大学物理A(一)课件第七章稳恒磁场习题及答案

合集下载

第7章稳恒磁场及答案教学总结

第7章稳恒磁场及答案教学总结

第7 章稳恒磁场及答

第七章稳恒电流
1、在磁感强度为B 的均匀磁场中作一半径为r 的半球面S , S 边线所在平面的法
线方向单位矢量n 与B 的夹角为
,则通过半球面 S 的磁通量(取弯面向外为正)
(C) o I /4 . (D) 2 o I/3 .
4、如图,在一固定的载流大平板附近有一载流小线框能自由转 动或平
动.线框平面与大平板垂直.大平板的电流与线框中电流 方向如图所示,
则通电线框的运动情况对着从大平板看是:
(A)靠近大平板.
(B)顺时针转动. (C)逆时针转动. (D)离开大平板向外运动.
(A) r 2B . . (B) 2 r 2B . 2 2
(C) - r Bsin . (D) - r Bcos . 2、磁场由沿空心长圆筒形导体的均匀分布的 \ B 电流产生,圆筒半径为 R , x 坐标轴垂直圆筒 轴线,原点在中心轴线上.图(A)〜(E)哪一条 曲线表示B -x 的关系? AB (A) (D) 『(C) )R x O R x n 3、如图,两根直导线ab 和cd 沿半径方向被 接到一个截面处处相等的铁环上,稳恒电流
I 从a 端流入 而从d 端流出,则磁感强度 B 沿图中闭合路径L 的积分 B dl 等于 L
1 (A) 。

1 .
(B)-。

丨. 3 L。

《大学物理》章节试题及答案(七)

《大学物理》章节试题及答案(七)

《大学物理》章节试题及答案第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). *7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( )(A )()r I μr π2/1-- (B ) ()r I μr π2/1-(C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。

第7章_稳恒磁场集美大学物理答案

第7章_稳恒磁场集美大学物理答案

班级____________ 姓名______________ 学号_________________ 第7-1 毕奥—萨伐尔定律 一.选择题:1.一根载有电流I 的无限长直导线,在A 处弯成半径为R 的圆形,由于导线外有绝缘层,在A 处两导线靠得很近但不短路,则在圆心处磁感应强度B 的大小为:( C ) (A) (μ0+1)I /(2πR ) (B) μ0I /(2πR ) (C) μ0I (-1+π)/(2πR )(D) μ0I (1+π)/(4πR )2.将半径为R 的无限长导体薄壁管(厚度忽略) 沿轴向割去一宽度为h (h <<R )无限长狭缝后,再沿轴向均匀地流有电流,其面电流密度为i (即沿圆周每单位长度的电流),则管轴线上磁感应强度的大小是:( A )(A) R h i πμ2/0 (B) 0(C) R h i πμ4/0(D) h i 0μ二、计算题:3.载有电流为I 的无限长导线,弯成如图形状,其中一段是半径为R 的半圆,则圆心处的磁感应强度B 的大小为多少? 解: 选为正方向123B B B B →→→→=++1(14IB Rομπ=--2,42I B R ομπ=⋅ 34I B R ομ=∴)12(4-+=ππμοRIB4.用相同的导线组成的一导电回路,由半径为R 的圆周及距圆心为R /2的一直导线组成(如图),若直导线上一电源ε,且通过电流为I ,求圆心O处的磁感应强度。

解 设大圆弧的电流为1I ,小圆弧的电流为2I ,则12I I I +=,选为正方向根据电阻定律有1122l I Sl I S ερερ⎧=⎪⎪⎨⎪=⎪⎩可得:1122I l I l =大圆弧电流在圆心处O 产生的磁感应强度:大小为01114I l B R μπ=,方向为 小圆弧电流在圆心处O 产生的磁感应强度:大小为02224I lB Rμπ=,方向为⊗直导线电流在圆心处O 产生的磁感应强度:大小为0035cos cos 66242I I B R R μππππ⎛⎫=-= ⎪⎝⎭,方向为所以,总电流在圆心处O 产生的磁感应强度:312B B B B =++,大小为:02IB Rπ=,方向为5.如图,两线圈共轴,半径分别为1R 和2R ,电流分别为I 1 和I 2 ,电流方向相同,两圆心相距2 b ,联线的中点为O 。

