Biodegradation and Mechanical Property of Polylactic Acid-2013(贾明印)

合集下载

聚氨基酸

聚氨基酸
0173-2803/86/$01 .oO
194
J. Helder, J. Feijen, S. J. Lee, S. W. Kim
Shakaby and KoelmeP synthesized copolymers of 2,5-morpholinedione derivatives and p-dioxanone. It was observed that these copolymers showed an accelerated in rii:o absorption with an excellent strength retention. For the copolymerization only small quantities of morpholinedione derivatives (up to 15%) were used. Quite recently, Yonezawa et al.') reported the copolymerization of 6-isopropyl-2,5morpholinedione and 6-isopropyl-4-methyl-2,5-morpholinedione with ~,L-dilactide (2). The polymerization yields were rather low and an extensive characterization of the polymers was not described. We now report on the synthesis, characterization and properties of copolymers of glycine and D ,L-lactic acid. The copolymers were prepared by ring-opening polymerization of 6-methyl-2,5-morpholinedione (1) and D ,L-dilactide [3,6-dimethyl-2,5-dioxanedione] (2).

carbohydrate polymers,多糖相关的假设

carbohydrate polymers,多糖相关的假设

carbohydrate polymers,多糖相关的假设Carbohydrate Polymers: Exploring Hypotheses related to PolysaccharidesIntroductionCarbohydrate polymers play a crucial role in various fields, including food science, drug delivery, and packaging materials. The study of these complex macromolecules involves exploring several hypotheses to understand their structure, properties, and applications. In this article, we will delve into some of these hypotheses related to carbohydrate polymers and their potential implications.I. Hypothesis 1: Structure-Property Relationship1.1 Structure and SolubilityThe first hypothesis relates to the relationship between the structure of carbohydrate polymers and their solubility properties. It is believed that the arrangement of monosaccharide units and the presence of functional groups influence the overall solubility. Experimental studies have shown that certain branching patterns and hydrophilic groups enhance solubility while others reduce it. These findings can have significant implications in designing polymer-based drug delivery systems and hydrogels.1.2 Structure and Rheological BehaviorAnother significant aspect is the relationship between the structure of carbohydrate polymers and their rheological behavior. The degree of polymerization, branching, and the presence of cross-linking affect theviscosity and mechanical properties. The hypothesis suggests that well-defined structures with controlled branching can lead to favorable rheological properties, making them suitable for various industrial applications such as thickening agents or gelling agents.II. Hypothesis 2: Biodegradability and Sustainability2.1 Renewable SourcesThe second hypothesis focuses on the potential of carbohydrate polymers derived from renewable sources in promoting sustainability. It is hypothesized that replacing petroleum-based polymers with those derived from plants, such as cellulose or starch, can reduce the environmental impact of various industries. These natural polymers are biodegradable and offer a renewable and sustainable alternative to traditional synthetic materials.2.2 Biodegradation and Environmental ImpactFurthermore, the hypothesis suggests that carbohydrate polymers possess inherent biodegradability due to their chemical structure. Studies have indicated that microbial enzymes can efficiently degrade polysaccharides, contributing to environmental preservation. By understanding the biodegradation mechanisms, researchers can develop strategies for controlled degradation and waste management, minimizing their impact on ecosystems.III. Hypothesis 3: Functionalization and Bioactivity3.1 Functional Groups and ApplicationsThe third hypothesis explores the potential of functionalizing carbohydrate polymers to enhance their bioactivity and expand their applications. By introducing specific functional groups, such as amino or hydroxyl groups, their interactions with biological systems can be modulated. This hypothesis opens up avenues for developing carbohydrate-based biomaterials, including scaffolds for tissue engineering or drug carriers with enhanced targeting abilities.3.2 Bioactivity and Delivery SystemsMoreover, it is hypothesized that certain carbohydrate polymers possess inherent bioactive properties, such as antimicrobial or antioxidant activities. These properties can be harnessed in the development of drug delivery systems or food packaging materials, ensuring safety and stability.ConclusionIn conclusion, hypotheses related to carbohydrate polymers contribute to the advancing field of macromolecular science. Understanding the structure-property relationships, exploring the sustainability angle, and investigating functionalization strategies provide valuable insights for designing innovative materials and improving existing products. Further research and experimentation will continue to deepen our understanding of these hypotheses, leading to the development of novel applications and solutionsin various industries.。

添加PBAT的PLA-PHB复合材料的性能研究

添加PBAT的PLA-PHB复合材料的性能研究

添加PBAT的PLA-PHB复合材料的性能研究包装与⾷品机械 2017年第35卷第4期6添加PBAT的PLA / PHB复合材料的性能研究张倩,王建清,王⽟峰(天津科技⼤学包装与印刷⼯程学院,天津 300222)摘要:为探讨添加不同⽐例的PBAT对PLA / PHB复合薄膜性能的影响,将PBAT按⼀定⽐例与PLA/ PHB共混,采⽤挤出吹塑法制得薄膜并测定其DSC、SEM、⼒学性能、透湿、透氧性能及其可降解性能。

结果表明,PBAT含量为10%时,薄膜的透湿、透氧性能最好;PBAT含量为20%时,拉伸强度由原来的35.86MPa下降到20.75MPa,降幅达42%;⽽断裂伸长率随PBAT含量增加⽽增⼤;此外,其降解失重率也随PBAT含量的增⼤⽽变⼤。

按⼀定⽐例在PLA / PHB中添加PBAT可以改善材料的性能。

关键词:PBAT;PHB;PLA;⼒学性能;可降解性能中图分类号:TS 206.4;TB484.3 ⽂献标志码:A ⽂章编号:1005-1295(2017)04-0006-04 doi:10.3969/j.issn.1005-1295.2017.04.002Study on the Properties of PLA / PHB Composites with PBATZHANG Qian,WANG Jian-qing,WANG Yu-feng(School of Packaging and Printing Engineering, Tianjin University of Science & Technology,Tianjin 300222, China)Abstract:To explore the effect of different concentrations of PBAT on the performance of PLA / PHB composite ?lms, PBAT was blended with PLA / PHB in a certain proportion. The ?lms were prepared by extrusion blow molding and their DSC, SEM, mechanical properties, water vapor permeability, oxygen permeability and biodegradation were measured. The results show that when the content of PBAT is 10%, water vapor permeability and oxygen permeability of the ?lm are the best. When the PBAT content is 20%, the tensile strength decreases from 35.86MPa to 20.75MPa and the decrease is 42% .The elongation at break and biodegradation increase with the increase of PBAT content. Properties of the material can be improved after adding PBAT by a certain proportion.Key words:PLA; PHB; PBAT; mechanical properties;biodegradation0 引⾔近年来,可持续发展、绿⾊环境问题和对化学污染的研究在引领新材料的开发和⽣产⼯艺⽅⾯发挥了重要作⽤。

皮克林乳液法制备聚柠檬酸酯多壁碳纳米管导电弹性体

皮克林乳液法制备聚柠檬酸酯多壁碳纳米管导电弹性体

CHINA SYNTHETIC RESIN AND PLASTICS 研究与开发合 成 树 脂 及 塑 料 , 2021, 38(2): 6由于聚柠檬酸酯生物弹性体的单体及降解产物无毒,制备方法简单环保,生物相容性良好,力学性能与人体软组织相适应并可调控,已发展成为一种非常有潜力的软组织工程支架材料,被用于血管、神经、心肌、软骨等组织的修复与再生[1-2]。

细胞间存在着以电信号传递信息的方式,因此,在组织修复过程中如何实现细胞间的电信号传输对组织的重建有重要影响。

聚柠檬酸酯导电性差,因此,以其制备的支架在促进细胞间信皮克林乳液法制备聚柠檬酸酯/多壁碳纳米管导电弹性体雷婧逸,薛 宇,谷少华,吉亚丽*(东华大学 材料科学与工程学院,上海 201620)摘要:以羟基化多壁碳纳米管(MWCNT)为粒子型乳化剂,与聚柠檬酸-1,8-辛二醇-co-Pluronic F127酯(POFC)预聚体乳液混合,形成类似皮克林乳液的分散液,并通过溶液浇铸及真空固化得到POFC/MWCNT导电弹性体。

