动物生物化学第11章

合集下载

考研科目,动物生物化学 第11章 含氮小分子

考研科目,动物生物化学  第11章 含氮小分子

意义
此种方式既是氨基酸脱氨基的主要方式,
体内有活泼的转氨酶和L-谷氨酸脱氢酶,
反应可逆,也是体内合成非必需氨基酸的
主要方式。
主要在肝、肾组织进行。
4 嘌呤核苷酸循环
氨 基 酸 转 氨 酶 1 α-酮戊 二酸 转 氨 酶 2 谷氨酸 腺苷酸代琥 珀酸合成酶 天冬氨酸
NH3
次黄嘌呤 核苷酸 (IMP)
第11章 含氮小分子代谢
Metabolism of Small Molecules Containing N
重点:联合脱氨基、尿素合成、嘌呤 核苷酸体内分解代谢; 难点:核苷酸从头合成途径、脱氧核 苷酸合成。
本章主要内容
1 2 3 4 5 6 蛋白质的营养作用 氨基酸的一般分解代谢 氨的代谢 α -酮酸的代谢和非必需氨基酸的合成 个别氨基酸的代谢 核苷酸的合成与分解代谢
在转氨酶的催化下,α -氨基酸的氨基转移 到α -酮酸的酮基碳原子上,结果原来的α -氨 基酸生成相应的α -酮酸,而原来的α -酮酸则 形成了相应的α -氨基酸,这种作用称为转氨 基作用或氨基移换作用。
特点
没有游离的氨产生,但改变了氨基酸代谢 库中各种氨基酸的比例。 催化的反应可逆。 其辅酶都是磷酸吡哆醛。
血清转氨酶活性,临床上可作为疾病 诊断和预后的指标之一。
谷丙转氨酶和谷草转氨酶
谷丙转氨酶 (GPT)
谷草转氨 酶(GOT)
(肝脏)
(心肌 肝脏)
3 联合脱氨基作用 (1) 定义
是指氨基酸与α -酮戊二酸经转氨作用 生成α -酮酸和谷氨酸,谷氨酸经L-谷氨酸 脱氢酶作用生成游离氨和α -酮戊二酸的过 程。
生酮氨基酸 生糖兼生酮氨基酸
3 氧化供能
α-酮酸在体内可通过TAC 和氧化磷 酸化彻底氧化为H2O和CO2,同时生成 ATP。

动物生物化学(绪论部分)

动物生物化学(绪论部分)

现代生物化学含义:
现代生物化学主要是研究生物大分子(蛋白质、核酸)的相互作
用、相互影响以表现生命活动现象的原理。是从分子水平上阐明生 命有机体化学本质的一门学科。
2. 生物化学研究对象
生物化学研究的对象是生命体,包括动物体(人体)、植物体、微生 物及病毒等。生物化学也就是研究这些生命体的化学及其变化规律。
4. 研究许多重大生物学问题的分子机制:
生物化学与生物物理学、微生物学、遗传学等多学科相互渗透,在分子 水平上阐述许多重大生命的结构与功能、酶作用的分子机制等。
细胞
细胞器
生物大分 子
单体

N2
胞 CO2
H2O
三、 生物化学的种类
1. 根据研究对象分为:动物生物化学、植物生物化学、 微生物生物化学等。
动 物生 物 化 学
Animal Biochemistry
动 物生物化学
第一章 绪论 第二章 蛋白质的结构与功能 第三章 酶 第四章 核酸的化学结构
第五章 生物氧化
第六章 糖类代谢 第七章 脂类代谢 第八章 蛋白质代谢 第九章 核苷酸代谢及核酸的生物学功能 第十章 生物膜的结构与功能
第一章 绪 论
二、生物化学的研究内容
1. 研究构成生命体的物质基础: 即组成生命体的物质的化学组成、结构和性质以及它们在体内的分布。
2. 研究生命物质在生命体中的运动规律: 即生命物质在体内的化学变化,以及各种生命物质在变化中的相互关系。
此即为新陈代谢。
3. 研究生命物质的结构、功能与生命现象的关系:
即在生命过程中,各种生命物质的作用、运动规律和相互关系对由这些 生命物质所构成的器官、组织、细胞、亚细胞在生命活动中的功能的影响。