最新第7章稳恒磁场及答案

最新第7章稳恒磁场及答案

第七章稳恒电流1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . . (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]3、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅LlB d 等于(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.4、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动.5、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.n B α SOB x O R (A) BxO R (B)Bx O R (D) Bx O R (C)BxO R (E)x 电流 圆筒II ab c d 120°I 1I 2b baI6、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为____,方向________.7、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导线所受磁力与重力平衡时,导线中电流I =___________________.8、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.9、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案: 一 选择题1、D2、A3、D4、B5、2ln 20πIaμ6、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左)7、)/(lB mgIlI dIBI8、解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 x i B π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里. (3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度==⎰B B d ⎰+πba bxdx x20δμb b a x +π=ln 20δμ 方向垂直纸面向里.9、解:由安培环路定理: ∑⎰⋅=i I l Hd 0< r <R 1区域: 212/2R Ir rH =π 212R Ir H π=, 2102R Ir B π=μR 1< r <R 2区域: I rH =π2r I H π=2, rIB π=2μR 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r r IH ---π= )1(2222322200R R R r r IH B ---π==μμ r >R 3区域: H = 0,B = 0x d x PO x党的十九届四中全会精神解读1.《中共中央关于坚持和完善中国特色社会主义制度、推进国家治理体系和治理能力现代化若干重大问题的决定》提出,到(),各方面制度更加完善,基本实现国家治理体系和治理能力现代化。

《大学物理》课后解答题 第七章稳恒磁场

《大学物理》课后解答题  第七章稳恒磁场

第7章 稳恒磁场一、思考讨论题1、如图4.1所示的电流元Idl 是否在空间所有点的磁感应强度均不为零?请你指出Idl在a 、b 、c 、d 四点产生的磁感应强度的方向。

解:不是,电流元Idl在自身产生的磁感应强度为零。

a 、垂直纸面向外b 、垂直纸面向外c 、垂直纸面向内d 、垂直纸面向内2、分别求图4.2中的三种情况下,通有电流I 的直线电流在图中点产生磁感应强度B 的大小和方向。

解:a 图,()a I cos cos a I B πμπμ823145304--=-=方向垂直纸面向内 b 图,()aIcos cos a I B πμπμ82345604--=-= 方向垂直纸面向内 c 图() 30041cos cos a I B -=πμ () 1806030402cos cos tan c a I B -=πμ aIB B B πμ41312-=-= 方向垂直纸面向内3、电流分布如图4.3所示,分别求出各图中O 点的磁感应强度O B的大小和方向。

图4.1图4.2a图4.2ba图4.2c1 R 3解:a 图, 321B B B B ++=()30060431cos cos cos R IB B -==πμ23601202a I B μ=方向垂直纸面向内b 图, 01=B ,RIR I B 126122μμ==,()2322180150243-=-⋅=R I cos cos R I B πμπμ所以,⎪⎪⎭⎫⎝⎛-+=R R I B πμ432121 方向垂直纸面向内 c 图,RIR I B 834321μμ==,052==B B R I B B πμ16243==,所以,⎪⎪⎭⎫ ⎝⎛+=πμ238R I B 方向垂直纸面向外 4、若空间中存在两根无限长直载流导线,则磁场的分布就不存在简单的对称性,因此:(A )安培环路定理已不成立,故不能直接用此定理计算磁场分布。

(B )安培环路定理仍然成立,故仍可直接用此定理计算磁场分布。

大学物理学 上册 (孙厚谦 著) 清华大学出版社 课后答案 第7章

大学物理学 上册 (孙厚谦 著) 清华大学出版社 课后答案 第7章

R
7-8 半径为 R 的薄圆盘均匀带电,总电量为 q 。令此盘绕通过圆盘中心 且垂直盘面的轴线匀速转动,角速度 ,求圆盘中心 O 处的磁感应强度。
查看答案 7-8
7-9 如图所示是一根很长的长直圆管形导体的横截面,内外半径分别为 a 和 b ,导体内载有沿轴线 方向的电流 I ,且电流 I 均匀分布在管的横截面上。试求导体内部( a r
第7章
7-1 如图,一个处在真空中的弓形平面载流线圈 acba , acb 为半径为 R 2cm 的圆弧,ab 为圆弧 对应的弦,圆心角 aob 900 ,
I 40A ,试求圆心 O 点的磁感应强度的大小和方向。
查看答案 7-1 习题 7-1 图 7-2 将载流长直导线弯成如图所示的形状,求 O 点磁感应强度。
B B1 B2 0.86 104 T
方向垂直纸面向外。 7-2
m
返回 7-1
解 如图,将导线分成 1(左侧导线) 、2(半圆导线) 、3(右侧导线)三部分,设各部分在 O 点处产 生的磁感应强度分别为 B1 、 B2 、 B3 。 根据叠加原理可知, O 点处磁感应强度 B

