三维地理信息系统知识点总结

合集下载

第八讲地理信息系统三维建模

第八讲地理信息系统三维建模
沟谷密度由单位面积上沟谷线总长度决 定:
D L / A
29
(10)地表辐照度
计算辐照度需考虑日照条件(太阳赤纬、高度角、时 角及大气状况)与坡面几何条件的相互关系由下式决
定: E S s S c i a c n t a b o s t c i s n s o S i
反映某一面积单元内地势伏变化的复杂 程度,是地表面积与投影面积之比:
RA 实 /A 坡 nse R ic A i/ nA i
i 1
i 1
27
(8)坡面形态
根据相邻网格点上的坡度和坡向之间的 逻辑关系,可以判断坡形的凹凸变化情 况,确定沟谷线、山脊和鞍部的位置, 划分流域范围。
28
(9)沟谷密度
1) 边界表示法
2) 空间实体枚举法
42
八叉树适合矿产管理:
1) 它能表示任何不规则的或具有断裂面 的地理实体;
2) 它能在同一数据结构中存贮几何和基 本的地质信息;
3) 它同样能对不均质的地理实体的内部 进行描述。
43
44
45
一个三维GIS的原型
46
IVM(Interactive Volume Modeling)系统
47
SGM(Stratigraphic Geo-cellular Modeling)系统
1、 地层模型 2、 探井模型 3、 属性模型 1) 为用户提供了精确定义地质模型和根据序列或层边界分布来
内插属性值的能力 2) 每个格网要赋予与多达100项属性; 3) 具有过滤功能。
Stratamodel Co.
·提供录活的图形、图像 输出功能,可输出线划 图,影像图和三维景观 图。
·系统的输出可直接与众 多的GIS系统连接,如: Arc/into 、 GeoStar 和 MAPFIS等。

地理信息系统知识点总结

地理信息系统知识点总结
数据存储、管理、处理、分析、显示与分发
GIS=GI+S
2、地理信息系统区别于其他信息系统的主要特点
(1)地理空间数据和信息的特殊Байду номын сангаас杂性
( 2)具备可视化功能
(4)数据量大 ( 5)注重空间分析
第二节 地理信息系统的分类
( 3)区域性和层次性
信息系统( IS )
非空间信息系统
空间信息系统 (SIS)
图书检索系统等 MIS
GIS 软件
基础软件
GIS
系统软件
空间数据
GIS 的操作对象为空间数据 空间数据特征:几何、属性、时间数据; 空间数据组织:矢量结构、栅格结构; 空间数据管理:
几何数据:文件
属性数据:关系数据库 ,,,, 应用人员
地图生产者、地图出版者、地图使用者、地理学专家、数据采集者、数据库设计者、数据库 管理者、系统开发人员
GIS 应用人员:包括系统开发人员和 GIS 技术的最终用户,他们的业务素质和专业知识是 GIS 工程及其应用成败的关键。 GIS 应用人员的职责: 人是 GIS 中重要的构成因素, 仅有系统软件、 硬件和数据还构不成完 整的地理信息系统,需要人进行系统组织、管理、维护和数据更新、应用程序开发、信息提 取、为地理决策提供服务。
据往往缺乏拓扑关系;
析,提供辅助决策信

他与数据库的联系通常是一些简单的查
询。
第三节 地理信息系统的组成
硬件系统
地理数据
输入设备 存储设备 输出设备
数据输入 数据存储
信息输出 应用模型
系统操作