河北农业大学2018年《动物生物化学》考研大纲

河北农业大学2018年《动物生物化学》考研大纲

河北农业大学2018年《动物生物化学》考研大纲第一章绪论第一节生物化学的概念、研究对象和内容第二节生物化学的发展简史第三节生物化学与畜牧兽医的关系主要了解生物化学的概念、主要的研究内容、研究热点及发展趋势。

第二章蛋白质化学第一节蛋白质在生命活动中的重要作用第二节蛋白质的分类第三节蛋白质的化学组成第四节蛋白质的化学结构第五节蛋白质结构与功能的关系第六节蛋白质的物理化学性质了解蛋白质的生理功能及分类,掌握组成蛋白质的基本结构—氨基酸结构及性质;掌握蛋白质结构各层次结构概念及特点。

弄清蛋白质结构与功能的关系,掌握蛋白质的主要理化性质。

第三章核酸化学第一节核酸的组成、性质和生物学功能第二节DNA和RNA的结构第三节核酸的变性、复性及杂交第四节核酸的分离纯化、纯度鉴定和结构测定弄清DNA和RNA的化学组成、性质和生物学功能,掌握DNA双螺旋结构特点、RNA分类、结构特点及生物学功能。

掌握核酸变性、复性的基本概念及其应用。

第四章酶第一节酶的一般概念第二节酶的化学组成第三节酶结构与功能的关系第四节酶催化机理第五节酶促反应动力学第六节酶活性的调节第七节酶的命名和分类了解酶的基本概念,掌握酶促反应特点,掌握酶的化学组成及辅酶(维生素),弄清酶结构与功能的关系,了解酶催化机制,掌握酶促反应动力学及酶活性调节的方式。

第五章糖代谢第一节糖在动物体内的一般概况第二节糖原的分解与合成代谢第三节葡萄糖的分解代谢第四节糖异生作用第五节磷酸戊糖途径第六节糖代谢各途径的联系及调节了解糖在的物体的一般代谢概况,掌握糖原合成与分解、糖酵解与三羧酸循环、糖异生的代谢过程及反应、关键酶、能量转变及生理意义,掌握戊糖磷酸途径的生理意义,弄清糖代谢各途径的联系及调节。

第六章生物氧化第一节生物氧化特点及酶类第二节生物氧化二氧化碳的生产第三节生物氧化水的生成第四节生物氧化ATP的生成弄清生物氧化的特点及其酶类,了解生物氧化二氧化碳生成的方式,掌握线粒体两条呼吸链的组成、排列顺序、抑制剂抑制部位,掌握氧化磷酸化机制。

动物生物化学课件

动物生物化学课件

酶工程和蛋白质工 程的应用:在生物 医药、生物能源、 生物材料等领域的 应用
生物膜和膜蛋白的研究进展
生物膜的 结构和功 能
膜蛋白的 分类和功 能
生物膜和 膜蛋白在 细胞信号 传导中的 作用
生物膜和 膜蛋白在 疾病中的 作用
生物膜和 膜蛋白在 药物设计 中的应用
生物膜和 膜蛋白在 生物技术 中的应用
生物氧化和能量代谢的调控机制研究进展
研究背景:生物氧化和能量代谢是生物体维持生命活动的基础,其调控机制的研究对于理解生 物体的生理功能和疾病发生具有重要意义。
研究进展:近年来,研究人员在生物氧化和能量代谢的调控机制方面取得了一系列重要进展, 包括发现了新的调控因子、信号通路和代谢途径等。
研究方法:研究人员采用了多种研究方法,包括基因敲除、基因编辑、蛋白质组学、代谢组学 等,以深入探讨生物氧化和能量代谢的调控机制。
应用实例:运动训练、运动营 养、运动损伤等方面的应用
蛋白质和酶在疾病诊断和治疗中的应用
蛋白质和酶在疾病诊断中的应用:通过检测血液、尿液等样本中的蛋白质和酶的含量,可以 诊断出多种疾病,如糖尿病、肾病等。
蛋白质和酶在疾病治疗中的应用:通过注射或口服蛋白质和酶,可以治疗多种疾病,如糖尿 病、肾病等。
蛋白质和酶在疾病预防中的应用:通过检测血液、尿液等样本中的蛋白质和酶的含量,可以 预测疾病的发生,从而进行预防。
酶的活性中心: 酶分子中与底 物结合并催化 化学反应的部

