常用一维搜索算法

合集下载

第三章 一维搜索法

第三章 一维搜索法
x
0
x1 x2
x3
3-1 确定初始区间的进退法
探测初始空间的进退法步骤: 探测初始空间的进退法步骤 (1)给定初始点 x0 ,初始步长 h ,令 x1 = x0 ,记: f1 = f ( x1 ) 给定初始点 初始步长 令 记 (2)产生新的探测点 x2 = x1 + h ,记 f 2 = f ( x2 ) 产生新的探测点 (3)比较函数值 f1 和 f 2 的大小 确定向前或向后探测的策略 比较函数值 的大小,确定向前或向后探测的策略 则加大步长,令 若: f1 > f 2 则加大步长 令 h = 2h ,转(4)向前探测 转 向前探测 (4)产生新的探测点 x3 = x0 + h ,令 f 3 = f ( x3 ) 产生新的探测点 令 (5)比较函数值 f 2 和 f 3 的大小 比较函数值 则调转方向,令 若: f1 < f 2 则调转方向 令 h = − h ,转(4)向后探测 转 向后探测
3-1 确定初始区间的进退法
f (x ) f ( x1 )
f ( x2 )
f ( x1 ) > f ( x2 ) > f ( x3 )
极小点在右端点的
f (x3 ) (x
x
x3 右侧
0
x1
x2 x3
3-1 确定初始区间的进退法
f (x ) f ( x1 ) f ( x2 )
f ( x3 )
f ( x1 ) < f ( x2 ) < f ( x3 )
h=-h;x2=x0+h;f2=f(x2); ; ; ; End
3-2 黄金分割法
一维搜索试探方法的基本思想: 一维搜索试探方法的基本思想:在确定了搜索区间的 前提下,不断缩小搜索区间, 前提下,不断缩小搜索区间,同时保持搜索区间内函数值 “大-小-大”的走势,直到区间的宽度小于预定的精度。 小 大 的走势,直到区间的宽度小于预定的精度。 黄金分割法基本思想: 黄金分割法基本思想 : 在搜索区间内插入两个黄金分 割点,将区间分成三段。利用函数的单谷性质,通过函数值 割点,将区间分成三段。利用函数的单谷性质, 大小的比较,删去其中一段。 大小的比较,删去其中一段。在保留下来的区间上作同样的 处置,如此往复送代,使搜索区间缩小到精度范围内, 处置,如此往复送代,使搜索区间缩小到精度范围内,得到 极小点的近似解。 极小点的近似解。

一维数据分类算法

一维数据分类算法

一维数据分类算法下面将介绍几种常见的一维数据分类算法:1. 决策树(Decision Tree)2. k近邻算法(k-Nearest Neighbors,k-NN)k近邻算法是一种基于实例的学习方法,它的思想是根据对象的特征值的相似性来确定其所属的类别。

k近邻算法根据对象与其邻近样本的距离来进行分类,即选择与该对象最近的k个邻居,并根据这k个邻居的类别进行投票。

k近邻算法简单易懂,对数据分布无假设,但计算量较大且需要事先确定k值。

3. 支持向量机(Support Vector Machine,SVM)支持向量机是一种经典的一维数据分类算法,它通过在特征空间中找到一个最优的超平面来进行分类。