B2

利用叠加原理求 P2 点场强
ww
w.
a2 a2 π j πa I 2r 2 a 2 B Bo ( B1 B2 ) 0 ( 4 4 ) 0 a a 2π r π r (4r 2 a 2 ) r r 2 2
kh
2
π
da
r
r r2 a2 4
2πr

r
w. 案




w.
F
co
B 的分布。

大学物理 朱峰(第一版)习题精解——第七章 稳恒磁场

大学物理 朱峰(第一版)习题精解——第七章 稳恒磁场

大学物理朱峰(第一版)习题精解——第七章稳恒磁场7-1一条无限长直导线在一处弯折成半径为R的圆弧,如图7.6所示,若已知导线中电流强度为I,试利用比奥—萨伐尔定律求:(1)当圆弧为半圆周时,圆心O处的磁感应强度;(2)当圆弧为1/4圆周时,圆心O处的磁感应强度。

解(1)如图7.6所示,圆心O处的磁感应强度可看作由3段载流导线的磁场叠加而成。

因为圆心O位于直线电流AB和DE的延长线上,直线电流上的任一电流元在O点产生的磁感应强度均为零,所以直线电流AB和DE段在O点不产生磁场。

根据比奥—萨伐尔定律,半圆弧上任一电流元在O点产生的磁感应强度为,Idl 0, dB24R,方向垂直纸面向内。

半圆弧在O点产生的磁感应强度为,R,,,IIdlI000 ,,,BR, 22,0444,,RRR方向垂直纸面向里。

(2)如图7.6(b)所示,同理,圆心O处的磁感应强度可看作由3段载流导线的磁场叠加而成。

因为圆心O位于电流AB和DE的延长线上,直线电流上的任一电流元在O点产生的磁感应强度均为零,所以直线电流AB和DE段在O点不产生磁场。

根据毕奥—萨伐尔定理,1/4圆弧上任一电流元在O点产生的磁感应强度为,Idl 0, dB24R,方向垂直纸面向内,1/4圆弧电流在O点产生的磁感应强度为,R,,,IIdlIR,0002 B,,, 22,04428,,RRR方向垂直纸面向里。