系统支持



地理分析
用户
软件系统 计算机系统软件

三维地图知识点总结

三维地图知识点总结

三维地图知识点总结一、三维地图的概念与特点1. 概念:三维地图是通过计算机图形学、遥感和地理信息系统等技术,以立体显示地理空间数据为主要表现手段的地图形式。

与传统地图相比,三维地图可以更加清晰生动地展示地表特征和地物形态,提供更加真实的视觉效果。

2. 特点:(1)立体显示:三维地图具有真实的高程、立体效果,可以准确地表现地表和地物的立体结构和形态;(2)生动直观:三维地图可以通过立体显示,使地理信息更加生动直观,有利于人们更好地理解地理空间数据;(3)多维数据展示:三维地图可以同时展示地表、地下和空中等多维地理空间数据,提供更加全面的信息;(4)交互性强:三维地图具有较强的交互性,用户可以通过缩放、旋转、移动等操作与地图进行互动;二、三维地图的制作与获取1. 数据采集:三维地图的制作离不开地理空间数据的采集,数据采集的手段包括航空摄影、遥感卫星、激光雷达测绘、GPS定位等,通过这些手段获取地表、地下和空中的地理信息数据;2. 数据处理:通过GIS和计算机图形学等技术对采集到的地理空间数据进行处理,如地形建模、纹理贴图、光照渲染等,将数据转化为能够呈现立体效果的三维模型;3. 数据显示:通过相应的可视化软件或平台对处理后的三维地理空间数据进行显示,如ArcGIS、Google Earth等,将其呈现在屏幕上供用户观看和操作;三、三维地图的应用领域1. 城市规划:三维地图可以辅助城市规划师进行城市规划,通过立体显示城市的建筑、道路、绿地等,可以更加直观地展示城市内部的空间布局和景观,为城市规划提供更好的参考依据;2. 土地管理:三维地图可以用于土地资源的利用规划和管理,通过展示土地的地形、地貌等特征,对土地资源进行评估和分析,指导土地的合理利用;3. 自然资源开发利用:三维地图可以用于自然资源的调查和评估,通过立体显示地表地形、植被、水体等,对自然资源进行资源量、质量等方面的分析,为自然资源的开发利用提供科学依据;4. 灾害预防和救援:三维地图可以用于灾害的预测、监测和救援,如洪水、地震、山体滑坡等灾害,通过立体显示受灾地区的地形、道路、建筑等,为灾害预防和救援提供信息支援;四、三维地图的发展趋势1. 技术创新:随着计算机图形学、遥感和地理信息系统等技术的不断创新,三维地图的制作和显示技术将更加精确、高效和实时化;2. 数据开放:随着地理信息开放政策的推动,地理空间数据资源将更加丰富,三维地图的制作和应用领域将更加广泛;3. 跨界融合:三维地图将与虚拟现实、增强现实、人工智能等技术融合,为用户提供更加沉浸式的体验,拓展更多的应用场景;4. 用户需求导向:三维地图将更加关注用户需求,打破地理信息的专业壁垒,为不同行业和领域的用户提供更加个性化、定制化的服务。

地理信息系统复习总结资料

地理信息系统复习总结资料

地理信息系统:用于采集、存储、查询、分析和显示地理空间数据的计算机系统2、地空间分析的三大基本要素是:空间位置、空间属性,时间数据4、GIS基本功能:数据采集与输入、空间数据分析与处理、地图制图与数据输出应用功能:空间数据的可视化、统计与量算、规划与管理、预测与监测、辅助决策GIS主要应用领域:测绘与地图制图、资源管理、灾害监测、环境保护、城市与区域规划、宏观决策、国防1、地理实体的几何抽象:点(point):零维、线(line):一维、面(polygon):二维、体(volume):三维2、地理空间数据的基本特征:空间特征、属性特征、时间特征3、GIS中的地理空间数据=空间特征数据+属性特征数据空间特征数据=定位数据+空间关系数据属性特征数据=专题属性数据+时间数据4、地理空间数据的来源:地图数据、影像数据、地形数据、属性数据、元数据5、GIS三个抽象层次:概念模型、逻辑数据模型、物理数据模型7、地理空间数据的空间关系:现实生活中的实体大多都不是孤立存在的。

GIS中的空间数据是用点、线、面、体来描述现实世界中的地理实体或现象,它不仅要表示地理实体的空间位置、形态,而且还要表示地理实体的属性及实体间的空间关系(要用自己话描述)8、空间关系三种基本类型:拓扑关系、方向关系、度量关系10、拓扑空间关系:邻接关系:指空间图形中同类元素之间呈邻接的关系关联关系:指空间图形中不同元素之间呈关联的关系包含关系:指空间图形中同类但不同级元素之间的包含关系12、空间数据拓扑关系的意义:确定地理实体间的相对空间位置,无需坐标和距离,比几何关系具有更大稳定性,不随地图投影而变化、确保数据质量和完整性、有利于空间要素的查询,多边形和多边形的叠合,如某县与哪些县邻接,某条铁路通过哪些地区,强化GIS分析、可根据拓扑关系重建地理实体13、方向关系:地理事物在空间中的相互方位和排列顺序(基准方向通常有真子午线方向、磁子午线方向和坐标纵线方向三种)16、矢量数据结构:使用点及其x、y坐标来表示具有清晰空间位置和边界的具体要素特点:定位明显,属性隐含•点:空间的一个坐标点•线:多个点组成的弧段•面:多个弧段组成的封闭多边形17、简单矢量数据结构:只记录空间对象的位置坐标和属性信息,不记录拓扑关系。