结果表明:MWCNT与POFC预聚体超声混合后可形成稳定的乳液,其固化成形后使最终的POFC/MWCNT弹性体表现出良好的导电性能和力学性能;体积电阻率由纯POFC的(6.89±0.55)×108 Ω·cm降至(2.43±0.29)×10 Ω·cm;拉伸强度最高增至纯POFC的2.85倍,断裂伸长率最高增至纯POFC的1.53倍;MWCNT的加入也略微增加了弹性体的疏水性。

关键词:聚柠檬酸酯 多壁碳纳米管 导电弹性体 皮克林乳液 生物降解 中图分类号:TQ 323.4 文献标志码:B 文章编号:1002-1396(2021)02-0006-05Preparation of polycitrate/MWCNT conductive elastomervia Pickering emulsion methodLei Jingyi,Xue Yu,Gu Shaohua,Ji Yali(College of Material Science & Engineering,Donghua University,Shanghai 201620,China)Abstract:The hydroxyl modified multi-walled carbon nanotube (MWCNT) was used as particle emulsifier to mix with poly (1,8-octanediol-co-Pluronic F127 citrate) (POFC) prepolymer emulsion to construct a Pickering-like emulsion and to obtain the POFC/MWCNT conductive elastomers via solution-casting and vacuum thermocuring. The results show that the MWCNT and POFC prepolymer are mixed to form a stable and homogeneous emulsion via facile ultrasonic treatment and the POFC/MWCNT elastomers formed by which perform excellently in electrical conductivity and mechanical properties. The volume resistivity of the elastomers is reduced from (6.89±0.55)×108 Ω·cm (pure POFC) to (2.43±0.29)×10 Ω·cm,whose tensile strength and strain at break are 2.85 times and 1.53 times of those of the pure POFC elastomer. Moreover,the addition of MWCNT results in a little increase in hydrophobicity of the elastomers.Keywords:polycitrate; multi-walled carbon nanotube; conductive elastomer; Pickering emulsion; biodegradationDOI:10.19825/j.issn.1002-1396.2021.02.02收稿日期:2020-09-27;修回日期:2020-12-26。

芦苇_木材复合包装材料制造工艺的研究

芦苇_木材复合包装材料制造工艺的研究
芦苇和杨木刨花的碳水化合物、木素、灰分含 量的测定分别按文献[12 - 14]标准进行。
分别将杨木、纯芦苇、杨木 / 芦苇混合物按照 表 1 所规定的试验设计,放入试验室拌搅机中与 胶粘剂混合,利用规格为 500 mm × 500 mm 的不 锈钢模具将物料手工铺装成板材坯料,在热压机 中压制成刨花板,板材厚度为 10 mm。
15. 5 ± 0. 8 e 0. 35 ± 0. 05 i 32. 2 ± 2. 5 o
15. 7 ± 0. 9 e 0. 38 ± 0. 05 i 29. 9 ± 2. 1 o
16. 1 ± 1. 1 e 0. 41 ± 0. 06 i 27. 5 ± 2. 6 o
注: 数据以测试 10 个试样所得到的测试值的平均值 ± 标准差表示; 在同一列内,平均值 ± 标准差后面的不同 的字母表示在 P ﹤ 0. 05 显著不同
4. 2
2. 2 热压时间与芦苇添加量对芦苇 /木材复合板 性能的影响
板材的物理力学性能见表 3。统计分析结果 表明,板材的物理力学性能受到纤维材料混合比 的影响显著。在所制备的 15 种板材中,O 型( 用 100% 的杨木木片,每毫米板厚热压 40 s 制备的) 板材物理力学性能最高,H、I、J、K、L、M、N 型和 O 型板材满足国家标 准 GB / T4897. 2—2003《在 干 燥状态 下 使 用 的 普 通 用 板 要 求》对 于 静 曲 强 度
压制后,将刨花板放置在试验室中冷却至室 温,放置 7 天后,用装有 60 目砂纸的磨光机对板 材进行表面磨光,再用圆锯机对板材进行切边,并 锯切成标准规格的试样,按照我国国家标准 GB / T4897—1992《刨花板》,测试板材的静曲强度、弹 性模量、内结合强度、2 h 吸水厚度膨胀率等物理 力学指标。所报道的数据是由测试 10 个试样所 得到的测试值的平均值,利用 SAS 软件对试验数