支持向量机将一维数据映射到高维特征空间,通过最大化样本与超平面的间隔来寻找最佳分类边界。

支持向量机被广泛使用,具有较强的泛化能力和对高维稀疏数据的处理能力。

4. 朴素贝叶斯(Naive Bayes)朴素贝叶斯算法基于贝叶斯定理和特征条件独立假设,通过计算后验概率来进行分类。

朴素贝叶斯算法将待分类的一维数据看作是由多个特征组成,然后根据已有的训练数据计算各个特征对于各个类别的条件概率,并利用贝叶斯公式计算后验概率。

朴素贝叶斯算法计算简单、速度快,但对特征的条件独立性有较强的假设。

5. 隐马尔可夫模型(Hidden Markov Model,HMM)隐马尔可夫模型是一种基于概率的动态规划算法,它用于对具有隐藏状态的一维数据进行建模和分类。

隐马尔可夫模型假设一维数据的隐藏状态是一个马尔可夫过程,且每个隐藏状态对应一个观测值。

通过训练隐马尔可夫模型的参数,可以根据一维数据的观测值来推断其隐藏状态。

隐马尔可夫模型在语音识别、自然语言处理等领域具有重要应用。

综上所述,一维数据分类算法有决策树、k近邻算法、支持向量机、朴素贝叶斯和隐马尔可夫模型等。

不同算法适用于不同场景,根据具体问题的特点选择合适的一维数据分类算法能够提高分类效果。

《一维搜索方法》课件

《一维搜索方法》课件

1
原理
根据斐波那契数列生成黄金分割比例,用于确定搜索范围的分割点。
2
思路
根据斐波那契数列的值,确定左右指针在搜索范围内的位置,直到找到最接近目 标值的点。
3
优缺点
迭代次数逐渐趋近于黄金分割点,但对搜索范围要求较高。
黄金分割法搜索方法的原理和思路
1
原理
将搜索范围按黄金分割点分割,选择较小的一部分作为新的搜索范围。
2
思路
通过反复按黄金分割点计算和调整搜索范围,逐步逼近最接近目标值的点。
3
优缺点
迭代次数相对较少,但需要较复杂的计算公式。
三分搜索方法的原理和思路
1
原理
将搜索范围分割为三等份,并判断目标值位于左、中、右三个部分,逐步缩小搜索范 围。
2
思路
根据目标值与分割点的大小关系,决定下一步搜索的范围,直到找到最接近目标值的 点。
3
优缺点
对于非单调函数,能更快地找到目标值,但需要较多的判断。
多点搜索方法的原理和思路
1
原理
同时使用多个起始点进行搜索,通过不断比较找到最接近目标值的点。
2
思路
根据多个起始点的初始值和搜索步长,逐步调整并比较得到最优解。
3
优缺点
相比于单点搜索,能更准确地找到目标值,但需要同时处理多个起始点的迭代。
2
思路
从起始点开始,依次向右增加或向左减小搜索范围,直到找到最接近目标值的点。
3
优缺点
简单易懂,但需要较多的迭代次数。
二分搜索方法的原理和思路
1
原理
将搜索范围一分为二,并判断目标值位于左半部分还是右半部分,逐步缩小搜索 范围。
2
思路

《一维搜索方法》课件

《一维搜索方法》课件

02
线性搜索
线性搜索的定义
线性搜索是一种基本的搜索算法,它 从列表的第一个元素开始,逐个检查 每个元素,直到找到目标元素或遍历 完整个列表。
在线性搜索过程中,我们假设列表中 的元素是按顺序排列的,并且我们不 知道目标元素的确切位置,只知道它 存在于列表中。
线性搜索的步骤
初始化
选择一个起始位置,通常为列表的第一个元素。
抛物线搜索的步骤
3. 比较中间元素与目标值
2. 计算当前区间的中间元 素。
1. 初始化当前搜索区间为 整个数组。
01
03 02
抛物线搜索的步骤
01 如果中间元素等于目标值,返回该位置。
02
如果目标值小于中间元素,将左半部分区 间作为新的当前区间。
03
如果目标值大于中间元素,将右半部分区 间作为新的当前区间。
04
4. 重复步骤2和3,直到找到目标值或当前 区间为空。
抛物线搜索的时间复杂度
最坏情况下,抛物线搜索的时间复杂度为O(n),其中n为数 组长度。
平均情况下,由于每次比较都可以将搜索区间缩小一半,因 此时间复杂度为O(log n)。
THANKS
THANK YOU FOR YOUR WATCHING
的单峰函数。
一维搜索方法的重要性
解决实际问题
一维搜索方法广泛应用于各种实 际问题中,如参数优化、函数逼 近、插值等。
算法基础
一维搜索方法是许多算法的基础 ,如梯度下降法、牛顿法等都需 要用到一维搜索方法来寻找迭代 步长。
理论分析
一维搜索方法在数学分析中也有 重要应用,如中值定理、单调函 数性质等都需要用到一维搜索方 法。
常用的一维搜索方法
线性搜索