三维地理信息系统的基本原理与方法

三维地理信息系统的基本原理与方法

三维地理信息系统的基本原理与方法随着科技的进步和人类社会的发展,地理信息系统(Geographic Information System,简称GIS)已经成为对地理空间数据进行管理、分析和可视化的重要工具。

而在GIS的基础上,三维地理信息系统(3D GIS)的出现,则使地理空间数据的表示更加真实和直观。

本文将探讨三维地理信息系统的基本原理与方法。

首先,我们需要了解三维地理信息系统的基本原理。

3D GIS是建立在二维GIS 的基础上的,它通过引入高程数据,将地理空间数据从平面转换为三维空间中的对象,实现对地貌、建筑、地下管道等三维要素的模拟和分析。

具体来说,3D GIS的基本原理包括以下几个方面:1. 数据采集:三维地理信息系统需要获取地理空间数据的三维坐标信息,通常通过遥感技术、激光扫描和GPS测量等手段进行数据采集。

遥感技术可以通过卫星或无人机获取大范围的地形数据和影像数据,激光扫描则可以获取高精度的地面点云数据,而GPS测量可以获取地物的准确位置信息。

2. 数据建模:在数据采集的基础上,需要将采集到的数据进行建模。

通常,三维地理信息系统采用的数据模型主要有TIN模型(三角网模型)、Grid模型(栅格模型)和三维离散对象模型。

这些模型可以有效地表示地物的三维形态和空间关系。

3. 数据存储:三维地理信息系统需要将采集到的数据进行存储和管理。

数据存储通常采用关系型数据库或面向对象数据库,以及一些专门用于存储三维数据的格式,如CityGML、KML等。

这样可以保证数据的完整性和一致性,并提供高效的数据检索和访问功能。

4. 数据可视化:三维地理信息系统通过将数据可视化,使之变得直观和易于理解。

数据可视化可以采用立体显示技术、视点导航技术以及光照模型等手段,将三维地理空间数据以真实的方式呈现给用户,帮助用户更好地理解地理空间关系。

在了解了三维地理信息系统的基本原理之后,我们可以进一步了解一些常用的三维地理信息系统的方法。

地理信息系统(GIS)重点总结

地理信息系统(GIS)重点总结

第一章1、信息:是用文字、数字、符号、语言、图像等介质来表示事件、事物、现象等的内容、数量或特征,从而向人们(或系统0提供关于现实世界新的事实和知识,作为生产、建设、经营、管理、分析和决策的依据。

2、数据:通过数字化或直接记录下来的可以被鉴别的符号,是用以载荷信息的物理符号,在计算机化的地理信息系统中,数据的格式往往和具体的计算机系统有关,随载荷它的物理设备的形式而改变。

3、GIS:地理信息系统(GIS , Geographic Information Systems)是在计算机硬、软件系统支持下,对现实世界(资源与环境)的研究和变迁的各类空间数据及描述这些空间数据特性的属性进行采集、存储、管理、运算、分析、显示和描述的技术系统。

特点:❶具有采集、管理、分析和输出多种地理空间信息的能力;❷以地理研究和地理决策为目的,以地理模型方法为手段,具有空间分析、多要素综合分析和动态预测的能力;并能产生高层次的地理信息。

❸具有公共的地理定位基础,所有的地理要素,要按经纬度或者特有的坐标系统进行严格的空间定位,才能使具有时序性、多维性、区域性特征的空间要素进行复合和分解,将隐含其中的信息变为显示表达,形成空间和时间上连续分布的综合信息基础,支持空间问题的处理与决策。

