多目标优化精品PPT课件
合集下载
3.多目标优化决策方法(共19张PPT)

min f ( x)
定理(dìnglǐ)1的改
对于
s.t .
gi ( x) 0, i 1,, p
进:
hj ( x) 0, j 1,,q
1、gi ( x),iI在x*处可微 2、hj ( x), jJ在x*处连续可微
3、gi ( x),iI( x* ),hj ( x), jJ线性无关
若x*是局部(júbù)最优解,则
第八页,共十九页。
gi ( x* ) 0,i 1,, p有两种情况:
1、gi ( x* ) 0 2、gi ( x* ) 0
若x*有变化(biànhuà),则约束条件可能没有破
坏
若x*有变化,则约束条件一定(yīdìng)被破坏
使gi ( x* ) 0的约束条件gi ( x) 0称为x*的积极约束
令J表示MP的全部等式约束的下标(xià biāo)集合,即J={1,2…q}, I表示MP的全部不等式约束的下标集合,即I={1,2…p}
转化所得到的单目标规划是非线性规划。
第五页,共十九页。
非线性规划 问题 (guīhuà)
➢无约束非线性规划(guīhuà)问题
利用微积分中,有关(yǒuguān)函数极值的充要条件进行求解。 例:
min f (x) (x1 1)2 (x2 2)2 x1* 1, x2* 2
第六页,共十九页。
j =1
xj ≥ 0 ,
dk- ,dk+ ≥ 0 ,
j =1,2,…,n k =1,2,…,K
第三页,共十九页。
目标规划 方法 (guīhuà)
目标规划(guīhuà)的求解
目标规划图解法
目标规划单纯形法
第四页,共十九页。
多目标 规划 (mùbiāo)
MATLAB多目标优化计算 ppt课件

6.1 函数fgoalattain
三、例题
(4) M文件运算结果 (5) 优化结果处理
Optimization terminated successfully:
Search direction less than 2*options.
xopt =
1.0e+003 *
dd1
0.1000
1.2269
Ld
ceq=[];
[x,fval,exitflag,output, grad,hessian]= fgoalattain(@fun,x0,goal,w,A,b,Apept课q件,beq,Lb,Ub,’Nlc’,options,P1,P92…)
6.1 函数fgoalattain
三、例题
(3)编制优化设计的M文件
等式约束
g1(X) x1 0
边 界 约 束 g2(X) x1 1 0 变量x1的上下限
g3(X) x2 0
g4 (X) ppxt课2件 1 0
变量x2的上下限
16
6.2 函数fminimax
三、例题
(2)编制优化设计的M文件
%矩形截面梁两目标优化设计的目标函数文件
function f=JXL_2mb_MB(x) f(1)=x(1)*x(2); f(2)=-x(1)*x(2)^2/6;
目标函数文件名 初始点
附加参数 设置优化选项参数
各分目标期望值 各分目标权重 线性不等式约束的常数向量
无定义时以空矩阵 符号“[ ]”代替
非线性约束条件的函数名 设计变量的下界和上界
线性等式约束的常数向量
线性不等式约束的系数矩阵
ppt课件
线性等式约束的系数4矩阵
6.1 函数fgoalattain
多目标优化问题的求解算法PPT课件

2021
本文中,为每个目标设定一个目标阀值,各种群都在该工程的施工网络 可靠性框图上进行搜索,把每个种群每搜索得到的新解(一个实施方案的工序 组合)依次代入目标函数中,所得值和预先设定阀值进行比较分析。
产生以下几种情况: ①若四个种群搜索的解对应的函数值都优于目标值的,就把把该解加到入 解集中,再按照公式(4-15)进行更新。若搜索出的解和非支配解集中的某个解相 同,就对这条路径上的信息素进行一定比例减少,防止陷入局部最优。 ②若有三个目标函数值优于设定的目标值,就将这三个目标种群在其对应 的路径上选取其中某段路径,对此路径上的信息素进行变异处理。