常用一维搜索算法

常用一维搜索算法

常用一维搜索算法常用一维算法一维算法是解决一维问题的常用方法。

一维算法主要通过在一维数据集中查找目标元素来解决问题。

以下是一些常用的一维算法:1. 线性(Linear Search):线性算法是一种最简单的算法,也是最基本的一维算法。

它从头到尾依次检查数据集中的每个元素,直到找到目标元素或遍历完整个数据集。

线性算法的时间复杂度为O(n)。

2. 二分(Binary Search):二分算法是一种高效的算法,但它要求数据集必须是有序的。

算法通过将数据集分成两半,并与目标元素进行比较,从而确定目标元素在哪个半部分中。

然后,它将重复这个过程,直到找到目标元素或数据集被划分为一个元素。

二分算法的时间复杂度为O(log n)。

3. 插值(Interpolation Search):插值算法是改进的二分算法,它根据目标元素与数据集中元素的相对位置来确定的起始位置。

它使用目标元素与数据集首尾元素之间的比例来估计目标元素的位置。

插值算法在数据集分布均匀的情况下具有较好的性能。

4. 斐波那契(Fibonacci Search):斐波那契算法基于斐波那契数列来确定的起始位置。

它通过比较目标元素与斐波那契数列中的元素来确定的范围,并将数据集划分成两部分。

然后,它在适当的部分中重复这个过程,直到找到目标元素。

斐波那契算法的时间复杂度为O(log n)。

5. 插入(Interpolation Search):插入算法是一种改进的线性算法,它使用了数据集中元素的顺序信息来提高效率。

与线性算法一样,它从头到尾依次检查数据集中的每个元素,但是当元素不满足条件时,它会根据元素的顺序信息来确定的方向,从而减少的次数。

6. 哈希(Hash Search):哈希算法使用哈希函数将数据集中的元素映射到哈希表中的索引。

然后,它通过查找哈希表中的索引来确定目标元素的位置。

哈希算法通常具有很高的效率,但是它需要额外的内存空间来存储哈希表。

上述算法是一维问题的常用解决方法。

工程优化方法 第三章

工程优化方法 第三章

来的曲线,用简单曲线的极小值点代替原曲线的极小点。
Newton法、二次插值法、三次插值法
第三章 常用的一维搜索算法
本章主要内容:
§1 搜索算法概述 §2 “成功-失败”法 §3 0.618法(黄金分割法) §4 牛顿法 §5 插值法
常用的一维直接法有消去法和近似法两类。它们都是从某 个初始搜索区间出发,利用单峰函数的消去性质,逐步缩小 搜索区间,直到满足精度要求为止。
据迭代点 的可行性
下降算法: k , f ( x k 1 ) f ( x k ) 每一迭代点的目标函数 根据目标函数 值都在下降 的下降特性 非单调下降算法: k , f ( x k 1 ) f ( x k ), k klk k l , f ( x ) f ( x )
如何确定包含极小点在内的初始区间 ?
进退算法 (或称成功-失败法)
(一)基本思想:
由单峰函数的性质可知,函数值在极小点左边严格下降,在右边严格上升。
从某个初始点出发,沿函数值下降的方向前进,直至发现函数值上升为止。 由两边高,中间低的三点,可确定极小点所在的初始区间。
f(x)
a x0 x1 x*
x2
k
若算法是有效的,则它产生的解序列收敛于该问题的最优解。 计算机只能进行有限次迭代,一般很难得到准确解,而只能得 到近似解。当达到满足的精度要求后,即可停止迭代。
迭代法的终止条件
停止迭代时要满足的条件称为终止条件。 理想的终止条件是
f ( x) f ( x*) ,
或者
x x * .
f(x)
f(x)
f(x)
f(x)
a
b
x
a
a b
x

工程优化及应用第三章PPT课件

工程优化及应用第三章PPT课件

( 1 )
成立,就称 x k 收敛的阶为 ,或者称 x k 阶收敛。
当 2时,称为二阶收敛,也可说 x k 具有二阶收敛速度。
当12 时,称超线性收敛。
当 1 ,且 0 1 时,称线性收敛或一阶收敛。
迭代法的收敛速度 定理:设算法点列{x(k)}超线性收敛于x*,且
x(k)≠x*, k,那么
若算法是有效的,则它产生的解序列收敛于该问题的最优解。
计算机只能进行有限次迭代,一般很难得到准确解,而只能得 到近似解。当达到满足的精度要求后,即可停止迭代。
迭代法的终止条件
停止迭代时要满足的条件称为终止条件。
理想的终止条件是
f(x)f(x*) ,
或者 x x* .
问题是 x* 未知
迭代法的终止条件
为了求函数f(x)的最优解,首先给定一个初始估计 x 0 然后按某种规划(即算法)找出比 x 0 更好的解 x 1 , f (x1) f (x0)
再按此种规则找出比 x 1 更好的解 x 2 ,
如此即可得到一个解的序列{ x k } ,
若这个解序列有极限 x * , lim xk x* 0, 则称它收敛于x*。 k
则 x 为 f ( x ) 的严格局部极小点。
搜索算法概述
• 对某些较简单的函数,这样做有时是可行的;
• 但对一般n元函数 f(x) 来说,由条件 f (x) 0得到的是一
个非线性方程组,解它相当困难。 • 对于不可微函数,当然谈不上使用这样的方法。 • 为此,常直接使用迭代法。
迭代法的基本思想
第三章 常用的一维搜索算法
本章主要内容:
§1 搜索算法概述 §2 “成功-失败”法 §3 0.618法(黄金分割法) §4 §5 插值法