修正摩尔库伦模型下的深基坑变形数值分析

修正摩尔库伦模型下的深基坑变形数值分析

第40卷第2期辽宁工程技术大学学报(自然科学版)2021年4月Vol.40 No.2 Journal of Liaoning Technical University(Natural Science)Apr. 2021 胡建林,孙利成,崔宏环,邵博源,王晟华.修正摩尔库伦模型下的深基坑变形数值分析[J].辽宁工程技术大学学报(自然科学版),2021,40(2):134-140.doi:10.11956/j.issn.1008-0562.2021.02.006HU Jianlin,SUN Licheng,CUI Honghuan,SHAO Boyuan,WANG Chenghua.Numerical analysis of deep foundation pit deformation based on modified Mohr Coulomb model[J].Journal of Liaoning Technical University(Natural Science), 2021,40(2):134-140. doi:10.11956/j.issn.1008-0562.2021.02.006修正摩尔库伦模型下的深基坑变形数值分析胡建林1,孙利成1,崔宏环1,邵博源1,王晟华2(1.河北建筑工程学院土木工程学院,河北张家口 075000;2.北旺建设集团有限公司勘察设计室,河北承德 067000)摘要:为研究修正摩尔库伦模型及其参数对于模拟深基坑变形的影响,运用实验和有限元分析的方法,分析摩尔库伦和修正摩尔库伦模型在模拟深基坑排桩支护变形和地表沉降中的不同特点,通过与实际监测结果进行对比分析,得到了修正摩尔库伦模型对于模拟深基坑变形的适用性.研究结果表明:在地表沉降和排桩水平位移预测上,摩尔库伦模型预测沉降值与实测值相差较大;不同参考应力下的修正摩尔库伦模型预测值与实测值的位移规律曲线较为吻合.研究结论揭示了使用不同参考应力下的修正摩尔库伦本构模型进行基坑开挖变形预测更具参考价值.关键词:基坑变形;修正摩尔库伦模型;模量参数;参考应力;实况监测中图分类号:TU 9 文献标志码:A 文章编号:1008-0562(2021)02-0134-07Numerical analysis of deep foundation pit deformation based onmodified Mohr Coulomb modelHU Jianlin1, SUN Licheng1, CUI Honghuan1, SHAO Boyuan1, WANG Chenghua2(1. College of Civil Engineering, Hebei University of Architectural Engineering, Zhangjiakou 075000, China; 2. Survey and Design Office, Beiwang Construction Group Company with Limited Liability,Chengde 067000, China)Abstract: In order to study the modified Mohr Coulomb model and its parameters for simulating the effect of deformation of deep foundation pit, experimental and finite element analysis method are used to analyze the Mohr Coulomb and modified Mohr Coulomb model pile in the simulation of deep foundation pit support different features of deformation and surface subsidence. Through comparative analysis with the actual monitoring results, the applicability of the modified Mohr Coulomb model for simulating the deep foundation pit deformation is obtained. The results show that in the prediction of surface settlement and horizontal displacement of pile row, the settlement value predicted by using Mohr Coulomb model differs greatly from the measured value; the predicted values of modified Mohr Coulomb model under different reference stresses are more consistent with the measured displacement curves. The research results show that the modified Moor Coulomb constitutive model under different reference stresses is more valuable for the excavation deformation prediction.Key words: foundation pit deformation; modified Moore Coulomb model; modulus parameters; reference stress; monitoring of live收稿日期:2020-05-06基金项目:国家自然科学基金(51878242);张家口市科技局科技计划项目(1911035A);河北建筑工程学院创新基金(XB201918)作者简介:胡建林(1986-),男,河北张家口人,硕士,讲师,主要从事岩土工程方面的研究.第2期胡建林,等:修正摩尔库伦模型下的深基坑变形数值分析1350 引言随着中国城镇化的快速发展,土地资源的紧缺,深基坑工程越来越多,而且基坑周边环境也越来越复杂,在基坑的设计和使用过程中变形控制往往成为主要因素,所以对深基坑支护的变形特性进行研究就显得尤为重要.数值分析被认为是一种有效的研究手段.国内外学者[1-4]基于数值分析对深基坑的变形特性展开了大量研究,也取得了一系列的成果.曾超峰[5]、赵秀绍[6]等运用不同数值分析软件进行基坑开挖数值模拟研究,通过分析计算结果与实测数值的关系,得到适用于不同土层的本构模型.研究表明,在数值分析中本构模型的选择对于计算结果影响很大,所以选择可以正确反映土体变形特征的本构模型对数值分析来说至关重要.由于参数少,而且容易获取,在数值分析中本构模型的选择目前还是以采用以莫尔-库伦破坏准则为基础的理想弹塑性模型为主.但是对于岩土材料来说,Mohr-Coulomb破坏准则存在缺陷,开挖卸载过程中土体的回弹模量和压缩模量均采用弹性模量的假设,会致使采用MC模型的计算结果与实测数据相比相差较大,甚至在变形规律上也往往存在较大差异.王卫东[7]等利用PLAXIS软件中的硬化土模型进行深基坑工程的有限元分析,通过试验获得相关参数,模拟得到较好的预测效果,证明该模型在基坑开挖中的适用性,该模型参数的取值与参考围压应力有关,对于数十米深的基坑,不同深度处围压差距较大,模量参数会随着侧限应力的不同而改变,所以参考应力的选择也至关重要.本文依托于实际工程案例,采用可以考虑加载和卸载时弹性模量不同的修正摩尔库伦模型进行有限元分析,模型参数根据室内试验获取,并且分析模型参数采用不同参考围压对计算结果的影响,获得较好模拟结果,为类似工程提供参考.1 深基坑工程概况深基坑工程场地位于河北省张家口市,地处清水河冲洪积扇中下部地貌单元.基坑呈多边形,南北向长约48 m,东西向宽约37 m,开挖深度约为14 m,边壁支护分为一、二、三、四、五区.支护五区与一栋17层高的住宅楼相邻,该住宅楼基础形式为筏板,埋深为 5 m,与基坑边相距5.6 m,该区采用排桩进行支护,桩径为1.0 m,桩间距为1.2 m,桩长为23 m,依托地锚和既有住宅楼的门墩在冠梁处设置了3道预应力锚索.本文选择五区为研究对象,在基坑开挖前进行了监测点的布置,见图 1.在施工过程中,基坑分4步开挖到底,每次挖深分别为3 m、3 m、5 m、3 m,基坑开挖施工过程见图2.图1 基坑平面及监测布置Fig.1 foundation pit plane and monitoring arrangement图2 基坑分析断面(单位:mm)Fig.2 foundation pit analysis section(unit: mm)2 修正摩尔库伦模型采用MIDAS-GTS/NX有限元分析软件,该软件提供了修正摩尔库伦模型(Modified Mohr Coulomb Model,以下简称MMC模型),该模型是对Mohr-Coulomb模型的优化,弹性模量可以根据加载和卸载设置不同的值,故更适用于基坑开挖数值模拟研究.模型具体参数见表1.118841粉土细砂砂砾-23 m第1步开挖第2步开挖第3步开挖第4步开挖59333辽宁工程技术大学学报(自然科学版) 第40卷136 表1 MMC 模型参数 Tab.1 MMC model parameters参数说明参考值/(kN ∙m -1)ref 50E标准三轴试验中的割线模量 试验获取 E 主固结仪加载中的切线模量 试验获取 E三轴试验卸载/重新加载模量试验获取 c ′ 有效黏聚力 试验获取 φ′ 有效内摩擦角试验获取 K 0 正常固结下的侧压力系数1-sin φ′[8] ψ 最终剪胀角 φ′-30° ν 泊松比 工程地质手册[9]R f 破坏比 0.9σref 参考压力由基坑深度确定m 应力水平相关幂指数0.5[10] α 帽盖形状系数 根据K 0得到 β帽盖硬化系数根据E 得到修正摩尔库伦模型中模拟结果的不同受ref 50E 、ref oedE 、refur E 这3个模量影响较大,现将3个模量的关系表示分述如下:对于自然状态土体,一次加载时的应力应变行为是高度非线性的,不同的模量取决于应力水平的不同.因此用参数E 50表示一次加载的应力相关模量[11],代替初始模量E 作为小应变的切线模量. E 50为3ref5050refcot ()cot p mpc E E c σφσφ+⋅=+⋅, (1) 式中,ref50E 是与参考应力σref 相对应的参考割线模量,MPa ;实际的模量取决于较小的主应力σ3,即三轴试验中的有效围压,MPa ,故MMC 模型的参考应力σref 用某一σ3确定值来表示,根据不同的σ3相对应的方程联立,从而准确得出参考割线模量ref50E .见图3,硬化型破坏曲线取15%轴向应变所对应的偏应力值为破坏值q f ,软化型破坏曲线偏应力峰值点为破坏值q f ,1/2破坏值与原点的连线斜率即为参考割线模量ref50E.图3 三轴单次加载试验应力应变Fig.3 stress-strain of triaxial single loading testMMC 模型突出了两种主要的硬化类型,即剪切硬化和压缩硬化.剪切硬化是用来模拟加卸载过程中不可逆应变的主要偏载现象.卸载再加载应力路径采用另一种应力相关模量[11]ur E 为3refur ur ref cot ()cot p m pc E E c σφσφ+⋅=+⋅,(2)式中,ref ur E 为卸载再加载的参考加卸载模量,见图4,两条直线斜率表示峰值应变前后加卸载模量,可以发现,加卸载模量大小不受轴向应变影响,只与参考应力σref 相对应.由于剪切模量被广泛使用,加卸载模量应用较少,所以将剪切模量与加卸载模量相联系.在胡克的弹性理论中,弹性模量E 和剪切模量G 之间的换算公式为21E G υ=+().由于E ur 是一个真正的弹性模量,因此可以写成ur ur ur 21)E G υ=+(,其中G ur 是弹性剪切模量.偏应力q /k P a轴向应变/%图4 三轴加卸载试验应力应变Fig.4 stress-strain of triaxial loading and unloading test压缩硬化是用来模拟在固结仪加载和各向同性加载中由于初次压缩而产生不可逆塑性应变的现象.与基于弹性的模型相比,弹塑性MMC 模型不涉及三轴模量E 50和E oed 之间的固定关系.因此E oed [11]为3refoed oed ref cot ().cot p m pc E E c σφσφ+⋅=+⋅ (3)图5 固结试验p-εFig.5 stress-strain curve of consolidation test如图5,固结试验得到p-ε曲线,将曲线拟合后,求得在每一级轴向载荷下的切线斜率,即为在该级参考应力下的参考切线模量,因为压缩实验是无侧限试验,该级应力参考大主应力,参考应力σref 用某一σ1确定值来表示,根据不用的σ1相对应的方程联立,从而准确得出参考切线模量.0.020.04 0.06 0.08 0.10轴向应变ε50150250350450轴向载荷p /k P a土1 土2土1拟合曲线土2拟合曲线第2期胡建林,等:修正摩尔库伦模型下的深基坑变形数值分析1373 参数获取及模型说明3.1 模拟参数取值分析为获得模拟参数,根据工程要求进行了室内三轴与固结试验.三轴试验采用固结不排水试验,围压设置分别为50 kPa、100 kPa、150 kPa、200 kPa、250 kPa,根据模型参数获取需要同时进行卸载再加载试验.前人在一些深基坑工程中固定参考应力σref 为100 kPa进行参数分析及数值模拟,但是14 m 的深基坑显然选用一个参考应力是不合适的.为了进行更加精确的分析,取0~3 m深的土层的参考应力σref为50 kPa,3~5.5 m深的土层的参考应力σref为100 kPa,5.5~8 m深的土层的参考应力σref为150 kPa,8~11 m深的土层的参考应力σref为200 kPa,11~14 m深的土层的参考应力σref为250 kPa.