2-3铝电解槽结构

合集下载

第二篇铝电解槽

第二篇铝电解槽

10.2 铝电解槽
10.2.1 铝电解的工作原理
• 电解质:冰晶石—氧化铝融盐, • 电流:直流电(4~22kA); • 电解温度:950~970℃; • 电极:阴、阳极均为碳质,阴极上析出铝、而阳 极上析出
CO2(70%)和CO(30%)气体; • 电解总反应:2Al2O3(aq)+3C(s)=4Al(l)+3CO2(g)
1自焙槽
2预焙槽
1自焙阳极电解槽 (1)侧插式 (2)上插式
2预焙阳极电解槽 (1)连续式 (2)不连续式
根据下料方式又可分为中间下料和边部下料 两种槽型。
电解槽的总体结构:
电解槽是在一个钢制槽壳,内部衬以耐火砖和保温层, 压型炭块镶于槽底,作为电解槽的阴极。电流通过电 解质由炭质阴极流入炭质阳极,完成电解过程。
自焙阳极旁插棒式电解槽
1.基础:绝缘; 2. 阴极:保温、坚固、密封防氧化、底糊防 侵蚀、挡板防淌料、侧部炭糊筑坡; 3. 阳极: 铝箱、钢 质框架; 4. 上部金属结构:支柱、平台、AO料斗、阳极升 降机构、槽帘和排烟系统 5. 导电母线和绝缘设施
下料,集气排烟装置等。
阳 极 装 置
(2)阴极装置 由钢制槽壳、阴极炭块组和保温材料砌体组成。
阴极装置
(3)母线装置 包括阴极母线,阳极母线,立柱母线和槽间母线。
槽 间 母 线
氧化铝下料装置立体图
氧化铝下料装置剖面图
10.2.3.1 不连续预焙阳极电解槽
依加料方式分:边部打壳电解槽、中部打壳电解槽 阳极炭块组:阳极导杆、钢爪、炭块。 阴极装置:阴极炭块、钢质导电棒 铝母线:阳极母线、阴极母线、立柱母线. 进电方式:一端进电、双端进电
23——密封圈 24——钢壳

电解槽2Al2O3(熔融)

电解槽2Al2O3(熔融)

电解过程中的反应
在电解过程中,阳极发生的反应是氧 离子失去电子被氧化成氧气,反应方 程式为:4O2- - 4e- = 2O2。
阴极发生的反应是铝离子得到电子被 还原成金属铝,反应方程式为: 4Al3+ + 12e- = 4Al。
电解过程的优化
提高电解效率
降低能耗
通过优化电解槽的设计和操作条件,提高 电流密度和电解质的传质传热性能,从而 提高电解效率。
通过采用先进的电极材料和优化电解槽的 电压和电流分布,降低能耗和减少副反应 的发生。
提高产物纯度
环保与安全
通过控制电解过程的温度、压力和电解质 成分,提高金属铝和氧气的纯度和产物的 质量。
在电解过程中应采取有效的环保措施,减 少废气、废水和废渣的产生,同时应确保 电解槽的安全运行和操作人员的安全。
05 电解槽中2Al2O3(熔融) 的工业应用
THANKS FOR WATCHING
感谢您的观看
化学合成法
通过化学反应将铝盐和碱反应生成氢 氧化铝,再经过脱水、高温熔融等处 理制得。
03 电解槽中2Al2O3(熔融) 的作用
作为电解质的角色
01
传导电流
熔融的2Al2O3能够传导电流, 使电子在电解过程中得以流动, 从而完成电解反应。
离子传输
Hale Waihona Puke 0203维持电极间电位差
熔融的2Al2O3作为电解质,能 够传输离子,促进电解过程中的 离子交换和迁移。
熔融的2Al2O3能够维持电极间 的电位差,确保电解反应的顺利 进行。
对电流效率的影响
提高电流效率
熔融的2Al2O3作为电解质,能够降低电解过程中的电阻,从 而提高电流效率。
降低能耗