一维搜索的搜索区间

一维搜索的搜索区间
如何确定一个包含极小点的搜索区间? 进退法!
第二阶段: 采用某种分割技术或 插值方法缩小这个区间.
一维搜索的搜索区间与进退法
进退法----确定搜索区间
进退法思想
从一点出发,按一定的步长, 试图确定出函数值呈现“高-低-高” 的三点。一个方向不成功,就退回来,再沿相反方向寻找。
一维搜索的搜索区间与进退法
最优步长
(2) 可接受一维搜索(非精确一维搜索) 适当的下降量:
在实际应用中 有着重要价值
一维搜索的搜索区间与进退法
一维搜索的概念 最优一维搜索的性质
ቤተ መጻሕፍቲ ባይዱ几何解释
一维搜索的搜索区间与进退法
进退法----确定搜索区间
一般地,线性搜索算法分成两个阶段:
第一阶段:确定包含理想的步长因子 (或问题最优解)的搜索区间;
一维搜索的搜索区间与进退法
一维搜索的概念
假定给定了搜索方向dk,从点xk出发沿方向dk进行搜索,要确
定步长 k , 使
记 f xk dk . 则 (6.1.2)式等价于
一维搜索的搜索区间与进退法
一维搜索的概念
根据步长选取的不同原则,一维搜索分为两种类型:
(1) 最优一维搜索(精确一维搜索)
一维最优化问题
进退法----确定搜索区间 进退法的计算步骤
一维搜索的搜索区间与进退法
进退法----确定搜索区间 举例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。

这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。

(直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。

间接法:又称解析法,是应用数学极值理论的解析方法。

首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。


在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。

根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。

一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。

一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。

由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。

在多变量函数的最优化中,迭代格式X k+1=X k+a k d k其关键就是构造搜索方向d k和步长因子a k
设Φ(a)=f(x k+ad k)
这样从凡出发,沿搜索方向d k,确定步长因子a k,使Φ(a)<Φ(0)的问题就是关于步长因子a的一维搜索问题。

其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。

一维搜索通常分为精确的和不精确的两类。

如果求得a k使目标函数沿方向d k达到
极小,即使得f (x k+a k d k)=min f (x k+ ad k) ( a>0)
则称这样的一维搜索为最优一维搜索,或精确一维搜索,a k叫最优步长因子;
如果选取a k使目标函数f得到可接受的下降量,即使得下降量f (x k)一f (x k+a k d k)>0是用
户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维
搜索。

由于在实际计算中,一般做不到精确的一维搜索,实际上也没有必要做到这一点,因为精确的一维搜索需要付出较高的代价,而对加速收敛作用不大,因此花费计算量较少的不精确一维搜索方法受到了广泛的重视和欢迎。

精确一维搜索,作为一种理想的状态,虽然在实际计算中被采用的概率较之不精确一维搜索要小,但有关精确一维搜索技术的研究历史悠久成果相当丰富,方法众多,其理论体系也相对比较完备,对其进行进一步的研究仍有着重要的理论意义和现实意义。

通常我们根据算法中有无使用导数的情况,将精确一维搜索算法分为两大类:一类是不用函数导数的方法,这其中就包括二分法(又称作对分法或中点法)、0.618法(黄金分割脚、Fibonacci 法(分数法)、割线法、成功一失败法等;另一类是使用函数导数的方法,包括经典的Newton法、抛物线法以及各种插值类方法等。

(1)在不用导数的方法中,二分法、0.618法(黄金分割法)以及Fibonacci法均是分割方法,其基本思想就是通过取试探点和进行函数值比较,使包含极小点的搜索区间不断缩短,当区间长度缩短到一定程度时,区间上各点的函数值均接近函数的极小值,从而各点均可看作极小点的近似。

分割类方法仅需计算函数值,因此使用的范围较广,尤其适用于非光滑及导数表达式复杂或写不出等情形。

二分法是一种最简单的分割方法,每次迭代都将搜索区间缩短一半,故二分法的收敛速度是线性的,收敛比为0.5,收敛速度较慢。

其优势就是每一步迭代的计算量都相对较小,程序简单,而且总能收敛到一个局部极小点。

黄金分割法是一种针对目标函数是单峰函数亦即目标函数为凸的情形的分割类方法,因其不要求函数可微,且每次迭代只需计算一个函数值,程序简单容易实现而被广泛采用。

由于黄金分割法是以等比例τ=0.618分割缩小区间的,因此它是一种近似最优方法。

针对在实际中遇到的目标函数往往不是单峰函数的情况,HPonfiger(1976)提出了.0618法的改进形式,即在缩小区间时,不只是比较两个内点处的函数值,而是对两内点及其两端点处的函数值进行综合比较,以避免搜索得到的函数值反而比初始区间端点处的函数值大的情况。