2021
(5)路径对蚂蚁的吸引程度
2021
(6)非支配解集的构造
在求解多目标优化问题时,在向Pareto前沿逼近 的过程中往往需要构造非支配解集,即利用多目标 优化算法不断寻找最优和收敛的过程。群体进化过 程中形成的最优个体集合就构成了非支配解集。因 此,求解多目标优化问题的Pareto最优解,可理解成 是构造非支配解集的过程。
2021
4.多目标优化问题的基本方法
现有的研究多目标优化问题的基本方法往往是把各个目标通过带权重系数 的 方式转化为单目标优化问题,如线性加权法、约束法、目标规划法、分层序列 法 等。
这几种方法存在一些局限性,如有些方法计算效率较低,无法逐一与所有 可 行解的目标值进行比较,有些方法需要进行多次优化,加权值法带有较强的主
本文把协同进化的思想引入到多种群蚁群算法中,从而解决基于多种种群的 蚁群算法的多目标优化问题。
2021
本文采用的是多种群蚁群算法,考虑到每个种群存在不同的搜索目标, 彼此之间相互影响,例如在起初寻找最低成本的路径和最高质量的路径的进 化方向就是相反的,为了避免各目标向目标的反方向进行,从协同进化的角 度考虑,把各种群搜索求得的解,分别代入四个目标函数中求解出对应的函 数值,并与目标值进行比较,当存在种群的目标函数值不满足目标值时,对 满足的路径上的信息素可以进行交叉或者变异操作,防止已经满足要求的种 群“背道而驰”,使得后续迭代的种群能够朝着有利路径逼近最优解。
本文中,为每个目标设定一个目标阀值,各种群都在该工程的施工网络 可靠性框图上进行搜索,把每个种群每搜索得到的新解(一个实施方案的工序 组合)依次代入目标函数中,所得值和预先设定阀值进行比较分析。
产生以下几种情况: ①若四个种群搜索的解对应的函数值都优于目标值的,就把把该解加到入 解集中,再按照公式(4-15)进行更新。若搜索出的解和非支配解集中的某个解相 同,就对这条路径上的信息素进行一定比例减少,防止陷入局部最优。 ②若有三个目标函数值优于设定的目标值,就将这三个目标种群在其对应 的路径上选取其中某段路径,对此路径上的信息素进行变异处理。
2021
(5)路径对蚂蚁的吸引程度
2021
(6)非支配解集的构造
在求解多目标优化问题时,在向Pareto前沿逼近 的过程中往往需要构造非支配解集,即利用多目标 优化算法不断寻找最优和收敛的过程。群体进化过 程中形成的最优个体集合就构成了非支配解集。因 此,求解多目标优化问题的Pareto最优解,可理解成 是构造非支配解集的过程。
2021
4.多目标优化问题的基本方法
现有的研究多目标优化问题的基本方法往往是把各个目标通过带权重系数 的 方式转化为单目标优化问题,如线性加权法、约束法、目标规划法、分层序列 法 等。
这几种方法存在一些局限性,如有些方法计算效率较低,无法逐一与所有 可 行解的目标值进行比较,有些方法需要进行多次优化,加权值法带有较强的主
本文把协同进化的思想引入到多种群蚁群算法中,从而解决基于多种种群的 蚁群算法的多目标优化问题。
2021
本文采用的是多种群蚁群算法,考虑到每个种群存在不同的搜索目标, 彼此之间相互影响,例如在起初寻找最低成本的路径和最高质量的路径的进 化方向就是相反的,为了避免各目标向目标的反方向进行,从协同进化的角 度考虑,把各种群搜索求得的解,分别代入四个目标函数中求解出对应的函 数值,并与目标值进行比较,当存在种群的目标函数值不满足目标值时,对 满足的路径上的信息素可以进行交叉或者变异操作,防止已经满足要求的种 群“背道而驰”,使得后续迭代的种群能够朝着有利路径逼近最优解。
多目标优化方法及实例解析ppt课件

mZ a x(X ) (1)
s.t. (X )G(2)
是与各目标函数相关的效用函数的和函数。
在用效用函数作为规划目标时,需要确定一组权值 i
来反映原问题中各目标函数在总体目标中的权重,即:
k
maxii
i1
i ( x 1 , x 2 , x n ) g i ( i 1 , 2 , , m )
1(X)
g1
s .t.