电解冶炼的电解槽结构

电解冶炼的电解槽结构
03
阳极的形状和尺寸根据电解槽的类型和工艺要求而 定,一般呈板状或棒状。
阴极
01
阴极的功能是吸引电解质中的阳离子,并将电子传递回电路中 。
02
阴极材料通常为导电性能良好的金属或合金,如钢、镍、铜等

阴极的形状和尺寸根据电解槽的类型和工艺要求而定,一般呈
03
板状或棒状。
电解质
01
02
03
电解质在电解过程中起 着传递离子和电子的作 用,是实现电化学反应
属。
氯碱生产
通过电解食盐水生产烧碱、氢 气和氯气。
电镀
利用电解过程在金属表面沉积 所需的金属或合金层,提高其 耐腐蚀性和美观度。
其他领域
电解过程还可应用于化学合成 、污水处理、食品工业等领域

02
电解槽的构成
阳极
01
阳极的功能是将直流电能转化为化学能,并传递电 子至电解质中。
02
阳极材料通常为导电性能良好的金属或复合材料, 如铁、铜、钛等。
生产过程中的噪音和振动等对环境的影响。
THANKS
感谢观看
温度异常
检查冷却水系统是否正常,电解槽内部是否有局部过 热现象。
气体泄漏
检查电解槽的气体密封是否完好,如有泄漏及时处理 。
电解槽的优化建议
改进电极结构
优化电极形状和尺寸,提高电极的有效面积和电流密度。
提高冷却效果
改进冷却水系统,提高电解槽的散热性能,降低温度波动。
优化电解质成分
根据生产需求调整电解质成分,提高电解效率并降低能耗。
电解槽通常由电极(阳极和阴极)、 电解质、隔膜和外壳等部分组成。
电解槽的种类
按电解质种类分类
按应用领域分类

第一章现代预焙铝电解槽的基本结构

第一章现代预焙铝电解槽的基本结构

第二篇:铝电解生产的工程技术1、现代预焙铝电解槽的基本结构现代铝工业已基本淘汰了自焙阳极铝电解槽,并主要采用容量在 160kA 以上的大型预焙阳极铝电解槽(预焙槽)。

因此本章主要以大型预焙槽为例来讨论电解槽的结构。

工业铝电解槽通常分为阴极结构、上部结构、母线结构和电气绝缘四大部分。

各类槽工艺制度 不同,各部分结构也有较大差异。

图1、图2分别为一种预焙槽的断面示意图和三维结构模拟图;图3、图4为我国一种200kA 中心点式下料预焙槽的照片与结构图(总图) 。

阳极导杆 阳极炭块电解质液 铝液 阴极炭块阴极钢棒下料器 集气罩氧化铝覆盖料电解质结壳 钢壳 耐火与保温内衬rrT|i|TITTT图1预焙铝电解槽断面示意图图2预焙铝电解槽三维结构模拟图图3我国的一种200kA 预焙铝电解槽(照片)1.1阴极结构电解铝工业所言的阴极结构中的阴极,是指盛装电解熔体(包括熔融电解质与铝液)的容器, 包括槽壳及其所包含的内衬砌体,而内衬砌体包括与熔体直接接触的底部炭素(阴极炭块为主体)■nnJ10- ]【1 -心L—L J — —J图4 我国一种200kA 预焙铝电解槽结构图1.混凝土支柱;2.绝缘块;3.工字钢;4.工字钢;5•槽壳;6.阴极窗口; 7.阳极炭块组;8.承重支架或门;9.承重桁架;10.排烟管;11.阳极大母线;12.阳极提升机构;13.打壳下料装置;14.出铝打壳装置;15.阴极炭块组;16.阴极内衬rM〒■■mT XTI I5 6nu与侧衬材料,阴极炭块中的导电棒、底部炭素以下的耐火材料与保温材料。