酶的抑制剂: 能够降低酶活 性的物质,分 为竞争性抑制 剂和非竞争性
抑制剂
酶的动力学: 研究酶催化反 应的速度、反 应条件对酶活 性的影响以及 酶的调节机制
生物氧化和能量代谢
生物氧化:生物体内物质氧化分解的过程,释放能量 能量代谢:生物体内能量的吸收、转化和利用过程 生物氧化与能量代谢的关系:生物氧化是能量代谢的基础,能量代谢是生物氧化的目的 生物氧化与能量代谢的调控:生物体内有多种酶和激素参与调控,维持能量代谢的平衡

动物生物化学 教学大纲

动物生物化学   教学大纲

《动物生物化学》教学大纲动物生物化学(animal biochemistry)是在分子水平上研究动物体的化学本质及生命活动过程中化学变化规律的科学,是动物医学专业/本硕连读动物医学专业/动物科学专业本科学生的专业基础课。

动物生物化学课程主要内容包括:各类生物分子特别是生物大分子(蛋白质、酶、核酸等)的结构、性质和功能;物质代谢过程与能量的释放、转移和储存,物质代谢和能量流动的相互联系和调节控制;信息分子的代谢和遗传信息的传递、表达和调节;动物器官、组织机能生物化学;以及相关基本知识和最新知识成果。

动物生物化学课程设置的目的在于为学生进一步学习动物生理学、动物遗传学、兽医微生物学、兽医免疫学、兽医药理学、兽医病理学、兽医临床诊断学等后续课程和进行科学研究奠定坚实的理论和技能基础。

一、各章节要点和授课时数第一章绪论2学时一、生物化学的涵义二、生物化学发展简史三、动物生物化学与动物生产和动物健康四、动物生物化学学习方略重点掌握动物生物化学的概念、研究对象和目的,以及在国民经济发展中的地位和作用;了解动物生物化学在国内、外发展的概况。

第二章蛋白质的结构与功能4学时一、概述二、蛋白质的基本组成单位—氨基酸三、蛋白质结构四、蛋白质的结构与功能的关系五、蛋白质的重要性质、分离纯化与鉴定重点掌握蛋白质在生命活动中的作用,蛋白质的一、二、三、四级结构概念与特征,蛋白质的结构与功能的关系;熟悉蛋白质的组成单位氨基酸,蛋白质的理化性质与分离纯化及测定。

第三章核酸化学2学时一、概述二、核酸的一级结构三、DNA的结构与功能四、RNA的结构与功能五、核酸的理化性质及其应用六、核酸酶和DNA限制性内切酶七、DNA一级结构测定与DNA的化学合成八、基因和基因组重点掌握核酸的一级结构,DNA的结构与功能,RNA的结构与功能,基因和基因组;熟悉核酸的理化性质及其应用,核酸酶和限制性核酸内切酶,DNA一级结构测定与DNA的化学合成。

如何学好《动物生物化学》

如何学好《动物生物化学》

第五部分 其他特殊生物化学
第18章 第19章 第20章 第21章 第22章 第23章 第24章 水和无机盐代谢 部分动物组织和器官的生化(血液、肝脏、肌 肉、结缔组织、神经、脂肪、皮毛) 乳和蛋 激素 抗生素 光合作用 生物固氮
这一部分的内容分别是动物、植物和微生物特有的生物化 学。对于将来从事相关领域研究的人来说,同样也是不可或确
经验公式法:
0.2 0.3 0.4 BSA浓度(mg/ml)
0.5
0.6
蛋白质浓度(mg/ml)= 1.45×OD280-0.74×OD260
注意:在使用该公式时,OD280 应在0.1~0.7之间,所测值才 比较准确。
四)蛋白质的分子量
蛋白质分子大小通常用道尔顿(Dalton,Da)或千道尔顿 (kDa)表示,一般在6×103~106之间。 测定蛋白质的分子量有许多方法,常用的有SDS-聚丙烯 酰胺凝胶电泳(SDS-PAGE)、凝胶过滤法等。这些方法的误 差为5%~10%。 理论推算法: 蛋白质分子量(Da) ≈ 氨基酸数目×110 Dalton: A unit of mass very nearly equal to that of a hydrogen atom. Named after John Dalton (1766–1844), who developed the atomic theory of matter.
二级结构是指主链局部有规则的空间排布,通常由氢键维 持。右手α -螺旋和平行或反平行的β -折叠是最主要的二级
结构。
相邻二级结构常组合成特定的超二级结构,并进一步形成 相对独立的、更大的球状结构单位,称为结构域。不同结构
域之间以共价键相连。
三级结构是指整个多肽链折叠成的紧密的球形结构,表面 通常是亲水的,内部是疏水的。三级结构涉及分子中所有的 原子和基团的空间排布,是蛋白质发挥功能所必需的。 四级结构是指由两个或两个以上多肽链组装的寡聚蛋白中 亚基的排布。亚基间通过离子键、疏水作用力等非共价键相 互作用。