上述试验在每一种参考应力下求得的参数以及规范建议值见表2、表3.表2 土体物理力学性质指标Tab. 2 physical and mechanical properties of soil地层编号土体名称干密度/(g∙cm-3)含水质量分数/%容重/(kN∙m-3)泊松比ν孔隙比e内摩擦角φ′/(º)粘聚力c′/(kPa)膨胀角ψ/(º)1 粉土 1.80 17.4 180.300.78224.236.62 细砂 1.825 3.2 18.250.260.78 40 103 砂砾 2.00 200.210.7244.8 14.8表3 MMC本构模型参数Tab.3 MMC constitutive model parameters地层编号土体名称基坑深度/m侧压力系数K0幂指数m压缩模量E S/MPa割线模量ref50E/MPa切线模量refoedE/MPa卸荷弹模refurE/MPa 0~3 3.78 5.52 6.49 13.43~5.5 6.6 7.33 8.2 30.21 粉土5.5~8 0.60 0.59.0 9.16 9.3 78.92 细砂8~11 0.36 0.5 10 10.12 10.58 151.53 砂砾 11~14 0.30 0.5 40 40 40 850 3.2 模型说明进行数值模拟材料设定时,围护结构及锚索均按弹性材料考虑,围护桩采用梁单元,锚索采用植入式桁架单元.细砂土几乎没有粘聚力,输入0.3 kN/m2的值以避免分析发生错误.未开挖前应施加土体在自重状态下的初始应力场,并将初始位移置零.由于混凝土和土体的变形模量有很大的差异,为了模拟围护结构与土之间的共同作用,必须在两者之间设置析取接触面单元[12].布置与实际情况相同大小的均布载荷模拟基坑附近的建筑载荷.有限元模型底边与竖向边界都为全约束,为避免约束影响,模拟深基坑水平向长度是基坑深度的7倍,约100 m,竖向深度为基坑深度的3倍,约50 m,有限元模型见图6.图6 有限元模型Fig.6 finite element model将上述求得的岩土参数分别代入MC模型、MMC模型进行数值模拟分析.4 结果分析通过探究深基坑不同深度处设置不同参考应107 m7 m5m辽宁工程技术大学学报(自然科学版) 第40卷138 力的必要性以及MMC 模型的优越性,采用3种方法进行数值分析,分别为单一参考应力下的 MMC 本构模型计算、不同参考应力下的MMC 本构模型计算、MC 本构模型计算,分别将3种计算结果与深基坑实际监测变形位移进行对比分析,得到不同施工步骤下的变形值,见图7、图8.其中MC 表示采用摩尔库伦本构模型模拟基坑开挖的变形情况,MMC 表示采用修正摩尔库伦本构模型在不同参考应力下模拟基坑开挖变形情况,MMC100表示采用修正摩尔库伦本构模型在100 kPa 单一参考应力条件下模拟基坑开挖变形情况,实测表示现场基坑开挖测得的地表沉降和水平位移情况.4.1 地表沉降变形分析图7分别表示为第1、2、3、4步开挖后地表沉降情况.-0.6-0.4-0.200.2距排桩距离/mMC MMC MMC100实测20406080100(a )第1步(b )第2步-8-6-4-20距排桩距离/mMCMMC MMC100实测20406080100(c )第3步 (d )第4步图7 不同施工步骤开挖完成后地表沉降对比Fig.7 comparison of surface settlement under different construction steps由图7可知,在实际开挖过程中,基坑周边地表沉降随着距基坑边壁距离不断增大而呈现类似对勾曲线形式,即沉降先增加后减小最后逐渐趋于零,其中在距基坑边壁10 m 左右地表沉降达最大值.由图7对比发现,基坑周边地表随基坑不断开挖沉降逐渐增大,此过程中MC 模型预测值与实测值相差较大,发生最大沉降处距基坑边壁距离与实测值相差近5 m ,计算沉降影响距离是实测沉降影响距离的2倍左右;但MMC 模型预测沉降与实测值相差不大,且沉降规律较为吻合.详细对比MMC 和MMC100预测沉降结果可知,MMC100在预测开挖前期沉降时要略微小于MMC ,但在开挖后期MMC 和MMC100预测沉降几乎一致,说明低围压下使用100 kPa 较大参考应力是不合适的,依据土压力理论可知,深基坑越深,围压越大,参考应力也随之增大才会与实际情况相符合.总的来说,使用不同参考应力下的MMC 本构模型进行沉降预测更具参考价值. 4.2 排桩变形分析图8分别表示第1、2、3、4步开挖后排桩水平位移情况.第2期 胡建林,等:修正摩尔库伦模型下的深基坑变形数值分析139(a )第1步 (b )第2步(c )第3步 (d )第4步图8 不同施工步骤开挖完成后排桩位移对比Fig.8 comparison of pile displacement in different construction steps由图8可以看出,当每一施工步完成后,排桩水平位移沿桩顶到桩底呈现先增大后减小最后趋于零的趋势,其中在距地面6 m 深左右排桩水平位移达到最大值.由图8对比发现,排桩水平位移随基坑开挖而逐渐增大,此过程中MC 模型计算位移值与实测位移值相差较大,且发生最大水平位移处排桩深度与实际深度不符;但MMC 模型计算位移与实测值相差不大,且位移规律较为符合.详细对比MMC 和MMC100计算值可知, MMC100在计算开挖前期水平位移时要略微小于MMC ,但在开挖后期MMC 和MMC100计算水平位移值几乎一致,说明低围压下使用100 kPa 较大参考应力是不合适的,深基坑越深,围压越大,参考应力也随之增大较能符合实际情况.总的来说,使用不同参考应力下的MMC 本构模型进行水平位移计算更具参考价值.5 结论考虑土体模量和应力相关的影响,理想的弹塑性本构模型(MC 模型)预测结果与实测位移变形存在较大的差距.采用MMC 模型,进行排桩变形和地表沉降的数值模拟,将单一参考应力与不同参考应力下的MMC 本构模型计算的地表沉降和水平位移与深基坑实际监测变形位移进行对比分析,得到以下结论:(1)在地表沉降计算上,基坑周边地表沉降随着距基坑边壁距离不断增大而呈现先增加后减小最后逐渐趋于零的趋势,其中在距基坑边壁 10 m 左右地表沉降达最大值.基坑周边地表随基坑开挖沉降逐渐增大,此过程中MC 模型预测值与实测值相差较大,发生最大沉降处距基坑边壁0.05 0.10 0.15水平位移/mm0.511.5水平位移/mm-25MC MMC MMC100实测MC MMC MMC100 实测MC MMC MMC100实测-5-10-15-20-25深度/m0-5-10-15-20深度/m0水平位移/mm-251230 -5-10-15-20深度/m246水平位移/mmMC MMC MMC100 实测-5-10-15-20-25深度/m辽宁工程技术大学学报(自然科学版)第40卷 140距离与实测值相差近5 m,计算沉降影响距离是实测沉降影响距离的2倍左右,但MMC模型预测沉降与实测值相差不大,且沉降规律较为吻合.(2)在排桩水平位移计算上,排桩水平位移沿桩顶到桩底呈现先增大后减小最后趋于零的趋势,其中在距地面约6 m深基坑位移达到最大值. MC模型计算位移计算值与实测位移值相差较大,且发生最大水平位移处排桩深度与实际深度不符,但MMC模型计算位移与实测值相差不大,且位移规律较为符合.(3)对比MMC和MMC100计算沉降结果可知,MMC100在计算开挖前期沉降位移时要略小于MMC,但在开挖后期MMC和MMC100预测变形几乎一致,说明低围压下使用100 kPa较大参考应力是不合适的,依据土压力理论可知,深基坑越深,围压越大,参考应力也随之增大才会与实际情况相符合.总的来说,使用不同参考应力下的MMC本构模型进行沉降预测更具参考价值.参考文献(References):[1] 李飞,徐劲,张飞,等.渗流作用下深基坑开挖抗隆起破坏数值模拟[J].地下空间与工程学报,2017,13(4):1 088-1 097.LI Fei,XU Jin,ZHANG Fei,et al.Numerical simulation of anti-uplift failure of deep foundation pit excavation under seepage[J].Journal of Underground Space and Engineering,2017,13(4):1 088-1 097. [2] 陈小雨,袁静,胡敏云,等.相邻深大基坑安全距离理论分析与数值模拟[J].地下空间与工程学报,2019,15(5):1 557-1 564,1 572.CHEN Xiaoyu,YUAN Jing,HU Minyun,et al.Theoretical analysis and numerical simulation of safety distance of adjacent deep and large foundation pit[J].Journal of Underground Space and Engineering,2019,15(5):1 557-1 564,1 572.[3] YUAN Changfeng,YU Haojie,YUAN Zijin,et al.Numerical simulationof impact caused by construction of high-rise building upon adjacent tunnels[J].Geotechnical and Geological Engineering, 2019,37(4):3 171-3 181.[4]WANG Jianxiu,FENG Bo,YU Haipeng,et al.Numerical study ofdewatering in a large deep foundation pit[J].Environmental Earth Sciences,2013,69(3):863-872.[5] 曾超峰,薛秀丽,郑刚.软土区基坑预降水引起支护墙侧移的典型参数影响研究[J].岩土力学,2017,38(11):3 295-3 303,3 318.ZENG Chaofeng,XUE Xiuli,ZHENG Gang.Study on the influenceof typical parameters on lateral displacement of retaining wall caused by predewatering of foundation pit in soft soil area[J].Rock and Soil Mechanics,2017,38(11):3 295-3 303,3 318.[6] 赵秀绍,艾成刚,王旭,等.砂性土深基坑开挖与支护变形监测的数值分析[J].河南科技大学学报(自然科学版),2014,35(6):61-65+8.ZHAO Xiushao,AI Chenggang,WANG Xu,et al.Numerical analysis of excavation and support deformation monitoring of deep found-ation pit with sandy soil[J].Journal of Henan University of Science and Technology(Natural Science Edition),2014,35(6):61-65,8.[7] 王卫东,王浩然,徐中华.基坑开挖数值分析中土体硬化模型参数的试验研究[J].岩土力学,2012,33(8):2 283-2 290.WANG Weidong,WANG Haoran,XU Zhonghua.Experimental study on parameters of soil hardening-g model in numerical analysis of foundation pit excavation[J].Rock and Soil Mechanics,2012,33(8):2 283-2 290.[8] 罗耀武,凌道盛,陈云敏,等.环形超深基坑围护结构受力变形特性分析[J].岩土力学,2011,32(02):617-622.LUO Yaowu,LING Daosheng,CHEN Yunmin,et al.Analysis of stress and deformation characteristics of ring super deep foundation pit envelope[J].Rock and Soil Mechanics,2011,32(2):617-622.[9] 《工程地质手册》编写委员会.工程地质手册[M].北京:中国建筑工业出版社,2018.[10] 徐中华,王卫东.敏感环境下基坑数值分析中土体本构模型的选择[J].岩土力学,2010,31(1):258-264,326.XU Zhonghua,WANG Weidong.Selection of soil constitutive model in numerical analysis of foundation pit under sensitive environment[J].Rock and Soil Mechanics,2010,31(1):258-264,326.[11] 李建伟,陈沅江,杜金龙.砂卵石地层基坑开挖土体本构模型辨识研究[J].地下空间与工程学报,2013,9(2):223-228.LI Jianwei,CHEN Yuanjiang,DU jinlong.Identification of soil constitutive model for sand and pebble foundation pit excavation[J].Journal of Underground Space and Engineering, 2013,9(2):223-228.[12] 俞建霖,龚晓南.深基坑工程的空间性状分析[J].岩土工程学报,1999(1):24-28.YU Jianlin,GONG Xiaonan.Spatial character analysis of deep foundation pit engineering[J].Journal of Geotechnical Engineering, 1999(1):24-28.。