❹由计算机系统支持进行空间地理数据管理,并由计算机程序模拟常规的或专门的地理分析方法,作用于空间数据,产生有用信息,完成人类难以完成的任务。

❺地理信息系统从外部来看,它表现为计算机软硬件系统;而其内涵确是由计算机程序和地理数据组织而成的地理空间信息模型,是一个逻辑缩小的、高度信息化的地理系统。

信息的流动及信息流动的结果,完全由计算机程序的运行和数据的交换来仿真。

4、1963年,加拿大测量学家R.F.Tomlinson首先提出了地理信息这一术语,并于1971年建立了世界上第一个GIS——加拿大地理信息系统(CGIS),用于自然资源的管理和规划。

5、地理信息系统的五大功能:输入、查询、编辑、分析、输出。

科目地理信息系统学习总结

科目地理信息系统学习总结

科目地理信息系统学习总结地理信息系统(Geographic Information System,简称GIS)是一种用于采集、存储、管理、分析和展示地理空间数据的技术工具。

它的应用领域广泛,包括城市规划、环境保护、农业决策、灾害管理等。

通过学习地理信息系统,我对其原理和应用有了深入的了解,以下是我的学习总结。

一、GIS技术原理地理信息系统的核心是地理空间数据的采集、处理和分析。

在GIS 中,地理空间数据包括地形图、卫星影像、地形图和矢量数据等。

GIS技术主要由硬件、软件、数据和人员组成。

硬件包括计算机、显示器、打印机等;软件包括地理信息系统软件和数据库管理软件;数据则是构建GIS的基础,例如地形数据、影像数据和属性数据;人员则是负责GIS系统的运行和管理。

二、GIS数据类型在GIS中,地理空间数据可以分为矢量数据和栅格数据两种类型。

矢量数据由点、线、面等几何信息和属性信息组成,常用来表示地理要素的位置和属性。

栅格数据则是将地理空间区域划分为等大小的像元,在每个像元上记录统计信息,适用于连续变化的数据表示和分析。

三、GIS数据采集地理空间数据的采集是GIS技术应用的基础。

采集方法主要包括遥感、GPS和数字化三种方式。

遥感技术通过接收平台上的传感器所获取的地球表面信息,可以获取较细节的地理空间数据。

GPS技术则用于获取地理要素的位置信息,可以实现高精度的位置定位。

数字化则是将已有的纸质地图或图像通过扫描仪等设备转化为数字形式的地理数据。

四、GIS数据管理数据管理是GIS系统运行和应用的关键环节,主要包括数据输入、编辑、查询、存储和更新等过程。

在数据管理过程中,需要保证数据的准确性、完整性和一致性。

GIS系统通常使用数据库来存储和管理数据,通过数据库管理软件实现对数据的增删改查操作。

五、GIS数据分析GIS数据分析是GIS技术的核心功能之一,可以通过空间查询、空间分析、空间统计等方法获得更深层次的地理信息。

地理信息系统重点总结

地理信息系统重点总结

地信复习纲要1、地信构成:系统硬件、系统软件、空间数据、应用人员和应用模型。

2、地信的发展、应用(结合专业)3、空间数据的分类按数据来源 按数据结构 按数据特征 按几何特征 按数据发布形式 地图数据 矢量数据 空间数据 点 数字线画图DLG 影像数据 栅格数据 非空间属性数据 线 数字栅格图DRG 文本数据 面、曲面 数字高程模型DEM 体 数字正射影像图DOM 数字线划图:DLG 是现有地形图要素的矢量数据,保存各要素间的空间关系和相关的属性信息,全面地描述地表目标.数字栅格图:DRG 数据是现有纸质地图经计算机处理后得到的栅格数据文件. 数字高程模型:DEM 数据是以数字形式表达的地形起伏数据.数字正射影像图:DOM 数据是对遥感数字影像,经过像元进行投影改正、镶嵌,按国家基本比例尺地形图图幅范围剪裁生成的数字正射投影影像数据.4、拓扑关系的类型:关联:不同拓扑元素之间的关系邻接:相同拓扑元素之间的关系包含:面与其他元素之间的关系层次:相同拓扑元素之间的层次关系拓扑关系的意义:1)根据拓扑关系,不需要利用坐标和距离,可以确定一种地理实体相对于另一种地理实体地空间位置关系。