( X)
2(X)
G
g2
m(X)
gm
式中: X [x 1 ,x 2 , ,x n ] T为决策变量向量。
缩写形式:
max(Zm Fi(n X)) (1) s.t. (X )G (2)
有n个决策变量,k个目标函数, m个约束方程, 则:
Z=F(X) 是k维函数向量, (X)是m维函数向量; G是m维常数向量;
在图1中,max(f1, f2) .就 方案①和②来说,①的 f2 目标值比②大,但其目 标值 f1 比②小,因此无 法确定这两个方案的优 与劣。
在各个方案之间, 显然:④比①好,⑤比 ④好, ⑥比②好, ⑦比 ③好……。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
8
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
✓ 效用最优化模型 ✓ 罚款模型 ✓ 约束模型 ✓ 目标达到法 ✓ 目标规划模型
方法一 效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效用 函数建立相关关系,各目标之间通过效用函数协调, 使多目标规划问题转化为传统的单目标规划问题:
s.t. (X )G(2)
是与各目标函数相关的效用函数的和函数。
在用效用函数作为规划目标时,需要确定一组权值 i
来反映原问题中各目标函数在总体目标中的权重,即:
k
maxii
i1
i ( x 1 , x 2 , x n ) g i ( i 1 , 2 , , m )
1(X)
g1
s .t.
( X)
2(X)
G
g2
m(X)
gm
式中: X [x 1 ,x 2 , ,x n ] T为决策变量向量。
缩写形式:
max(Zm Fi(n X)) (1) s.t. (X )G (2)
有n个决策变量,k个目标函数, m个约束方程, 则:
Z=F(X) 是k维函数向量, (X)是m维函数向量; G是m维常数向量;
在图1中,max(f1, f2) .就 方案①和②来说,①的 f2 目标值比②大,但其目 标值 f1 比②小,因此无 法确定这两个方案的优 与劣。
在各个方案之间, 显然:④比①好,⑤比 ④好, ⑥比②好, ⑦比 ③好……。
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
8
二 多目标规划求解技术简介
为了求得多目标规划问题的非劣解,常常需要将 多目标规划问题转化为单目标规划问题去处理。实现 这种转化,有如下几种建模方法。
✓ 效用最优化模型 ✓ 罚款模型 ✓ 约束模型 ✓ 目标达到法 ✓ 目标规划模型
方法一 效用最优化模型(线性加权法)
思想:规划问题的各个目标函数可以通过一定的方式 进行求和运算。这种方法将一系列的目标函数与效用 函数建立相关关系,各目标之间通过效用函数协调, 使多目标规划问题转化为传统的单目标规划问题:
Isight-10-多目标优化

多目标遗传算法(MOGA)
• 多目标遗传算法(Multi-Objective Genetic Alorithm,以下记为 MOGA),不需要归一化可以直接处理多目标最优化问题。
多目标遗传算法(MOGA )
NSGA-II方法
• NSGA-II,作为1994年发布 的NSGA(Non-Dominated SortingGenetic Algorithm)的 改良版,由K. Deb,S. Agrawal等在2000年提出。
Isight 多目标遗传算法求解悬臂梁3 目标优化 ——重量、强度 、变形
\lab_第10章_多目标优化\beam.zmf
回顾:悬臂梁减重优化——单目标、 两变量版
演示:悬臂梁减重优化——三目标、四变量版
NSGAII
NSGAII 20x25→99 Pareto Points
NCGA
NCGA 20x25→192 Pareto Points
Pareto解。 • 由于目标函数间的矛盾性质,一般说来使每个目标函数同时达到各自最优值的
解是不存在的。多目标最优问题的解为Pareto最优解的条件是解的任何一个 目标函数的值在不使其他目标函数值恶化的条件下已不可能进一步改进。 • 很显然的,Pareto最优解不止一个,事实上在一般多目标优化问题中,Pareto 最优解常是连续的而且有无限多个,这就构成了Pareto前沿的概念。 • 多目标优化问题的最终解是从所有pareto最优解中挑 一个最优折衷解。
Pareto前沿比较
EDM数据挖掘
• 非劣个体通常都被存档 • 父代探索种群是从archive中
根据拥挤度进行淘汰选择 • 交叉、变异运算 • 非支配排序 • 拥挤距离排序 • 新的非劣个体存档 • 生成新的父代探索种群
多目标优化设计方法PPT39页

目的是将多目标优化问题转化为单目标 优化问题
7.4 功效系数法
一、功效系数 极小值
多目标优化设 计中,各子目 标的要求不同
极大值 一个合适的数值
每个子目标都用一个功效函数di表示 ——其值为功效系数
功效函数的范围[0,1]
fi(X)的值满意时,di=1 fi(X)的值不满意时,di=0