生物可吸收材料的特点及在骨科中的应用说明书

2612 |中国组织工程研究|第25卷|第16期|2021年6月生物可吸收材料特点及在骨科中的应用李晏乐1,岳肖华1,聂 真2,张峻玮1,李朝辉1,聂伟志1,姜红江1文题释义:生物可吸收材料:是指能够在体内生物环境中被降解和吸收的材料,因其用于制作人体植入装置可以避免植入物长期植入人体组织导致炎症或其他症状的发生及减轻患者二次手术的痛苦,使其在生物医学多个领域中得到广泛应用。

生物相容性:指生命体组织对非活性材料产生反应的一种性能,一般是指材料与宿主之间的相容性。

生物材料植入人体后对特定的生物组织环境产生影响和作用,生物组织对生物材料也会产生影响和作用,两者的循环作用一直持续,直到达到平衡或者植入物被去除。

摘要背景:生物可吸收材料在十几年的临床应用中展现了明显优势,在生物医学多个领域中得到广泛应用。

目的:综述现阶段生物可吸收材料的特点及其在骨科中的应用进展。

方法:应用计算机检索万方数据库、CNKI 数据库、维普数据库和PubMed 数据库中的相关文献,中文检索词为“生物可吸收材料、生物可吸收金属材料、生物可吸收无机材料、高分子材料、生物复合材料”,英文检索词为“Bioabsorbable/Bioabsorbable material 、Metal material 、Polymer material 、Biocomposites ”。

结果与结论:可吸收金属材料具有较好的机械性能;聚合物材料腐蚀机制明确,可以预测其在体内外腐蚀行为和腐蚀速率,但承重性能不如可吸收金属材料;生物陶瓷材料经过一定处理后具有良好的生物相容性、骨传导性及骨结合性,但脆性大且不易成型;生物复合材料不仅兼具组分材料的性质,还能获得单一组分材料所不具有的新性能,具有广泛的应用的前景。

关键词:骨;材料;生物可吸收;高分子材料;生物复合材料;生物相容性;骨组织工程;综述Characteristics and application of bioabsorbable materials in orthopedicsLi Yanle 1, Yue Xiaohua 1, Nie Zhen 2, Zhang Junwei 1, Li Zhaohui 1, Nie Weizhi 1, Jiang Hongjiang 11Wendeng Orthopedic Hospital of Shandong Province, Weihai 264400, Shandong Province, China; 2School of Materials Science and Engineering, Beijng Institute of Technology, Beijing 100081, ChinaLi Yanle, Master, Physician, Wendeng Orthopedic Hospital of Shandong Province, Weihai 264400, Shandong Province, ChinaCorresponding author: Nie Weizhi, Chief physician, Wendeng Orthopedic Hospital of Shandong Province, Weihai 264400, Shandong Province, ChinaCo-corresponding author: Jiang Hongjiang, Chief physician, Wendeng Orthopedic Hospital of Shandong Province, Weihai 264400, Shandong Province, ChinaAbstractBACKGROUND: Bioabsorbable materials have shown obvious advantages in clinical application for more than ten years, and have been widely used in many biomedical fields.OBJECTIVE: To review characteristics of bioabsorbable materials and their application in orthopedics.https:///10.3969/j.issn.2095-4344.3148投稿日期:2020-05-13送审日期:2020-05-16采用日期:2020-06-17在线日期:2020-10-21中图分类号: R459.9;R318.08;R-1文章编号:2095-4344(2021)16-02612-06文献标识码:A1山东省文登整骨医院,山东省威海市 264400;2北京理工大学材料学院,北京市 100081第一作者:李晏乐,女,1993年生,湖北省荆州市人,汉族,2019年中国中医科学院毕业,硕士,医师,主要从事中西医结合治疗骨与关节疾病方面的研究。