东北农业大学动物生物化学本科课程教案

东北农业大学动物生物化学本科课程教案

东北农业大学动物生物化学本科课程教案第一章:课程介绍与概述1.1 课程背景与意义介绍动物生物化学课程在动物科学专业中的重要性强调动物生物化学在农业生产中的应用价值1.2 课程目标与学习内容明确课程的学习目标,包括理论知识和实践技能概述课程的主要学习内容,包括生物大分子、代谢途径等1.3 教学方法与学习方式介绍讲授、讨论、实验等多种教学方法鼓励学生通过自主学习、小组合作等方式积极参与课堂1.4 课程评价与考核方式说明课程评价标准和方法,包括平时成绩、考试成绩等强调学生在课堂表现、作业完成和实验操作等方面的要求第二章:生物大分子结构与功能2.1 蛋白质的结构与功能介绍蛋白质的基本结构单位:氨基酸讲解蛋白质的二级、三级结构及其功能多样性2.2 核酸的结构与功能介绍DNA和RNA的基本结构与功能讲解核酸在遗传信息的存储和传递中的作用2.3 糖类的结构与功能介绍糖类的分类与结构特点讲解糖类在生物体能量代谢和细胞信号传导中的作用2.4 脂类的结构与功能介绍脂类的分类与结构特点讲解脂类在细胞膜结构和生物体能量储存中的作用第三章:生物氧化与代谢途径3.1 生物氧化的概念与意义讲解生物氧化的基本过程与作用强调生物氧化在能量代谢中的重要性3.2 三羧酸循环(TCA循环)详细讲解TCA循环的步骤与代谢产物强调TCA循环在能量代谢中的核心地位3.3 氧化磷酸化与电子传递链介绍氧化磷酸化的基本原理与过程讲解电子传递链的结构与功能3.4 光合作用与呼吸作用讲解光合作用的过程与作用强调呼吸作用与光合作用的相互关系第四章:酶与酶促反应4.1 酶的基本概念与特性介绍酶的定义、活性与专一性强调酶在生物化学反应中的催化作用4.2 酶促反应的机制讲解酶促反应的基本原理与类型强调酶促反应的调控机制4.3 酶的测定与分离纯化介绍酶的测定方法与指标讲解酶的分离纯化技术与应用4.4 酶工程与应用介绍酶工程的基本原理与技术强调酶在工业、医药等领域的应用价值第五章:生物膜与信号传导5.1 生物膜的结构与功能介绍生物膜的基本结构与特点强调生物膜在细胞功能与信号传导中的作用5.2 信号传导的基本途径讲解细胞内信号传导的机制与途径强调信号传导在生物体生理与代谢调节中的重要性5.3 钙离子信号传导介绍钙离子在信号传导中的作用与机制强调钙离子信号传导在细胞代谢与生理功能调节中的关键地位5.4 磷酸化与脱磷酸化作用讲解磷酸化与脱磷酸化在信号传导中的作用与机制强调磷酸化与脱磷酸化在生物体代谢与功能调节中的重要性第六章:遗传信息的传递与表达6.1 遗传信息的存储与传递详细讲解DNA的复制过程强调DNA复制在遗传信息传递中的重要性6.2 转录与翻译介绍转录和翻译的基本过程强调遗传信息从DNA到蛋白质的表达过程6.3 基因表达调控讲解基因表达调控的基本机制强调基因表达调控在生物体生理与代谢中的重要性6.4 基因工程与应用介绍基因工程的基本原理与技术强调基因工程在农业、医药等领域的应用价值第七章:糖代谢与能量代谢7.1 糖类的代谢途径详细讲解糖类的代谢途径,包括糖酵解、糖异生等强调糖代谢在生物体能量供应中的重要性7.2 脂肪代谢与酮体的介绍脂肪的代谢途径与酮体的过程强调脂肪代谢在能量储存与供应中的作用7.3 氨基酸代谢讲解氨基酸的代谢途径与类型强调氨基酸代谢在生物体生长、发育与修复中的重要性7.4 代谢综合征与疾病介绍代谢综合征的概念与病因强调代谢综合征对人类健康的影响与防治策略第八章:酸碱平衡与矿物质代谢8.1 酸碱平衡的基本概念介绍酸碱平衡的定义与重要性强调酸碱平衡在生物体正常生理功能中的作用8.2 矿物质代谢的基本过程详细讲解矿物质的吸收、运输与排泄过程强调矿物质代谢在生物体正常生理与健康中的重要性8.3 