7.4 功效系数法(续)
1、基本思想
这种方法是对各目标函数的最优值放宽要求, 可以对各目标函数的最优值取给定的宽容值,即 ε1>0, ε2>0,…。这样,在求后一个目标函数的 最优值时,对前一目标函数不严格限制在最优解 内,而是在前一目标函数最优值附近的某一范围 内进行优化,因而避免了计算过程的中断。
若干个最优解组成的集合称为绝对最优解集,用 Da*b 表示。
只有当F(X)的各个子目标fi(X)的最优点都存在,并且 全部重叠于同一点时,才存在有绝对最优解。
7.1 概述(续)
2、有效解(非劣解) 设 X* D (D为可行域), 若不存在 X D ,使
fi ( X ) fi ( X*)(i 1, 2,..., m)
hj ( X ) 0, ( j 1, 2,..., k)
向量形式的目标函数
设计变量应满足的所 有约束条件
7.1 概述(续)
二、几个基本概念
1、最优解 设 X* D (D为可行域), 若对于任意 X D ,恒使
fi ( X*) fi ( X )(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的绝对最优解,简称最优解。
评价函数:
7.2 统一目标函数法(续)
二、统一目标函数的构造方法(续) 3、平方和加权法 基本思想:在理想点法的基础上引入权数
7.4 功效系数法
一、功效系数 极小值
多目标优化设 计中,各子目 标的要求不同
极大值 一个合适的数值
每个子目标都用一个功效函数di表示 ——其值为功效系数
功效函数的范围[0,1]
fi(X)的值满意时,di=1 fi(X)的值不满意时,di=0
7.4 功效系数法(续)
1、基本思想
这种方法是对各目标函数的最优值放宽要求, 可以对各目标函数的最优值取给定的宽容值,即 ε1>0, ε2>0,…。这样,在求后一个目标函数的 最优值时,对前一目标函数不严格限制在最优解 内,而是在前一目标函数最优值附近的某一范围 内进行优化,因而避免了计算过程的中断。
若干个最优解组成的集合称为绝对最优解集,用 Da*b 表示。
只有当F(X)的各个子目标fi(X)的最优点都存在,并且 全部重叠于同一点时,才存在有绝对最优解。
7.1 概述(续)
2、有效解(非劣解) 设 X* D (D为可行域), 若不存在 X D ,使
fi ( X ) fi ( X*)(i 1, 2,..., m)
hj ( X ) 0, ( j 1, 2,..., k)
向量形式的目标函数
设计变量应满足的所 有约束条件
7.1 概述(续)
二、几个基本概念
1、最优解 设 X* D (D为可行域), 若对于任意 X D ,恒使
fi ( X*) fi ( X )(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的绝对最优解,简称最优解。
评价函数:
7.2 统一目标函数法(续)
二、统一目标函数的构造方法(续) 3、平方和加权法 基本思想:在理想点法的基础上引入权数
多目标优化方法讲义(PPT64张)

决策空间 可行域
目标空间 可行域
示例2
m i n( F X ) f ( Xf ) ,2 ( X ) 1
T
3 6 4 1 1 L 3 f ( X ) x ( ) 2 1 4 4 4 4 4 4 3 E Dx Dx Dx 2 2 61 2 1 2 9.78 10 x1 s.t. g1 ( X ) 180 0 7 4 4.096 10 x2
4
2 1 2
2 2
1
2 1
2 2
3 6 4 1 1 L 3 f ( X ) x (4 4 4 4 ) 4 4 2 1 3 E Dx Dx Dx 2 2 1 2 1 2
9.78 106 x1 s.t. g1 ( X ) 180 0 7 4 4.096 10 x2 g2 ( X ) 75.2 x2 0 g3 ( X ) x2 40 0 g4 ( X ) x1 0
(1) (1) (1)
(1)
( 2)
, fm ( X )
(1) (2)
T
F(X
(2)
) f1 ( X
(2)
), f2 ( X
(2)
),
, fm ( X ) , m) X (2)
T
若对于每一个分量,都有 fl ( X (1) ) fl ( X (1) ) (l 1, 2, 则显然,X (1)优于X (2),记为X (1)
向量不等式的含义为
p p f ( X ) f ( X ) j 1 , 2 , , m , 但 至 少 有 一 个 f ( X ) f ( X ) j j l l
决策空间 非劣解集
多目标优化设计方法PPT39页

间接法
线性加权和法、主要目标函数法、理想点法、 平方和加权法、子目标乘除法、功效系数法
将多目标优化问题转化为一系列单目标优化问题
分层序列法、宽容分层序列法
7.2 统一目标函数法(综合目标法)
一、基本思想 统一目标函数法就是设法将各分目标函数
f1(X),f2(X),…,fl(X)统一到一个新构成的总的目标函数 f(X), 这样就把原来的多目标问题转化为一个具有统— 目标函数的单目标问题来求解.