阴极的设计与建造的好坏对电解槽的技术经济指标(包括槽寿命)产生决定性的作用。

因此,阴极设计与槽母线结构设计一道被视为现代铝电解槽(尤其是大型预焙槽)计算机仿真设计中最重要、最关键的设计内容。

众所周知,计算机仿真设计的主要任务是,通过对铝电解槽的主要物理场(包括电场、磁场、热场、熔体流动场、阴极应力场等)进行仿真计算,获得能使这些物理场分布达到最佳状态的阴极、阳极和槽母线设计方案,并确定相应的最佳工艺技术参数(详见本书第三篇“铝电解槽的动态平衡及物理场”),而阴极的设计与构造涉及到上述的各种物理场,特别是它对电解槽的热场分布和槽膛内形具有决定性的作用,从而对铝电解槽热平衡特性具有决定性的作用。

铝电解槽的上部结构

铝电解槽的上部结构

铝电解槽的上部结构铝电解槽的上部结构是指槽体之上的金属结构部分,统称上部结构。

可分为承重桁架、阳极提升装置、打壳下料装置、阳极母线和阳极组、集气和排烟装置。

1)承重桁架。

承重桁架采用钢制的实腹板梁和门形立柱,板梁由角钢及钢板焊接而成,门形立柱由钢板制成门字形,下部用铰链连接在槽壳上,一方面抵消高温下桁架的受热变形,同时又便于大修时的拆卸搬运。

门形立柱起着支承上部结构全部重量的作用。

2)阳极提升装置。

阳极提升装置有两种方式,一种是采用蜗轮蜗杆螺旋起重器阳极提升机构,另一种是采用滚珠丝杠三角板阳极提升装置。

蜗轮蜗杆螺旋起重器阳极提升装置由螺旋起重器、减速器、传动机构和电机组成,其工作原理为:整个装置由4个(或8个)螺旋起重器与阳极大母线相连,由传动轴带动起重器,传动轴与减速器齿轮通过联轴节相连,减速器由电机带动。