(因为拓扑数据已经清楚地反映出地理实体之间的逻辑结构关系,而且这种拓扑数据较之几何数据有更大的稳定性,即它不随地图投影而变化。

)2)利用拓扑数据有利于空间要素的查询。

(例如应答像某区域与哪些区域邻接;某条河流能为哪些政区的居民提供水源等)3)可以利用拓扑数据,重建地理实体。

(例如建立封闭多边形,实现道路的选取,进行最佳路径的计算等。

)5、游程编码结构逐行将相邻同值的网格合并,并记录合并后网格的值及合并网格的长度,其目的是压宿栅格数据量,消除数据间冗余。

(特别适用于二值图像数据的表示)6、四叉树结构(会写)将空间区域按照四个象限进行梯归分割,直到子象限的数值单调为止。

序号 二元组序列 1 (2,2) 2 (5,2) 3 (2,1) 4 (7,1) 5 (5,2) 6 (7,3) 7 (5,5) 2 2 5 5 2 7 5 5 7 7 7 5 5 5 5 5 二元映射7、布尔逻辑运算和(AND)、或(OR)、异或(XOR)、非(NOT)等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、三维GIS在空间分析方面的独特应用:三维空间分析除了包括二维gis的分析功能外,还应包括针对三维空间对象的特殊分析功能。

具体可分为以下几类:空间查询,包括几何参数查询(空间位置、属性)、空间定位查询(点定位、面定位)、空间关系查询(邻接、包含、相离、相交、覆盖等)等;空间量测,包括距离、质心、面积、表面积、体积等;叠置分析;缓冲区分析,包括点缓冲、线缓冲、面缓冲、体缓冲等;网络分析,包括最短路径、资源分配、连通分析等;地形分析,包括趋势面分析、坡度坡向分析、晕渲分析等;剖面分析,它是实现通视分析、日照分析阴影计算等的基础;空间统计分析,包括统计图表分析、密度分析、层次分析、聚类分析等。

根据空间分析所处理的对象进行划分,空间分析方法主要有基于图形的方法与基于数据的方法两类。

基于图形的空间分析方法如常规的缓冲区分析、叠置分析、网络分析、复合分析、邻近分析与空间联结等能直接从2D 扩展至2.5D乃至3D。

由于三维数据本身可以降维到二维,因此三维GIS自然能包容二维GIS的空间分析功能。

三维GIS最有特色的也许是其基于三维数据的复杂分析能力,如计算空间距离、表面积、体积、通视性与可视域等。

结合物理化学模型提供一些更具增值价值的真三维空间分析功能,如水文分析、可视性分析、日照分析与视觉景观分析等已成为三维GIS分析研究的重要内容之一,并正积极朝结合属性数据和其他专题数据开发知识发现的新方法、“面向解决与空间有关的问题”提供定量与定性结合的空间决策支持方向发展。

2、三维建筑物模型的重建方法:大量的研究致力于地物(尤其是人工地物)的三维自动重建,而依据分辨率、精度、时间和成本等的不同已经有许多不同的技术方法可供选择。

如Tao(2004)将三维建筑物模型的重建方法分为以下三类:1)基于地图的方法,利用已有GIS、地图和CAD提供的二维平面数据以及其他高度辅助数据经济快速建立盒状模型;2)基于图象的方法,利用近景、航空与遥感图象建立包括顶部细节在内的逼真表面模型,该方法相对比较费时和昂贵,自动化程度还不高;3)基于点群的方法,利用激光扫描和地面移动测量快速获得的大量三维点群数据建立几何表面模型。

建筑物三维模型重建:基于图片、基于激光扫描数据数据获取系统的组成:激光扫描仪:(1)横向:系统相对定位数据(2)纵向:建筑物表面模型数据数码摄像机:建筑物表面纹理数据建筑物初始模型的建立:三维空间点云的建立:扫描匹配方法——相对定位、GPS校正法——全局定位三维点云预处理:建筑物表面反射率低导致激光信号弱。