矿物质的生理功能与作用介绍常见矿物质的生理功能与作用强调矿物质在生物体正常生理与代谢中的关键地位8.4 矿物质缺乏与过量讲解矿物质缺乏与过量的病因与影响强调矿物质缺乏与过量对生物体健康的影响与防治策略第九章:生物化学技术在动物科学中的应用9.1 动物生理与生化指标的测定介绍常见动物生理与生化指标的测定方法强调这些指标在评估动物健康与生产性能中的重要性9.2 免疫生化技术介绍免疫生化技术的基本原理与方法强调免疫生化技术在动物疾病诊断与疫苗研发中的应用价值9.3 蛋白质组学与基因组学技术介绍蛋白质组学与基因组学技术的基本原理与方法强调这些技术在生物科学研究与生物技术应用中的重要性9.4 生物化学技术在饲料与营养研究中的应用介绍生物化学技术在饲料与营养研究中的应用强调这些技术在优化饲料配方与提高动物生产性能中的作用第十章:课程总结与展望10.1 课程学习内容的总结回顾本课程的主要学习内容与知识点强调学生对课程知识的理解与掌握10.2 课程实践与研究应用强调课程知识在实践中的应用与研究价值鼓励学生继续深入学习与探索10.3 课程考核与评价说明课程的考核标准与评价方法强调学生对课程学习的认真态度与努力程度第十一章:生物化学在兽医领域的应用11.1 兽医临床生物化学介绍兽医临床生物化学的基本概念和应用强调兽医临床生物化学在疾病诊断和治疗中的重要性11.2 兽医毒理学与生物化学讲解兽医毒理学与生物化学的关系强调生物化学在毒素分析和对策研究中的作用11.3 兽医微生物学与生物化学介绍兽医微生物学与生物化学的交叉领域强调微生物代谢产物和病原体感染过程中的生物化学变化11.4 兽医营养与生物化学讲解兽医营养学中的生物化学基础强调营养代谢和营养状况评价的生物化学指标第十二章:生物化学在生物技术中的应用12.1 基因工程与生物化学介绍基因工程中的生物化学原理和技术强调基因表达调控和蛋白质工程中的生物化学作用12.2 细胞工程与生物化学讲解细胞工程中的生物化学问题强调细胞培养和细胞信号传导中的生物化学机制12.3 蛋白质工程与生物化学介绍蛋白质工程的基本原理和方法强调蛋白质结构和功能关系在工程中的应用12.4 生物传感器与生物化学讲解生物传感器的工作原理和应用强调生物化学在生物传感器设计和应用中的重要性第十三章:生物化学在食品科学中的应用13.1 食品分析与生物化学介绍食品分析中的生物化学方法强调食品安全和质量控制中的生物化学检测技术13.2 食品加工与生物化学讲解食品加工过程中的生物化学变化强调生物化学在食品保存、风味改良和营养强化中的应用13.3 功能性食品与生物化学介绍功能性食品的生物化学基础强调生物化学在开发和评价功能性食品中的作用13.4 食品营养与生物化学讲解食品营养学中的生物化学概念强调营养代谢和营养状况评估的生物化学指标第十四章:生物化学在环境科学中的应用14.1 环境污染与生物化学介绍环境污染中的生物化学问题强调生物化学在环境监测和污染治理中的应用14.2 生物降解与生物化学讲解生物降解过程中的生物化学机制强调生物化学在环境生物技术中的应用14.3 生物监测与生物化学介绍生物监测的原理和方法强调生物化学在环境生物监测中的作用14.4 环境毒素与生物化学讲解环境毒素的生物化学特性强调生物化学在环境毒素分析和毒性评估中的应用第十五章:课程回顾与未来展望15.1 课程重点回顾回顾本课程的重点内容和关键概念强调学生对课程知识的理解和应用15.2 课程实践与研究进展讨论课程知识在实际应用中的最新进展鼓励学生继续学习和探索生物化学的未知领域15.3 课程评价与反馈收集学生的课程评价和反馈强调学生对课程改进的建议和期望15.4 未来学习与职业规划指导学生规划未来的学习和职业道路强调生物化学在学生未来职业发展中的重要性重点和难点解析。