7.2 如图7.7所示,有一被折成直角的无限长直导线有20A电流,P点在折线的延长线上,设a为,试求P点磁感应强度。

解 P点的磁感应强度可看作由两段载流直导线AB和BC所产生的磁场叠加而成。

AB段在P点所产生的磁感应强度为零,BC段在P点所产生的磁感应强度为,I 0 B,,(coscos),,12,4r0,式中,,,,,ra,,, 。

所以 1202,I,50 BT,,,,(coscos)4.010(),42,a0方向垂直纸面向里。

7-3 如图7.8所示,用毕奥—萨伐尔定律计算图中O点的磁感应强度。

大学物理A2稳恒磁场习题解答PPT课件

大学物理A2稳恒磁场习题解答PPT课件

7、D
B
0 Ir , 2R 2 0I ,r 2r
rR R
8、B
3
2
1
45 6
6
9、C 10、C 11、B
12、D
Rm ,T2m ,m 4,Q 2
qB qB m H Q H
R m P
eB eB
Sin D eBD
RP
R BO•
-e
D
MP mB0
7
13、C
123 F3
F1
F2
1A 2A 3A
L3、L4在O点产生的磁感应强度的大小相 等,方向相反,总值为0。即
B3B4 0
ቤተ መጻሕፍቲ ባይዱ19
O点的磁感应强度:
B0
B1B2 B3 B4
0I 4R
方向垂直图面向外。
20
3、带电粒子在均匀磁场中由静止开始下降,磁场方 向与与重力方向( X轴方向)垂直,求粒子下落 距离为 X 时的速率 V, 并叙述求解方法的理论依据。
16
2、用两根彼此平行的半无限长的直导线 L、1 L 2
把半径为 R的均匀导体圆环连到电源上,如图所
示,已知直导线上的电流为 I,求圆环中心 O
点的磁感应强度。
O
a
L1
R
b
L2
17
解:L1在O点产生的磁感应强度: 由于L1与O点在一条直线,由毕奥—萨伐定律可求出
B1=0
L2在O点产生的磁感应强度: L2为半无限长直电流,它在O处产生的场是无限长直 电流的一半,由安培环路定律和叠加原理有
0
I1
3
4、D I
a1 O1
I
O2
a2
B12a01I;B222a20I(见2题)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 练习题
1、在磁感强度为B
的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n
与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为
(A) πr 2B .
. (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.
2、如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电
流在框中心O 点产生的磁感强度分别用 1B 、2B
、3B 表示,则O
点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0.
(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B

(C) B ≠ 0,因为虽然021=+B B
,但B 3≠ 0.
(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B

3、通有电流I 的无限长直导线有如图三种形状,则P ,
Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .
(C) B Q > B O > B P . (D) B O > B Q > B P . 4、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原
点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?
[ ]
5、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强
度B
沿图中闭合路径L 的积分⎰⋅L
l B d
(A) I 0μ. (B)
I 03
1
μ. (C) 4/0I μ. (D) 3/20I μ.
B x O
R
(D) B x O
R
(C) B x
O
R
(E)
6、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平
动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所
示,则通电线框的运动情况对着从大平板看是:
(A) 靠近大平板. (B) 顺时针转动.
(C) 逆时针转动.
(D) 离开大平板向外运动.
7、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.
8、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳
恒电流I ,则圆心O 处的电流元l I
d 所受的安培力F
d 的大小为____,方向________.
9、有一根质量为m ,长为l 的直导线,放在磁感强度为 B
的均匀
磁场中B 的方向在水平面内,导线中电流方向如图所示,当导 线所受磁力与重力平衡时,
导线中电流I =___________________.
10、图示为三种不同的磁介质的B ~H 关系曲线,其中虚线表示的是B = μ0H 的关系.说明a 、b 、c 各代表哪一类磁介质的B ~H 关系曲线:
a 代表____________________的B ~H 关系曲线.
b 代表____________________的B ~H 关系曲线.
c 代表____________________的B ~H 关系曲线.
11、AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)
12、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距
平板一边为b 的任意点P 的磁感强度.
I 1
I 2 I
l
I d
I
B
13、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.
14、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布. 答案: 一 选择题
1、D
2、A
3、D
4、B
5、D
6、B
7、2ln 20π
Ia
μ
8、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左) 9、)/(lB mg
10、铁磁质、 顺磁质、 抗磁质 11、解:AA '线圈在O 点所产生的磁感强度
002502μμ==A A A A r I
N B (方向垂直AA '平面)
CC '线圈在O 点所产生的磁感强度 005002μμ==C
C C C r I
N B (方向垂直CC '平面)
O 点的合磁感强度 42/1221002.7)(-⨯=+=C A
B B B T B 的方向在和AA '、C
C '都垂直的平面内,和CC '平面的夹角
︒==-4.63tg 1A
C B B
θ
A
12、解:利用无限长载流直导线的公式求解.
(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流 x i d d δ=
(2) 这载流长条在P 点产生的磁感应强度
x i B π=2d d 0μx
x
π=2d 0δμ 方向垂直纸
面向里.
(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P

产生的磁感强度
=
=⎰B B d ⎰
+πb
a b
x
dx x
20δ
μb b a x +π=ln 20δμ 方向垂直纸面向里.
13、解: ===l NI nI H /200 A/m
===H H B r μμμ0 1.06 T
14、解:由安培环路定理: ∑⎰⋅=i I l H
d
0< r <R 1区域: 2
12/2R Ir rH =π 2
12R Ir H π=
, 2102R Ir B π=μ
R 1< r <R 2区域: I rH =π2
r I H π=2, r
I
B π=2μ
R 2< r <R 3区域: )
()
(22
2232
22R R R r I I rH ---=π )1(22
2
232
22R R R r r I
H ---π= )1(22
2
232
2
200R R R r r I
H B ---π==μμ r >R 3区域: H = 0,B = 0。

相关文档
最新文档