塑料降解过程中微生物的作用分析

塑料降解过程中微生物的作用分析引言近年来,全球范围内塑料污染问题日益严重,这对生态环境造成了巨大的威胁。

为了寻找解决塑料污染问题的可行途径,学者们逐渐关注到了微生物在塑料降解中的作用。

微生物通过分泌酶类和代谢物质,参与到了塑料降解过程中,在一定程度上减轻了塑料污染问题。

本文将对塑料降解过程中微生物的作用进行分析和探讨。

1. 微生物介导的塑料降解机制塑料降解是一个复杂的过程,其中微生物发挥了重要作用。

微生物可以通过两种方式介导塑料降解:表面降解和内部降解。

表面降解是指微生物附着在塑料表面,分泌酶类降解塑料表面;内部降解是指微生物通过吞噬塑料颗粒,以塑料为碳源进行代谢。

这两种方式都能够促进塑料的降解,将塑料分解成更小的颗粒。

2. 微生物降解塑料的酶类微生物在塑料降解过程中所分泌的酶类是降解塑料的关键因素之一。

酶类可以分解塑料的结构,使之变得更加容易降解。

目前已经发现有多种微生物分泌的酶类能够降解塑料,其中较为重要的有聚酯酶、脂肪酶、淀粉酶和纤维素酶等。

这些酶类通过降解塑料的主要构成物质,加速了塑料降解的过程。

3. 微生物代谢产物的作用在塑料降解过程中,微生物代谢产物也对降解过程起到了重要的作用。

微生物通过将塑料降解产物转化为能量和有机物,为微生物自身提供了生存必需的营养来源。

同时,微生物代谢产物也可能具有生物活性,例如抗菌性、抗氧化性等,对环境和生态系统具有潜在的影响。

4. 微生物降解塑料的挑战和展望尽管微生物在塑料降解中具有显著的作用,但仍面临一些挑战。

首先,微生物降解塑料的速度相对较慢,需要较长的时间才能完全降解。

其次,微生物可能会分泌一些有毒代谢产物,对环境造成潜在危害。

此外,微生物降解塑料的效率和适用范围有限,无法应对所有类型的塑料污染。

因此,我们需要进一步研究和开发更高效、环境友好的微生物降解技术。

结论微生物在塑料降解过程中发挥着重要的作用。

通过分泌酶类和代谢产物,微生物能够有效地降解塑料,减轻塑料污染对生态环境的影响。

环境工程专业英语课后习题部分答案

环境工程专业英语课后习题部分答案(第二版)——钟理主编Exercises 0Write an article about yourself, including personal background, family, education, interests, ambitions and others. Write as much as you would like to.About MyselfMy name is Qin Zheng. I am from Xiangshan, which is a small town in Ningbo District. It is very beautiful and nowadays a lot of films and TV programmes are shot there. More and more people went there for a holiday. The people there are laborious, virtuous and warm hearted. I’m much felicitated that I was born and raised up there. It is my hometown and I will love it forever.My family has been engaged in farming for generations. My relatives are all farmers. My ancestors and my parents have plotted all their life on thin ground. In my family, my father, my mother and I, that’s all.Now I’m in grade three, a third year student in Jiaxing University. Since I have made a lot of friends, I find life in this university both happy and rewarding. I live happily here. I like climbing mountains. I like singing, listening classical music. I like essay, also novel, but my favorite is essay. Unfortunately, although I have read so much, my writing is still not very good.I hope that I can be an useful person for our society. But at the moment, my knowledge is still not rich enough. In order to realize my objectives in life, I will study hard and gain more and more skills and knowledge, such as speaking English and using computer. If I have enough money after graduation from school, I will study driving. It is good to have a good job when someone can drive a car or a bus.Unit 1 (P.4)1 Based on Reading Material, put the following into Chinese.life expectancy :耐用期限,平均寿命poverty-stricken :贫穷的,贫困的,贫乏的smog-laden air :烟雾弥漫的天空,烟雾缭绕的空气,阴霾天气global conditions :全球状况haves and have-nots :富人和穷人underprivileged :社会地位低下的,相对贫困的,生活水平低下的,弱势的savanna :热带大草原,稀树草原predator :食肉动物,捕食者environmental disruptions :环境破坏,环境失调2 Put the following into English.农药—pesticide / agricultural chemicals (including: pesticide, germicide, herbicide)化肥—chemical fertilizer有机废物—organic wastes微生物—microorganism / microbe衰减—attenuation阻滞的—retardant / blocking稀释—dilution添加剂—additive合成塑料—synthetic plastic再生—regenerationUnit 3 (P.19)1 Put the following into Chinese.(1) Raw materials that lose their usefulness because they sit on the shelf too long become waste. 原材料放置过久会失去它们本身性能而变成废弃物。