动物生物化学0578

动物生物化学0578

4、分子的或综合生物化学发展时期 (1950~至今,机能生物化学)
孟德尔 豌豆杂交实验提出生物遗传的不是其形状本身, 而是它的遗传因子。 1895年 Miescher 发现核蛋白 1928年 格里非思 肺炎球菌转化实验 1944年 Avery等人首次证明DNA是遗传物质 1950年 Chargaff证明A=T G=C 1953年,Watson和Crick提出DNA的双螺旋结构模型 为标志,生物化学的发展进入分子生物学阶段。 1966年 遗传密码破译
2.Karg B. Mallis(美)发明PCR方法。 3.Michaet Smith(加拿大)建立DNA合成用与定点诱 变研究 1994年 Alfred G. Giillman(美)等,发现G蛋白及基因在 细胞内信号转导的作用。
1997年
1 stanley B.prusiner(美)发现一中新型的致病因子-感染性
三、生物化学的应用与展望
1、 生物化学是二十一世纪生命科学的带头学科。 学科热点: 基因组学
蛋白质组学 克隆(组织、器官、个体)
生物化学学科的新进展与热点问题
1、基因组计划研究的继续与深入 2、蛋白质组研究(后基因组研究) 3、RNA组计划正在兴起 4、基因表达调控 5、细胞信号传递 6、与医学密切相关的一些热点问题 7、端粒、端粒酶与细胞正常衰老、凋亡研究 8、与药物生产密切相关的基因工程研究 9、体内第三类生物大分子糖蛋白与蛋白聚糖 10、分子生物学中心法则的理论研究及相关技术研究
现代定义:研究生物分子,特别是生物大分子相互 作用、相互影响以表现生命活动现象原理的科学。
2、生物化学的研究内容
(1)研究生物体内物质的化学组成、结构、性质与 功能。
高等生物体主要由蛋白质、核酸、糖类、脂类以及 水、无机盐等组成,此外还含有一些低分子物质, 如维生素、激素、氨基酸、多肽、核苷酸及一些分 解产物。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
饲料蛋白之所以有不同的生理价值是因为其氨基酸的组成不 同,并且主要是其必需氨基酸的种类和比例不同。因为非必需 氨基酸是可以通过糖代谢的中间产物在机体中自己合成的。
饲料蛋白的氨基酸组成与动物机体蛋白的氨基酸组成越接近, 其生物学价值也越高。如果其必需氨基酸的含量、比例与机体 蛋白组成完全一样,则生物学价值达到100。
蛋白质的生物学价值
氮的保留量 氮的吸收量 100
必需氨基酸(essential amino acid)
动物体内不能合成或合成量不足而需要由饲料供给的氨基酸。 约有10种,包括苏氨酸、缬氨酸、亮氨酸、异亮氨酸、色氨酸、苯丙氨酸、 赖氨酸、蛋氨酸、组氨酸和精氨酸。对雏鸡还有甘氨酸。
1.5 蛋白质的互补作用
类激素,如多巴胺、肾上腺素和去甲肾上腺素。 ▪ 尿黑酸氧化酶缺陷则酪氨酸代谢中间物2,5-二羟基苯乙酸(尿黑酸)
不能分解,引起尿黑酸症。 ▪ 苯丙氨酸和酪氨酸最终分解成延胡索酸和乙酰乙酸。
5.3 含硫氨基酸代谢 体内的含硫氨基酸有三种,即甲硫氨酸、半胱氨酸。
甲硫氨酸也是一个重要的甲基供体,其活性形式是S-腺苷甲硫氨酸(SAM)
动物以何种方式排除氨与其胚胎期的水环境有关。
4 α-酮酸的代谢和非必需氨基酸的合成
4.1 α-酮酸的代谢
氨基酸脱氨生成的α-酮酸还可以经氨基化再转变成相应 的氨基酸
或转变成糖脂代谢的中间物, 再进而异生成糖或转变为 酮体
或进入糖代谢途径分解供能
氨基酸碳骨架的代谢去向
X
根据氨基酸碳骨架代谢的去向,有的可以异生转变为糖, 有的则转变为酮体,有的则是既生糖又生酮,是兼生的.