扫描仪的固有误差。

树木、行人或车辆的遮挡。

作用:消除噪声干扰方法:(1)滤波优化:消除噪声,提取背景层。

(2)平滑处理:平滑表面。

(3)建筑物三角网格化简生成初始网格模型:作用:在尽可能保持原始模型特征的情况下,最大限度地减少原始模型的三角形和顶点的数目。

顶点最少原则,误差最小原则.目前现行方法在楼体表面网格化简上的比较:(1)最短边优先化简方法:排序网格中所有的边长,用堆来存储。

依次删除边长最小的边,直到达到预期的三角形数目。

缺点:容易丢失局部区域的框架结构。

下图为从22011个三角形化简到4201个三角形的效果。

(2)基于法向的网格化简. 化简依据:1、平面区域:平面区域的多边形应合并成较大的多边形。

2、陡边:相邻的两个多边形的二面角小于一定阈值的边。

3、凸点:曲率较大的顶点。

(3)边折叠法: 点到平面距离的平方和作为误差度量。

选取两顶点距离小于一定阈值的点对,并计算两点对之间的代价函数。

根据代价值由小到大的顺序进行化简。

(4)边折叠法改进: 将边折叠后生成的新三角形的形态质量因子引入到折叠代价函数的计算当中,限制狭长三角形的产生,避免模型视觉特征的急剧改变。

改进后局部特征得到很好的保留,并且网格数目可缩小到4020个。

纹理修补技术:目的:在采集到的纹理图片中移除建筑物前的遮挡物体,并用适当的纹理填充。

方法:对要移除的遮挡物进行提取、对该目标区域沿轮廓线逐样本块进行修补。

修补过程:定义目标块p的优先级为P(p)=C(p)*D(p),其中C(P)为信任项,D(p)为数据项,表达式如下:设目标块具有最高优先级,记是源区域中与最相似的源块。

相似性的判断方法如下:存在问题:•轮廓点的等照度线方向造成线性结构无限繁殖。

•对每一个需填充目标块,在确定源块的过程中都需要对源区域进行全局搜索,大大影响了算法的效率。

•改进方法流程图3、三维空间数据获取方法类型和技术:三维GIS技术最重要的进展之一就是三维数据获取技术的进步,特别是航空与近景摄影测量、机载与地面激光扫描、地面移动测量与GPS等传感器的精度与速度都有了明显的提高(Batty,et al, 2000;Stoter and Zlatanova, 2003)。

大量的研究致力于地物(尤其是人工地物)的三维自动重建,而依据分辨率、精度、时间和成本等的不同已经有许多不同的技术方法可供选择。

如Tao(2004)将三维建筑物模型的重建方法分为以下三类:(1)基于地图的方法,利用已有GIS、地图和CAD提供的二维平面数据以及其他高度辅助数据经济快速建立盒状模型;(2)基于图象的方法,利用近景、航空与遥感图象建立包括顶部细节在内的逼真表面模型,该方法相对比较费时和昂贵,自动化程度还不高;(3)基于点群的方法,利用激光扫描和地面移动测量快速获得的大量三维点群数据建立几何表面模型。

三维重建的数据源还可以分为远距离获取的数据(卫星影像、航空影像、空载激光扫描等)、近距离获取的数据(近景摄影、近距激光扫描、人工测量)和GIS/CAD导出数据三种(Brenner and Haala, 2001;Shiode,2001)。

不同的数据源对应着不同的三维模型细节和应用范畴。

比如,基于遥感影像和机载激光扫描的方法适用于大范围三维模型数据获取、车载数字摄影测量方法适用于走廊地带建模、地面摄影测量方法和近距离激光扫描方法则适用于复杂地物精细建模等等。

其中,基于影像和机载激光扫描系统的三维模型获取方法能够适用于在大范围地区快速获取地面与建筑物的几何模型和纹理细节,虽然现有技术在很大程度上还依赖人工辅助,但这无疑是最有潜力的三维模型数据自动获取技术之一。

基于已有二维GIS数据的简单建模方法具有成本低、自动化程度高的优点,在某些需要快速建立三维模型的领域也有着广泛的应用,这也是现有大多数二维GIS提供三维能力的最主要方式。