GMA对PLA_g_MAH_GMA共聚物性能的影响_先旭阳


89
GMA对PLA-g-MAH/GMA共聚物性能的影响
试验材料的二氧化碳理论释放量按式(4)计算:
(4)
式中, 为二氧化碳的理论释放量,mg;m为 引入试验系统中试验材料的质量,mg;XC为试验材 料中的含碳量,由化学式决定,用质量分数表示;44 和12分别表示CO2的相对分子质量和C的相对原子 质量。
文章编号:1005-3360(2014)05-0088-05
GMA对PLA-g-MAH/GMA共聚物性能的影响
Effect of GMA on Property of PLA-g-MAH/GMA Copolymer
先旭阳,张 举,吴智华 Xian Xuyang, Zhang Ju, Wu Zhihua
聚甲基丙烯酸缩水甘油酯(GMA)常用于改善 聚 酯 的 相 容 性。 本 实 验 采 用 熔 融 接 枝 法 制 备 了 GMA、MAH共接枝PLA(PLA-g-MAH/GMA)。对比 了共接枝与MAH接枝PLA(PLA-g-MAH)在接枝率 和 力 学 性 能 上 的 差 异。 考 察 了 接 枝 单 体GMA用 量、接枝反应时间及接枝反应温度对PLA-g-MAH/
倒入100ml乙醇中沉淀洗涤抽滤重复化物于50真空干燥2414接枝率测定141gma准确称取02纯化后的接枝物样品在70ml四氢呋喃中回流溶解稍微冷却即准确移入4ml度为001moll的hcl异丙醇溶液再加热回以酚酞作指示剂用005moll的naoh乙醇标准溶液滴定至终点
生物与降解材料
Vol.42 No.5 (Sum.265) May 2014
用 三 氯 甲 烷 溶 解 接 枝 产 物,将 溶 解 液 加 入 Soxhelt抽提器中抽提16 h,每小时回流5次以除去 低聚物和未反应单体,将一次纯化物在50℃恒温烘 箱内烘至恒重,然后重新加入到100 ml三氯甲烷溶 液中回流溶解1 h,温度为60℃。倒入100 ml乙醇中 沉淀、洗涤、抽滤,重复3次。将二次纯化物于50℃ 真空干燥24 h。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Biodegradation and Mechanical Property of Polylactic Acid/Thermoplastic Starch Blends with Poly (ethylene glycol)XUE Ping, WANG Kejian, JIA Mingyin *, YANG Meijuan(Institute of Plastics Machinery and Engineering, Beijing University of Chemical Technology, Beijing 100029, China )Abstract: The effects of adding poly (ethylene glycol) (PEG) into polylactic acid/thermoplastic starch blends (PLA/TPS) on the properties were investigated by DSC, SEM and mechanical property-testing. The blends of PLA/TPS blended with increasing content PEG exhibited lower temperature of glass transition (T g ) and lower temperature of melting (T m ) as well as higher melt flow index (MFI), which indicates the plasticization and processability of the composites were dramatically improved. The tensile strength, fl exural strength and izod impact strength of PLA/TPS (80/20) increased at first and then decreased with increasing content of PEG due to stronger interfacial adhesion. The optimized mechanical property can be obtained for the blend with 3 wt % PEG. The samples containing PEG after soil burial for 5 months showed quicker degradation being accompanied with large weight loss and mechanical properties loss.Key words:biodegradation;mechanical property;polylactic acid; starchDOI 10.1007/s11595-013-0658-91 IntroductionWith the increased applications of plastics, a remarkable amount run into ecosystem as wastes [1]. The resulting waste plastic products caused serious environmental pollution being threat to ecology and human health. One of the important ways to reduce the waste plastic pollution is to develop biodegradable materials from renewable resources being capable of natural degradation either inside or outside of organisms.Polylactic acid (PLA) is widely studied and utilized in the areas of tissue engineering, bone healing materials and drug delivery because of its good biodegradability, biocompatibility and reasonable mechanical properties. Pure PLA degrades slowly to carbon dioxide, methane and water in the natural environment over a period of several months to 2 years [2]. However, the relatively higher price of PLA than conventional petroleum polymers prevents its widecommercialization. In addition, amorphous polylactide is rigid and brittle under ambient conditions with an elastic modulus of about 3 GPa and a low ability for plastic deformation as well as T g of 50-60 ℃[3,4].In order to modify the disadvantageous properties, PLA blends have been prepared with other polymers such as polyethylene oxide [5], polyvinyl acetate [6], polyethylene glycol [7] and polyhydroxy butyrate [8]. Starch was often used to blend with PLA to enhance the biodegradable characteristics and to reduce the cost because starch was commercially available and was readily derived from renewable resources [9-12].However, starch is a hydrophilic polymer absorbing water while PLA is hydrophobic and water- resistant. Previous studies have shown that the blend of PLA and thermoplastic starch (TPS) were of rather poor mechanical properties due to poor adhesion between components especially at high starch concentration [13,14].Blend of PLA/TPS showed lower tensile strength and elongation in comparison with neat polylactide [15].In addition, water absorption increases with starch concentration resulting in the brittleness of PLA/TPS, which is a major drawback in many applications. To remedy this limitation, some plasticisers were used. Poly (ethylene glycol) (PEG) was found to be effective in modifying PLA [16,17].With the addition of the modifi ers, the mechanical property and the degradation property of PLA[18] can be weakened regardless of pure PLA was completely degraded to CO2, water and a small amount of biomass, and even the blends were buried in soil[19,20]. However, relatively few systematic studies on the effects of the degradation of PLA/TPS with the addition of compatibilizer were made.In this work, blends of PLA/TPS were prepared for the purpose of combining the good mechanical properties of PLA with the low cost of thermoplastic starch. PEG as a compatibilizer was used in order to achieve strong interfacial adhesion improving the thermal and mechanical properties. Besides, the effect of PEG on the weight loss rate and mechanical property of the injection molded PLA/TPS bars was also examined after being buried in soil over 5 months.2 Experimental2.1 MaterialsPLA (3501D) was purchased from Cargill (USA), and it had a weight-average molecular weight of about 100 000 Da and was polymerized mainly from L-lactic acid. Thermoplastic wheat starch (12% moisture) was obtained from Chengdu New Keli Chemical Science Co. Ltd, China. The contents of PLA and thermoplastic wheat starch used in the study were 80 wt% and 20 wt%, respectively. Polymeric PEG (PEG-400) with weight-average molecular weight of 400 g/mol was obtained from Tianjin Letai Chemical Reagent Factory. The content of PEG is the percent of total weight of PLA and TPS and the contents ranged from 0 to 5 wt%.2.2 Blending and processingPrior to blending, PLA and TPS were dried for 24 h at 80 ℃ and 50 ℃ respectively. Blends of PLA /TPS with different contents of PEG were then dry-blended in a 5 L high intensity kinetic mixer at 3 200 r/min. After compounding, materials were pelletized using a twin-screw extruder of diameter 20 mm by Kunshan Kesun Rubber & Plastic Machinery Co., Ltd. The temperatures of the extruder barrel from feed zone to die were 160, 165, 165, 170 and 170 ℃. The screw rotation speed was 330 r/min. The pellets were dried at 50 ℃ for at least 24 h before injection molding into bar samples. The temperatures of the injection-molding machine were 165 ℃(near the inlet), 170 ℃ and 175 ℃ with injection pressure of 8 MPa.The injection time was 8 s and the cooling time was 60 s.The injection molding bars were sewn into nylon mesh bags and buried in soil approximately 150 mm deep and over 5 months for degradation analysis.2.3 Testing and analyses2.3.1 Mechanical propertiesSamples were oven-dried at 80 ℃ for 24 h before testing. Tensile strength and elongation at break were measured with a crosshead speed of 10 mm/min and a gauge length of 25 mm on a Universal Testing Machine (INSTRON 1185, UK) in terms of ASTM D 638. Flexural tests were carried out according to ASTM D 790. A three-point loading system was utilized with a crosshead speed of 1.3 mm/min. The MOE (Flexural modulus) and MOR (fl exural strength) were calculated in the standard. Unnotched izod impact strength was tested on an impact tester UJ-40 (Hebei Chengde Materials Laboratory Machines Plant ) according to ASTMD256-97. Each reported values were the average for fi ve samples.2.3.2 Melt fl ow index (MFI)Melt flow index (MFI) of the PLA/TPS blends was tested using a capillary rheometer (PXRZ-400A, Jilin University Instrument Factory, Jilin, China).The temperature of the die was 190 ℃ and the load was 2.16 kg.2.3.3 Differential scanning calorimetry (DSC)The thermal properties were determined via DSC (PerkinElmer TGS-2, USA) according to ASTM Method D 3417-83. About 5-10 mg of each sample was sealed in an aluminum pan. Thermal history of a sample was relaxed by heating it from 20 to 200 ℃ at a rate of 10 ℃/min, holding it at 200 ℃ for 10 min and then cooling it to 20 ℃ at the same rate. The thermal behavior was recorded by the reheating of the sample from 20 to 200 ℃ at the same rate. The heats of fusion and crystallization were determined.2.3.4 Scanning electron microscopy (SEM)The microstructure of fracture surfaces of samples was observed with a scanning electron microscope (S-4700, Japan Hitachi Inc.) at a working distance of approximately 25 mm, a voltage of 15 kV, and a probe current of 6 × 10-15A. The samples were cooled in liquid nitrogen to be broken. The fracture surface was vacuum-coated with gold for SEM analysis.3 Results and discussion3.1 Mechanical property of PLA/TPS/PEGEffect of the content of PEG-400 on the melt fl ow index (MFI) of PLA/TPS blend is shown in Fig.1. It can be seen that the MFI of the composites is increasedgreatly even though a small amount of PEG-400 is contained, which indicates that adding PEG-400 effectively improves the plasticization of the blends and decreases the melt viscosity. It can also be found from the figure that the improvement of MFI of the composites is not large when the content of PEG-400 is more than 3 wt%, considering that the slope increases slowly.Table 1 shows the effect of content of PEG-400 on the mechanical properties of the PLA/TPS blend. It can be seen from Table 1 that tensile strength, MOR and MOE of the blends all increase when adding PEG-400 due to the improvements of compatibility and interfacial adhesion between PLA and TPS. However, these values decrease when the content of PEG is more than 3 wt%. One hand, with the large amount of PEG-400, the redundant part penetrates the inside of the TPS particles and breaks the internal hydrogen bond resulting in the decreasing of the force between TPS molecules and declining of the strength. On the other hand, more content of PEG-400 easily induces the aggregation and decreases the dispersibility. In this way, the best mechanical properties would be obtained with 3 wt% content of PEG-400.Table 1 also shows that elongation of the blend decreases greatly at fi rst due to poor adhesion between matrix and TPS and then increases with enhancing content of PEG-400, which indicates PEG-400 as one kind of compatibilizers improves the motion ability of macromolecular chain resulting in the enhancement of toughness of the PLA/TPS blend. It also can be found from Table 1 that unnotched izod impact strength of the PLA/TPS blend decreases when the content ofPEG-400 is less than 1 wt%.Then, unnotched izod impact strength increases until the content of PEG-400 gets to 3 wt%. However, when continuing to increase the content of PEG-400, unnotched izod impact strength decreases.3.2 Thermal property of PLA/TPS/PEGThe DSC curves of the composites