生糖氨基酸有 14 种 Ser,Gly,Thr,Ala,Cys 代谢转变为丙酮酸 Asp,Asn 代谢转变为草酰乙酸 Met, Val 代谢转变为琥珀酸 Glu,Gln,His,Pro,Arg 代谢转变为α-酮戊二酸
生酮氨基酸 2 种 Lys 代谢转变为乙酰乙酸 Leu 代谢转变为乙酰乙酸和乙酰CoA
把不同生物学价值的饲料蛋白质混合使用,其必需氨基酸可 以互相补充以提高饲料蛋白质的生理价值,称为蛋白质的互补 作用。
2 氨基酸的一般分解代谢
2.1 动物体内氨基酸的一般代谢概况
2.2 氨基酸的脱氨基作用(deamination)
指氨基酸脱去氨基生成相应的α-酮酸的过程。
动物的脱氨基作用主要在肝脏和肾脏中进行。
反应如下:
2.2.2 转氨作用
在转氨酶(transaminase)的催化下,一种氨基酸的α-氨基转移到 另一种α-酮酸的酮基上,生成相应的氨基酸和α-酮酸,这种 作用称为转氨基作用。转氨酶的辅酶是磷酸吡哆醛。 α-酮戊二 酸常是氨基的受体而转变成L-谷氨酸。
谷草转氨酶 GOT (心肌,肝脏) 谷丙转氨酶 GPT (肝脏)
5.1 一碳基团的代谢(不包括羧基)
1)亚氨甲基(-CH=NH,formimino-) 2)甲酰基(-CHO,formyl-) 3)羟甲基(-CH2OH,hydroxymethyl-) 4)甲烯基(-CH2-,methylene) 5)甲炔基或次甲基(-CH=,methenyl-) 6)甲基(-CH3- methyl- )
精氨酸的生成(胞液中进行)
精氨酸的水解和尿素的生成(胞液中进行)
尿素循环的总反应
尿素的生成
鸟氨酸/精氨酸循环
尿素合成的小结
尿素的生成是一个耗能的过程。氨甲酰磷酸合成酶I (线粒体)是关键酶。每生成1分子的尿素消耗4个高能磷酸 键的能量。尿素分子中的1个氨基来自游离氨,另一个氨基 来自天冬氨酸(实际上由其他氨基酸通过转氨作用提供), 碳原子来自CO2
Gln无毒,脑和肌肉组织等可以合成Gln,它是动物血液中 最丰富的氨基酸之一,氨的运载体, 积极参与合成代谢。在 肾中,Gln在谷氨酰胺酶的作用下释放氨,然后与质子结合 随尿排出。
3.2.2 丙氨酸-葡萄糖循环 (alanine-giucose cycle)
丙氨酸也是氨的运载体,它把氨从肌肉运送到肝脏, 脱氨后生成的丙酮酸又异生转变成葡萄糖运回到肌 肉
组织细胞的生长、修补和更新 转变为生理活性分子 氧化供能
1.2 氮平衡(nitrogen balance)
反映动物由饲料摄入的N和排出的N(从粪、尿等)之间的关系以衡
量机体的蛋白质代谢状况。
氮的总平衡:摄入氮量=排出氮量(成年动物)
氮的正平衡:摄入氮量>排出氮量(生长,妊娠动物)
氮的负平衡:摄入氮量<排出氮量(营养不良,消耗性疾病, 机体损伤等)
COOH H C NH2
R
脱羧酶
磷 酸 吡 哆 醛 RCH2NH2 + CO2
胺类的来源与功能
来源 谷氨酸 组氨酸 色氨酸 半胱氨酸
鸟氨酸、精氨酸
胺类 γ-氨基丁酸(GABA)
组胺 5-羟色胺
牛磺酸
腐胺,精胺等
功能
抑制性神经递质 血管舒张剂,促胃液分泌 抑制性神经递质,缩血管 形成牛磺胆汁酸,促进脂类
谷胱甘肽还原酶
2GSH + NADP+
GSSG + NADP++ H+
还原型谷胱甘肽
氧化型谷胱甘肽
谷氨酰胺循环
循环在合成GSH的同时实现对氨基酸的转运
α-酮戊二酸+天冬氨酸 α-酮戊二酸+丙氨酸
GOT
谷氨酸+ 草酰乙酸 GPT 谷氨酸+ 丙酮酸
在临床诊断上有广泛应用的酶