基于CAD的人机交互式建模方法将继续被用于一些复杂人工目标的全三维逼真重建。

另外,基于图象的建模和绘制(Image based modeling & rendering:IBMR)作为一种新的视觉建模方法,在不需要复杂几何模型的前提下也能够获得具有高度真实感的场景表达,能够较好的解决三维建模过程中模型复杂度与绘制的真实感和实时性三者之间的矛盾,大大简化了复杂的数据处理工作。

因此也被越来越多地用于各种虚拟环境的建立,特别是基于图形和图象的两种建模技术被综合用于高度真实感的三维景观模型的创建。

上述技术主要应用于重建目标的三维表面模型,而有关地球科学领域的真三维重建技术在吴立新教授的“真三维地学模拟的若干问题”一文中有详细介绍。

随着三维GIS的深入发展和广泛应用,人们越来越关注三维模型数据的准确性、逼真性和有用性。

在追求三维模型逼真和准确的同时,也带来了数据生产的高投入。

与二维空间数据相比,三维空间数据不是简单的一一对应或者扩展,三维空间数据库的建设至今仍然是一项复杂而昂贵的综合性工程。

大型三维GIS系统建设的生产效率、质量控制、数据安全和有效存储与管理等问题日益突出,并直接关系到系统建设与应用的成败。

决定空间数据具体生产方案的三个要素分别是精度、成本和效率,最终系统的有用性和提供的空间分析能力又取决于模型的逼真程度以及所选择的数据源和建模方法。

因此,三维GIS缺乏有关数据内容、细节程度、定位精度和生产工艺等的技术标准已经成为制约其推广应用的关键问题之一。

4、国内外三维GIS软件:我国GIS经过三十多年的发展,理论和技术日趋成熟,在传统二维GIS已不能满足应用需求的情况下,三维GIS应运而生,并成为GIS的重要发展方向之一。

上世纪八十年代末以来,空间信息三维可视化技术成为业界研究的热点并以惊人的速度迅速发展起来,首先是美国推出Google Earth、Skyline、World Wind、Virtual Earth、ArcGIS Explorer等,我国也紧随推出了EV-Globe 、GeoGlobe、VRMap、IMAGIS等软件与国外软件竞争本土市场。

三维GIS得到了各行业用户的认同,在城市规划、综合应急、军事仿真、虚拟旅游、智能交通、海洋资源管理、石油设施管理、无线通信基站选址、环保监测、地下管线等领域备受青睐。

目前,我国国产三维GIS软件已占据了国内市场的半壁江山。

国外三维GIS软件:一重唱·美国谷歌公司:Google Earth--用户最多的三维地球软件介绍:Google Earth以三维地球的形式把大量卫星图片、航拍照片和模拟三维图像组织在一起,使用户从不同角度浏览地球。

Google Earth的数据来源于商业遥感卫星影像和航片,包括DigitalGlobe公司的QuickBird,IKOONOS及法国SPOTS。

特点:Google Earth凭借其强大的技术实力和经验,以其操作简单、用户体验超群的优势吸引了全球近十分之一的人口使用。

发展历程:Google于2004年10月收购了Keyhole公司,随之次年6月推出Google Earth系列软件。

产品形式:Google Earth客户端软件提供三个版本:个人免费版、Plus版、Pro版以及企业级解决方案,用于在企业内部部署Google Earth应用。

二重唱·美国国家航空和航天管理局(NASA):World Wind--最强大的开源地理科普软件介绍:World Wind是NASA发布的一个开放源代码的地理科普软件,由NASA Research开发,NASA Learning Technologies来发展,它是一个可视化地球仪,将NASA、USGS以及其它WMS服务商提供的图像通过一个三维的地球模型展现,还包含了火星和月球的展现。

软件用C#编写,调用微软SQL Server影像库TerrainServer来进行全球地形三维显示。

它通过将遥感影像与SRTM高程(航天飞机雷达拓扑测绘)叠加生成三维地形。

特点:World Wind最大的特性是卫星数据的自动更新能力。

这种能力使得World Wind具有在世界范围内跟踪近期事件、天气变化、火灾等情况的能力。

拥有NASA血统的World Wind可以利用Landsat 7、SRTM、MODIS、GLOBE , Landmark Set等多颗卫星的数据,将Landsat卫星的图像和航天飞机雷达遥感数据结合在一起,让用户体验三维地球遨游的感觉。

相关文档
最新文档