署与监控。
案例三:医疗健康领域的数据挖掘应用
01
02
03
04
数据来源
医疗电子病历、健康监测数据 、生物医学文献等。
分析目标
挖掘疾病与症状之间的关联规 则,辅助医生进行疾病诊断和
分析方法
采用数据挖掘和机器学习技术 ,对用户行为数据进行清洗、 转换和建模,提取有用特征并 训练模型。
实战步骤
数据预处理、特征提取、模型 训练与评估、结果可视化与解
读。
案例二:金融风险控制模型构建
数据来源
银行信贷数据、征信数 据、第三方数据等。
分析目标
识别潜在风险客户,预 测客户违约可能性,为
信贷决策提供支持。
数据地图
将数据与地理空间信息相结合,通过地图形式展 示数据的空间分布和特征。
数据动画
利用动画技术动态展示数据的变化过程,增强数 据的直观性和易理解性。
数据挖掘与机器学
04

数据挖掘的基本概念
数据挖掘定义
从大量数据中提取出有用信息和知识的过程。
数据挖掘任务

数据分析ppt课件

数据分析ppt课件
包括但不限于市场调查、 用户行为数据、销售数据 、社交媒体数据等。
分析方法
包括描写性分析、猜测性 分析和规范性分析等。
数据分析的重要性
帮助企业了解市场和 用户需求,优化产品 和服务。
发现市场和行业趋势 ,抢占先机。
提高企业的决策效率 和准确性,下落风险 。
数据分析的步骤
数据清洗
对数据进行预处理,包括缺失 值处理、特殊值处理、数据转 换等。
公司数据库、CRM系统、销 售记录等。
外部数据
市场调研、公共数据、第三方 数据提供商。
实时数据
社交媒体、在线平台、物联网 装备。
用户生成内容
调查问卷、在线评判、社交媒 体反馈。
数据整理的方法
数据挑选
数据分类
数据排序
数据转换
根据需求挑选有效数据 。
将数据进行归类,便于 分析。
依照一定顺序排列数据 。
数据分析
运用统计分析、机器学习等方 法对数据进行分析,发掘其内 在规律和价值。
数据收集
根据分析目的和范围收集相关 数据。
数据探索
对数据进行初步的分析和探索 ,了解数据的散布和特征。
结果显现
将分析结果以图表、报告等情 势显现出来,便于理解和应用 。
02
数据收集与整理
数据来源
01
02
03
04
内部数据
数据分析ppt课件
汇报人:
202X-12-30
• 数据分析概述 • 数据收集与整理 • 数据分析方法 • 数据解读与报告 • 数据分析案例 • 数据分析的未来发展
01
数据分析概述
数据分析的定义
01
02
03
数据分析
是指通过统计方法和分析 工具对大量数据进行分析 ,发掘其内在规律和价值 的进程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据的分析_ppt课件1
梳理
数据的代表
平均数 中位数 众数
数据的波动
极差 方差
知识梳理



用样本平均数

估计总体平均数



用样本方差
估计总体方差
数据的分析_ppt课件1
数据的分析_ppt课件1
梳理
知识梳理
数据的分析_ppt课件1
数据的分析_ppt课件1
强化训练 1、一个样本的数据按从小到大的顺序排列为: 13,14,19,x,23,27,28,31。若其中位 数为22,则x等于( B ) A、 20 B、 21 C、 22 D、23
主要项目 整理、描述数据 分析数据得出结论
身高
体重

1 000米跑
800米跑 仰卧起坐
数据的分析_ppt课件1
数据的分析_ppt课件1
展示交流
讲授新课
(1)介绍你所在小组的数据收集与分析过程. (2)你得出了哪些结论?依据分别是什么? (3)你对提高七年级学生体质有什么建议?
数据的分析_ppt课件1
数据的分析_ppt课件1
数据的分析_ppt课件1
课后小结 (1)本次统计活动中,你经历了哪些环节? (2)各个统计环节中,你是怎样做的? (3)通过这次体质健康调查,你有什么启发?
数据的分析_ppt课件1
数据的分析_ppt课件1
人教版 八年级 下册
第二十章 数据的分析
20.3 课题学习 体质健康测 试中的数据
数据的分析_ppt课件1
学习目标
学习目标: 1.能根据实际需要确定和抽取样本; 2.依据抽取的样本,对收集的数据进行整理、描述 和分析,并对统计结果作出正确的评估以及提出 合理的建议; 3.经历数据的收集、整理、描述和分析的过程,培 养学生的统计能力,并自觉运用统计思想思考和 解决一些简单的实际问题;
20
讲授新课
根据你收集的原始数据能清晰地反映出本校七年级 学生的体质健康状况吗?
如果不能,可以用什么方式作进一步的整理更好? 列表整理数据:
成绩 不及格
及格 良好 优秀 合计
划记
频数
百分比
讲授新课
描述数据可以用哪几种统计图形?各有什么特点? 根据各统计图的特点和你整理的数据情况,你能选 择合理的统计图描述前面你得到的数据吗?
计算出各组数据的平均数、中位数、众数以及方差.
从计算出的各个统计量中你能得出什么结论?请参 照下表格式撰写讲授新课
题目 样本 数据来源
数 据 处 理 过 程
总结
主要建议 参加成员 教师意见
备注
全校七年级学生体质健康情况的调查
七年级各班部分学生
样本容量 40
学生体质健康登记表
) 选
坐位体前屈

掷实心球
一 项
握力体重指数
( 引体向上(男)
) 仰卧起坐(女)
20
立定跳远


跳绳



篮球运球
) 足球运球
排球垫球
1.括号中的数字为单项测试的满分成绩;

2.各单项成绩之和为最后得分;

3.最后得分90分及以上为优秀,75~89分为良好,60~74分为及格,59分及以下
为不及格.
乙组选手 0 0 4 3 2 1 8
8 7 1.0 60%
请你完成上表,再根据所学知识,从不同方面评 价甲、乙两组选手的成绩
数据的分析_ppt课件1
数据的分析_ppt课件1
强化训练
2、甲、乙两人在相同的条件下练习射靶,各 射靶5次,命中的环数如下:
甲:7 8 6 8 6 乙:9 5 6 7 8 则两人中射击成绩稳定的是 甲 . 3、为了考察一个养鸡场里鸡的生长情况,从 中抽取了5只,称得它们的重量如下: 3.0,3.4,3.1,3.3,3.2 (单位:kg) , 则样本的极差是 0.4 ;方差是 0.02 .
数据的分析_ppt课件1
数据的分析_ppt课件1
强化训练
2、八年级三班分甲、乙两组各10名学生参加答 题比赛,共10道 选择题,答对8题(含8题)以上为 优秀,各选手答对题数如下:
答对题数 5 6 7 8 9 10 平均数 中位数 众数 方差 优秀率
甲组选手 1 0 1 5 2 1 8
8
8 1.6 80%
讲授新课
学校七年级有10个班,每班50人,共500 人.各小 组在课前收集了七年级学生的部分《体质健康登记卡》, 收集到了部分数据.
中学生体质健康登记表
讲授新课
姓名
班级
年龄
性别
身高
体重
身高标准体重(10)
50米跑
肺活量标准指数(20)
选 测
台阶实验
一 项
1000米跑(男)
( 800米跑(女)
30
相关文档
最新文档