7.1 概述
一、多目标优化及数学模型 单目标最优化方法 多目标最优化方法
多目标优化的实例: 物美价廉
7.1 概述(续)
设计车床齿轮变速箱时,要求: 各齿轮体积总和 f1(X ) 尽可能小
降低成本
各传动轴间的中心距总和 f2 (X ) 尽可能小 使变速箱结构紧凑。
合理选用材料
使总成本 f3 (X ) 尽可能小。
hj ( X ) 0, ( j 1, 2,..., k)
向量形式的目标函数
设计变量应满足的所 有约束条件
7.1 概述(续)
二、几个基本概念
1、最优解 设 X* D (D为可行域), 若对于任意 X D ,恒使
fi ( X*) fi ( X )(i 1, 2,..., m)
成立,则称X*为多目标优 化问题的绝对最优解,简称最优解。
对于多目标优化问题,任何两个解不一定能比较其 优劣;
多目标优化问题得到的可能只是非劣解(有效解), 而非劣解往往不止一个,需要在多个非劣解中找出一个最 优解。
7.1 概述(续)
三、多目标优化问题的特点及解法(续) 2、解法:
直接法: 直接求出非劣解,然后再选择较好的解
将多目标优化问题转化为单目标优化问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例7.1 一个二维分目标(n=1,m=2)的多目标优化问题为
V min F (x) [ f1 (x) f1(x) 2x 22
f2 (x) x
D: 0 x 2
f 2 (x)]T
见右下图。 取x=b,该点是有效解。因为在可行域D内,任取另一点 X,不存在F(x) ≤F(b), 即f1(x) ≤f1(b), 又同时有f2(x) ≤f2(b)。 x=b点满足有效解定义。
在设计中应尽量减少约束条件的个数。在众多约束条件 中,可能存在消极约束,所谓消极约束是指在某些约束得 到满足时,而有另一个或几个约束必然得到满足,其作用 被覆盖,被覆盖了作用的约束称为消极约束。如果经分析 能确认是消极约束,在建立数学模型时,应将其除掉。在 一般情况下,消极约束是不容易识别出来的。所以,在很 多时候,仍是将全部约束都列出来,不加区别的代进算法 程序中求解计算。
7.2.1数学模型中的尺度变换
数学模型中的尺度变换问题,是指用过改变在设计空间中 个坐标分量的比例,以改善数学性态的一种办法。
7.2.1设计变量的尺度变换
7.2.2约束条件的尺度变换
7.2.3目标函数的尺度变换
7.3多目标函数优化问题
在设计中,优化设计方案的好坏仅依赖于一项设计指标, 即所建立的目标函数仅含一个目标的函数,这样的目标函数 称为单目标函数,属于单目标优化设计问题。
其中l4=a为已知,是设计常
量;又l1=l3,l3为非独立变
量;又 l2
,l2是l1与
a的0 函2l1数co,s故0l2也
为非独立变量。所以只有两
个参数是独立变量
x l1 0 T x1 x2
设计变量愈多,维数愈高,设计的自由度越大,容易得到 较理想的优化结果;但维数越高,会使目标函数,约束函 数所包含的变量增多,导致计算量增大,并使优化过程更 为复杂及降低解题的效率。所以,在建立目标函数时,确 定设计变量的原则是在满足设计要求得前提下,将尽可能减 少设计变量的个数,即降低维数。
为了与单目标优化问题相区别,在目标函数前加V, 即表示为
V min F (x) f1(x) f2 (x) fm (x)T
7.3.2多目标优化设计的概念
在单目标优化设计中,对于各种性态函数,总可以通过对 迭代点函数值的比较,找出全局最优解,对任意两个解都能 判断其优劣。而多目标函数问题与单目标则有根本区别,任 意两个解之间,就不一定能判断出优劣。