经过这样的修改,算法比.0618法要更加可靠。

Fibonacci法是另一种与.0618法相类似的分割类方法,两者的主要区别在于Fibonacci法搜索区间的缩短比率不是采用黄金分割数τ,而是采用Fibonacci数列。

在使用Fibonacci法时,通常是由用户给定最终区间长度的上限,从而确定探索点的个数,逐步进行搜索。

通过对Fibonacci数列进行分析表明,在迭代次数n趋于无穷的情形。

Fibonacci法与.0618法的区间缩短率相同,因而Fibonacci法的收敛速度也是线性的,收敛比也是黄金分割数τ。

可以证明,Fibonacci法是分割方法求解一维极小化问题的最优策略,而0.618法只是近似最优的,但因0.618法不必预先知道探索点的个数,程序实现更加容易,因而应用也更加广泛。

抛物线法也可称作三点二次插值法,其基本思想与下面要叙述的牛顿法相同,也是用二次函数近似目标函数,并以其极小点去近似目标函数的极小点,不同之处是牛顿法是利用目标函数fx()在x0处的二阶Tyalor展式来逼近f(x),而抛物线法则是利用目标函数fx()在三个点x0,xl,xZ处的函数值构造一个二次函数作为其近似。

一般地,抛物线法并不能保证算法一定收敛,在迭代过程中有可能会出现相邻迭代点x k,x k+1充分接近且x k+1并非函数近似极小点的退化情况。

但在己知迭代点列收敛到目标函数极小点的情况,可以证明:在一定的条件下,抛物线法是超线性收敛的,收敛的阶约为1.3。

割线法与分割法类似,也是通过取试探点和进行函数值比较,使包含所求点的搜索区间缩小,但试探点的取
法与分割法不同,它是选取连接两个端点的线段与横轴的交点作为试探点。

割线法不能保证每次都使搜索区间缩小一定的比例,因而不具有全局线性收敛性,但是它却利用了函数的一些性质。

在函数接近线性时,它是非常快的。

如果函数本身是线性函数时,它可以一步找到解。

(ii)一般地,使用导数的方法通常包括牛顿法、插值法等,其中插值法又有一点二次插值法(牛顿法)、二点二次插值法)、三点二次插值法以及三次插值法、有理插植法等常用方法。

求一维无约束极小化问题的牛顿法是从计算方法中方程求根的牛顿法演化而来的,其基本思想是用目标函数f (x)在己知点x0处的二阶Tylor展式g (x)来近似代替目标函数,用g (x)的极小点作为f (x)的近似极小点,迭代公式是
x k+1=x k=f′(x k) f′′(x k)
牛顿法的优点是收敛速度快,具有局部二阶收敛速度;缺点是要在每个迭代点处计算函数的二阶导数值,增加了每次迭代的工作量,而且它要求迭代初始点要选的好,也就是说初始点不能离极小值太远,在极小点未知的情况下,做到这一点是很困难的,这就限制了算法的应用范围,导致算法不实用。

事实上,牛顿法也是插值类方法的一种。

插值法是一类重要的一维搜索方法,其基本思想是在搜索区间内不断用低次(通常不超过三次)多项式来逼近目标函数,并用插值多项式的极小点去近似目标函数的极小点。

实践表明,在目标函数具有较好的解析性质时,插值方法比直接方法(如.0618或Fibonacci法)效果更好。

所谓不精确一维搜索方法是指应用各种可接受的步长选择律的线性搜索方法。

常用的不精确一维搜索算法包括利用简单准则的后退方法、经典的Armijo-Goldstein方法、Wolfe-Powell方法和强Wolfe-Powell方法、以及其后发展起来的利用Curry-Altman步长律、改进的Curry-Altman步长律、Danilin-Pshenichuyi步长律、De Leone-Grippo步长律、Backtracking步长律等的各种方法
(P19-24)
坐标轮换法:可靠性较高,算法效率太低,操作方便,一般只用于低维问题,n<10
鲍威尔法:可靠性高,算法效率较高,操作较复杂,一般适用于n<10~20的问题梯度法:可靠性较高,算法效率低,操作方便用于低维、低精度的问题。

牛顿法:可靠性低,算法效率高,操作不方便,很少用。

变尺度法:可靠性高(BFGS比DFP更高),算法效率高,使用较复杂,适用于高维问题。

相关文档
最新文档