are shown in Fig.2. It can be seen from Fig.2 that blends of PLA and TPS exhibit cold-crystallized peak temperature around 110 ℃ and melting peak temperature around 150 ℃. The phase segregation of the blends of PLA/TPS is also observed based on the presence of double peaks, especially for the blends without PEG-400(curve a), which indicates the poor compatibility of PLA/TPS and the lack of interaction between the two polymers. However, the distance of the double peaks becomes narrow and small with increasing content of PEG whose content is less than 3 wt%, which proves that PEG-400 is effective to enhance the interfacial interaction of PLA/TPS composites. However, the distance of the double peaks becomes large when the content of PEG is more than 3 wt% (curve d), which indicates the poor compatibility of PLA/TPS because of the aggregation of redundant PEG-400.To take a closer look at the effect of content of PEG-400 on thermal properties of composites, the values of glass transition temperature (T g ), melting enthalpy (H m ) ,as well as cold crystallization and melting temperature(T c and T m ) are shown in Table 2. As shown in Table 2, blends of PLA/TPS exhibit lower T g ,T c and T m than those of pure PLA. It alsocan be found from Table 2 that the effect of PEG-400on reducing T c is more than that on T m . Besides, T c is seen to decrease with increasing PEG content, which is consistent with the fact that PLA/TPS composites crystallizes more easily at lower temperature due to enhanced chain mobility as the PEG level increases [21]. In the meantime, melting enthalpy of the blends is also seen to decrease with enhanced content of PEG-400.The melting enthalpy always corresponded to the crystallization enthalpy, indicating that no crystallinity developed in these materials during quenching to room temperature. Thus, it can be concluded that containing PEG-400 is effective to enhance the plasticization of PLA/TPS.Fig.3 shows the SEM of composites with different content of PEG. From Fig.3 (a), it can be seen that the composites without PEG-400 shows large grooves and gaps induced by TPS granules and the composites exhibit obvious “sea-island” structure. Besides, phase segregation between TPS granules and PLA matrix is very clear, which indicates the poor compatibility of the blends. When containing 1 wt% PEG-400, the composites show lower interfacial gaps between TPS granules and PLA matrix, whereas the interface line between the two phases is still obvious. However, this phenomenon is not clear when the content ofPEG gets to 3 wt%, as shown in Fig.3(c). The reason is that hydroxyl group of PEG possibly reacts with the carboxyl group of PLA and forms ester bond resulting in enhanced interfacial adhesion of PLA/TPS. However, the interface line between the two phases becomes clear again when the content of PEG increases to 5 wt% because that more content of PEG easily induces the aggregation and decreases the dispersibility of PEG. This trend is similarly to that of mechanical property discussed in Table 1.3.3 Degradation property of PLA/TPS/PEGIn order to verify the effects of TPS on the biodegradation of PLA, the biodegradation rates of unmodi fi ed blends of PLA/TPS bars after buried in soil for 5 months were researched. The content of TPS in PLA blends varied from zero to 10 wt%, 20 wt%, 30 wt%, 40 wt% respectively. The studies show that the degradation rate is not obvious for pure PLA which just shows rough surface. It is because that main chain of PLA is rigidity and side chain containing methyl, which results that pure PLA is not easy degraded by natural microbe. With increasing content of TPS, the blends show small void and fi ne cracks on the surface and the phenomenon is very obvious when the content of TPS gets to 30 wt% corresponding to increased void and crack. Importantly, it was also found that the blend with 40 wt% content of TPS has been cracked when taken out from the soil. Thus, it is believed that the degradation of the blends of PLA/TPS can be improved with the increased content of TPS.Corronspondly, biodegradation rates of the blends of PLA/TPS bars with different content of PEG-400 were also studied. All the samples show rough surfaces after being soil-buried for the microbial growth. Besides, the samples containing PEG-400 show more obvious color fading and fine cracks on the surface than those of the samples without PEG-400 at the same conditions. However, there is no great difference in the effect of the amount of PEG on the surface degradationsituation.Fig.4 shows the weigh loss of tensile bars and izod impact bars of the composites after being buried in soil for 5 months. From the fi gure, it can be observed that the bars containing PEG shows greater weight loss than those of bars without PEG after buried in soil for 5 months. The largest weight loss of izod impact bars is 18% for the samples with 5 wt% content of PEG-400. It also can be seen that the weight loss of the bars increases in essence with enhanced content of PEG-400, which indicates the addition of PEG-400 promotes the degradation rate of PLA/TPS blends.Effects of the content of PEG-400 on tensile strength, elongation and unnotched izon impact strength of the blends before and after degradation are shown in Fig.5. The fi gure shows that the mechanical properties of the samples after degradation are much lower than that of the original samples. The more PEG-400 is, the greater the decrement is. The drops may be both of absorbing more water into the material inducing hydrolysis of ester bonds and lowering of molecular weight followed by intracellular uptake of lactic acid oligomers and catabolism. The small molecular chains of PLA then are degraded into CO2 and water by the fungus. On the other hand, blends with hydrophilic PEG-400 improves the hydrophilicity of the composites, resulting that the composites absorb more easily the moisture in the soil .Rates of hydrolysis increase with water content and are catalyzed by free carboxyl groups. It can also be found from Fig.5 that the largest degradation rate, corresponding to the lowest mechanical properties, can be got with 5 wt% content of PEG-400.Table 3 shows the mechanical properties losses of the composites after soil burial for 5 months. It can be found that losses in tensile strength, elongation and unnotched izod impact strength are 84.43%, 95.80% and 90.89 %, respectively, when the content of PEG is 5 wt%. The trend that the losses of mechanical properties increase with increment of PEG is also seen, which indicates that adding PEG-400 promotes the degradation of PLA/TPS blends.4 ConclusionsIt showed that poly (ethylene glycol), as a modifi er, enhanced effectively the interfacial adhesion between TPS and PLA. All of the tensile strength, flexural strength and izod impact strength increase at first and then decrease with increasing PEG at the critical content of 3 wt %. Mixing a small amount of PEG into PLA/TPS blend improved its fl owability. The blends of PLA/TPS with increasing PEG exhibits lowerTgand Tm. The blends containing PEG after being soil-buried for 5 months exhibited greater degradation rate corresponding to large weight loss and mechanical properties loss.References:[1] Shah A A, Hasan F, Hameed A, et al. Biological Degradation ofPlastics: a Comprehensive Review[J]. Biotechnol. Adv., 2008, 26(3):246-265[2] Wang N, Yu J G, Ma X F. Preparation and Characterization ofThermoplastic Starch/PLA Blends by One-step Reactive Extrusion[J].Polym. Int., 2007, 56(5): 1 440-1 447[3] Kozlowski M, Masirek R, Piorkowska E, et al. Biodegradable Blendsof Poly(L-lactide) and Starch[J]. J. Appl. Polym. Sci., 2007, 105(1): 269-277[4] Kulinski Z, Piorkowska E. Crystallization, Structure and Properties ofPlasticized Poly(L-lactide) [J]. Polymer, 2005, 46(3): 10 290–10 300 [5] Gajria A M, Dave V, Gross R A, et al. Miscibility and Biodegradabilityof Blends of Poly (lactic acid) and Poly (vinyl acetate)[J]. Polymer, 1996, 37(3): 437-444[6] Nijenhuis A J, Colstee E, Grijpma D W, et al. High MolecularWeight Poly (L-lactide) and Poly (ethylene oxide) Blends: Thermal Characterization and Physical Properties[J].Polymer,1996, 37(26):5 849-5 857[7] Sheth M, Kumar R A , Dave V, et al. Biodegradable Polymer Blends ofPoly (lactic acid) and Poly (ethylene glycol) [J]. J. Appl. Polym. Sci., 1997, 66(8) : 1 495-1 505[8] Focarete M L, Ceccourulli G, Scandola M, et al. Further Evidence ofCrystallinity-Induced Biodegradation of Synthetic Atactic Poly(3-hydroxybutyrate) by PHB-Depolymerase a from Pseudomonas lemoignei. Blends of Atactic Poly(3-hydroxybutyrate) with Crystalline Polyesters[J]. Macromolecules, 1998, 31(24): 8 485-8 492[9] Wang H, Sun X Z, Seib P. Effects of Starch Moisture on Properties ofWheat Starch/Poly(lactic acid) Blends Containing Methylene Diphenyl Diisocyanate[J]. J. Polym. Environ., 2002, 10(4):133 -138[10] Zhang J F, Sun X Z. Mechanical Properties of Poly(lactic acid)/starch Composites Compatibilized by Maleic Anhydride[J].Biomacromolecules, 2004, 5(10) : 1 446-1 451[11] Wu C S. Characterizing Biodegradability of Polylactide (PLA) orPLA-g-AA/starch Encapsulating Phosphate-solubilizing BacteriumBacillus[J]. Macromoecularl Bioscencei, 2005, 5(5): 352-361[12] Chen L, Qiu X Y, Xie Z G, et al. Poly(L-lactide)/starch BlendsCompatibilized with Poly(L-lactide)-g-starch Copolymer[J].Carbohydr. Polym., 2006, 65(1):75-80[13] Kim S H, Chin I, Yoon J, et al. Mechanical Properties of BiodegradableBlends of Poly(l-lactic acid) and Starch[J]. Korea Polym. J., 1998,6(5):422-427[14] Ke T, Sun X. Physical Properties of Poly(lactic acid) and StarchComposites with Various Blending Ratios[J]. Cereal. Chem., 2000, 77(6): 761-768[15] Martin O, Averous L. Poly(lactic acid): Plasticization and Propertiesof Biodegradable Multiphase Systems[J]. Polymer, 2001, 42(14):6 209-6 219[16] Baiardo M, Frisoni G, Scandola M, et al. Thermal and MechanicalProperties of Plasticized Poly(L-lactic acid) [J]. J. Appl. Polym. Sci., 2003, 90(7): 1 731-1 738[17] Hu Y, Hu Y S, Topolkaraev V, et al. Aging of Poly(lactide)/poly(ethylene glycol) Blends. Part 1. Poly(lactide) with Low Stereoregularity[J].Polymer, 2003, 44(14): 5 701-5 710[18] Itävaara M, Karjomaa S, Selin J. Biodegradation of Polylactide inAerobic and Anaerobic Thermophilic Conditions[J]. Chemosphere, 2002,46(6):879-885[19] Calmon A, Guillaume S, Bellon-Maurel V, et al. Evaluation of MaterialBiodegradability in Real Conditions-development of a Burial Test and an Analysis Methodology Based on Numerical Vision[J]. J. Environ.Polym. Degrad., 1999, 7(3): 157-166[20] Osawa S, Tsukegi T, Ogawa T, et al. Biodegradation Behavior ofMolded Poly(l-lactic acid)/starch Blend in a Land-fi ll Test[J]. Materials Life, 2000, 12(4): 199-205[21] Kozlowski M, Masirek R, Piorkowska E, et al. BiodegradableBlends of Poly(L-lactide) and Starch[J]. J. Appl. Polym. Sci., 2007,105(1):269-277。

相关文档
最新文档