约束一维多目标优 化设计解的情况。 在可行域[0,1]中, 绝对最优解发生在 x*=1处。 存在绝对最优解 (x*,F*)
n=2 m=2约束多目标 优化设计解的情
况,点x*为最优 点。
2有效解(非裂解)与劣解
定义二:对于一般表达式,若有设计点x∈D,不存在任意 的x∈D,使F(x) ≤F(x*)成立,或fj(x) ≥fj(x*),对于所有的 j=1,2,……m成立。则称x*为有效解或非劣解。
按设计问题维数的大小,通常把优化设计问题规模分为 三类:
小型优化问题:维数2-10 中型优化问题:维数10-50 大型优化问题:维数50以上
7.1.2关于目标函数的建立
优化设计数学模型中的目标函数F(x),是以设计变量表 示设计问题所追求的某一种或几种性能指标的解析表达式, 用它来评价设计方案的优劣程度。通常,设计所追求的性能 指标较多,建立目标函数,要针对影响质量和性能最为重要 的,最显著的指标作为设计追求的根本目标写入目标函数。
上式称为向量目标函数,是多目标函数; 式中的f1(x),f2(x),……,fm(x)称为目标函数中的各分目标函数。
数学模型的一般表Βιβλιοθήκη 式min F (x) f1 (x) f2 (x) fm (x)T
x x1 x2
gu(x) ≥0 hv(x)=0
xn D Rn
(u=1,2,……,p) (v=1,2……,q<n)
同理,区间[1,2]中的 任意一点都满足有效解 定义。所以,区间[1,2] 组成了有效解(非劣解) 集。
定义三:在可行域D内,除绝对最优解与有效解集以外, 部分的设计点均称劣解点,劣解点的全部称为劣解集。
1绝对最优解
定义一:一般表达式多目标设计优化问题,若包括所有的 J=1,2,……m对于任意的设计点x∈D都有
fj(x) ≥fj(x*) 成立,则点x*是多目标优化问题的绝对最优解。
无约束一维多目标 优化设计问题 (维数n=1, 分目标m=2) x*为绝对最优解得 迭代点,绝对最优 解(x*,F*)
第七章 关于机械优化设计当中的 几个问题
➢建立优化数学模型的有关问题 ➢数学模型中的尺度变换 ➢多目标函数优化设计 ➢关于离散变量的优化设计问题 ➢优化方法的选择及评价准则
7.1建立优化数学模型的有关问题
优化数学模型总体包含:设计变量,目标函数,约束条件
7.1.1关于设计变量的确定
工程设计中总是包含许多各种设计参数。在确定设计变 量时,要对各种参数加以分析,以进行取舍。
设计变量必须是独立变量。要从优互相依赖关系的变量 中剔除非独立变量。
下图所示为汽车前轮转向梯形机构。
等腰梯形机构ABCD中,给定机架长度LAD=a(常数)。 当汽车转弯时,为了保证所有车轮都处于纯滚动,要求从
动件CD转角 与主动件AB转角 保持某确定关系
()
该四杆机构的参数有各杆长度:l1,l2,l3,l4,和初始角 0
在许多实际设计中,一个设计方案又企望有几项设计指 标同时都达到最优值,这种在优化设计中同时要求两项极其 以上设计指标达到最优值得问题,成为多目标优化设计,目 标函数称为多目标函数。
7.3.1多目标优化设计数学模型
优化设计中,若有m个设计指标表达的目标函数要求同时 达到最优,则表示为
min F (x) f1 (x) f2 (x) fm (x)T
所建立的目标函数一般分为:单目标函数,多目标函数 一般的,所包含的分目标函数越多,设计结果越完善,但 设计求解的难度增大。因此,在实际设计中,在满足设计性 能要求的前提下,应尽量减少分目标函数的个数。
7.1.3关于约束条件问题
设计约束是在设计中对设计变量所提出的种种限制来确 定的。约束条件表达式同常有显性约束与隐性约束;不等 式约数与等式约束;边界约束与性能约束等。