2.2.3 联合脱氨基作用(combinant deamination)
指转氨基作用和氧化脱氨基作用联合反应. 氨基酸与α-酮戊二酸 经转氨作用生成α-酮酸和L-谷氨酸,后者经L-谷氨酸脱氢酶作用 脱去氨生成α-酮戊二酸。大部分氨基酸的脱氨借助于转氨酶和L谷氨酸脱氢酶的协同作用或称联合转氨基作用完成。
消化 促进细胞增殖等
3.氨的代谢
3.1 氨的来源和去路
氨的来源
脱氨基作用 嘌呤和嘧啶的分解 饲料添加 肠道细菌分解氨基酸
高水平的血氨是有毒性的,可以引起脑功能紊乱
氨的去路
再与α-酮酸合成氨基酸 转变成无毒的谷氨酰胺 合成尿素 合成嘌呤,再分解成尿酸排出 直接排氨
3.2 氨的转运 3.2.1 谷氨酰胺的运氨作用
一碳基团的的载体---四氢叶酸, FH4
FH4是一碳单位的运载体,携带甲基的部位是在N5,N10 位
8
7
10
1
N
HN
N
H2N
2
HN
4
N6 9
5
3
O
HO O
HN
O
O
HO
2-氨基-4羟基-6甲基蝶呤 对氨基苯甲酸 谷氨酸
叶酸在叶酸还原酶作用 下利用NADPH还原得 到FH4
蝶酸
叶酸(蝶酰谷氨酸)
一碳基团与四氢叶酸的连接方式
COO
HC NH3 CH2
+
P ~P~P
CH2 O
腺嘌呤
CH2
S
OH OH
CH3
甲硫氨酸
ATP
PPi+Pi 腺苷转移酶
COO
HC NH3 CH2 CH2 S CH2 O CH3
腺嘌呤
OH OH
S-腺苷甲硫氨酸
COO
HC NH3
CH2 CH2 S CH2 O CH3
腺嘌呤
OH OH
S-腺苷甲硫氨酸
RH
H2O 丝氨酸羟甲基转移酶
N5,N10-CH2-FH4 + H2C NH3 COO
甘氨酸
组氨酸与一碳单位
NH3 CH2 CH COO N NH
组氨酸
OOC CH (CH2)2 COO FH4
HN NH C H
亚氨甲基谷氨酸
亚氨甲基转移酶
COO (CH2)2 N5-CH=NH-FH4 + HC NH3 COO
H
H
N
H
H
N
N
N
5
N CH氢叶酸 (N5,N10=CH-FH4)
5
N H HC
O
CH2
N
10
N10-甲酰四氢叶酸 (N10-CHO-FH4)
5
N CH2
H2C N
10
N5,N10-甲烯四氢叶酸 (N5,N10-CH2-FH4)
5
N CH2
CH3HN
10
N5-甲基四氢叶酸 (N5-CH3-FH4)
CO2 + NH3 +
NAD+ NADH+H+
N5,N10-CH2-FH4
色氨酸与一碳单位
O CH2 CH C O
NH3
N H
色氨酸
FH4 ATP ADP+Pi
犬尿氨酸 + HCOO
N10-CHO-FH4 N10-CHO-FH4
合成酶
丝氨酸与一碳单位
H2C OH HC NH3 + FH4
COO
丝氨酸
脱氨基方式 转氨基作用 氧化脱氨基作用 联合脱氨基作用
2.2.1 氧化脱氨基作用
动物体内有L-氨基酸和D-氨基酸的氧化酶,它们属于需氧脱氢 酶,其辅基分别是FMN和FAD,可以催化氨基酸的氧化脱氨。但是 由于L-氨基酸氧化酶的活性低,D-氨基酸氧化酶又缺乏可利用的底 物,它们的作用不大。
而L-谷氨酸脱氢酶能专一地使L-谷氨酸实现氧化脱氨, 生成 α-酮戊二酸,且活性强、分布广。
转氨作用
氧化脱氨基作用
2.2.4 嘌呤核苷酸循环(purine nucleotide cycle)
骨骼肌和心肌中存在的一种氨基酸的联合脱氨基作用
2.3 氨基酸的脱羧作用(decarboxylation)
氨基酸在脱羧酶的作用下形成胺类的反应。磷酸吡哆醛是脱羧 酶的辅酶。生成的胺类常有特殊的生理和药理作用。
相关文档
最新文档