当电机转动时,便通过传动机构带动螺旋起重器升降阳极大母线,固定在大母线上的阳极随之升降。

变速机构可以安装在阳极端部或中部。

提升装置安装在上部结构的桁架上,在门式架上装有与电机转动相关的回转计,可以精确显示阳极母线的行程位置。

3)自动打壳下料装置。

该装置由打壳和下料系统组成。

一般从电解槽烟道端起安置4~6套打壳下料装置,出铝端设一个打壳出铝装置,出铝锤头不设下料装置。

打壳装置是为加料而打开壳面所用的装置,它由打壳气缸和打击头组成。

打击头为一长方形钢锤头,通过锤头杆与气缸活塞相连。

当气缸充气、活塞运动时,便带动锤头上下运动而打击熔池表面的结壳。

下料装置由槽上料箱和下料器组成。

料箱上部与槽上风动溜槽或原料输送管相通;筒式下料器安装在料箱的下侧部。

筒式定容下料器由一个气缸带动一个在钢筒中的透气钢丝活塞及一个密封钢筒下端的钟罩组成。

钟罩与透气活塞将钢筒的下部隔成一个定容空间,定容空间的上端开有下料口。

整个打壳下料系统由槽控箱控制,并按设定好的程序,由计算机通过电磁阀控制,完成自动打壳下料作业。

4)阳极母线及阳极组。

电解铝工作原理

电解铝工作原理

电解铝工作原理电解铝是一种常见的金属制备方法,其工作原理基于电解质溶液中的电解过程。

本文将详细介绍电解铝的工作原理,从电解槽结构、电解液组成、电解反应等方面进行阐述。

一、电解槽结构电解铝的工作原理涉及到一个特殊的设备——电解槽。

电解槽通常由钢制槽体和碳质阳极组成。

槽体内部被涂覆一层耐火材料,以承受高温和腐蚀。

阳极则是由碳块制成,通过电极引线与电源相连。

二、电解液组成电解液是电解铝过程中的重要组成部分。

一般情况下,电解液由氟化铝和氯化铝组成,其中氟化铝起到增加电解液的导电性能,而氯化铝则有助于调节电解液的酸碱度。

三、电解反应电解铝的工作原理基于电解液中的电解反应。

在电解槽中,阳极和阴极之间形成电解质溶液。

当外加电流通过电解槽时,阳极上的氧化反应和阴极上的还原反应同时进行。

具体来说,阳极上的氧化反应是氧化铝离子生成氧气和铝离子。

这个反应可以用如下方程式表示:2Al3+ → 6e- + 2Al而阴极上的还原反应是铝离子还原生成铝金属。

这个反应可以用如下方程式表示:6e- + 2Al → 2Al通过这两个反应,电解铝的工作原理实现了从氧化铝到铝金属的转化。

四、工作过程电解铝的工作过程可以分为三个阶段:起始阶段、稳定阶段和终止阶段。

在起始阶段,电解槽中的电解液开始加热,直到达到适宜的温度。

然后,电源开始提供电流,电解反应开始进行。

在稳定阶段,电解槽中的电流和温度保持稳定,铝金属不断在阴极上析出。

最后,在终止阶段,电源停止供电,电解反应结束。

五、应用领域电解铝作为一种重要的金属制备方法,在工业生产中有广泛的应用。

铝是一种轻质、导电性好、耐腐蚀的金属,被广泛应用于航空航天、汽车制造、建筑材料等领域。

总结:本文详细介绍了电解铝的工作原理,从电解槽结构、电解液组成、电解反应等方面进行了阐述。

电解铝作为一种重要的金属制备方法,在工业生产中具有广泛的应用前景。

通过深入了解电解铝的工作原理,我们可以更好地理解和应用这一技术。

电解铝电解槽结构

电解铝电解槽结构

电解铝电解槽结构电解铝是一种重要的金属材料,广泛应用于航空、汽车、建筑等领域。

而电解铝的生产过程中,电解槽是关键设备之一。

本文将介绍电解铝电解槽的结构和工作原理。

一、电解槽的概述电解槽是电解铝生产中的核心设备,其主要功能是通过电解过程将铝矾土中的铝氧化成金属铝。

电解槽一般由槽体、电解质、电极和电源等组成。

二、槽体结构电解槽的槽体一般采用钢结构,具有良好的耐腐蚀性和机械强度。

槽体内部由耐火材料涂层,以抵抗高温和化学侵蚀。

槽体的底部设有底部引流口,用于排出电解过程中产生的铝液。

三、电解质电解质是电解槽中的重要组成部分,它起到导电和溶解铝的作用。

电解质一般由氟化铝和氯化铝等盐类组成,能够在高温下保持液态状态。

电解质的浓度和温度对电解过程的效果有重要影响。

四、电极结构电解槽中的电极是电流的传导介质,一般由碳材料制成。

电解槽中有两种类型的电极,分别是阴极和阳极。

阴极是电解铝的产出端,它由导电炭块组成,能够吸附氧化铝并还原成金属铝。

阳极则是电解质的溶解端,它由碳块或碳钢制成,能够氧化成二氧化碳。

五、电源系统电解槽的电源系统是为电解过程提供电能的设备。

电源系统一般由整流器和变压器组成。

整流器将交流电转换为直流电,变压器则将高压电流降低到适合电解槽的电压。

六、电解过程电解过程是电解铝生产的核心环节。

在电解槽中,铝矾土经过磨碎、脱水等处理后,成为称为氧化铝的粉末。

氧化铝与电解质混合后,放置在电解槽中。

通电后,正极吸附氧化铝并还原成金属铝,同时负极产生氧化反应。

金属铝在槽底通过底部引流口排出,而氧化反应则产生二氧化碳。

七、电解槽的优化为了提高电解铝的生产效率和降低能耗,电解槽的结构也在不断优化。

例如,采用新型的槽体材料和涂层,能够提高抗腐蚀性和热稳定性;优化电解质的组成和浓度,可以提高电解效果;改进电极材料和形状,能够增加电流传导效率。

总结起来,电解铝电解槽是电解铝生产过程中的核心设备,其结构包括槽体、电解质、电极和电源等。

铝电解槽PPT课件

铝电解槽PPT课件

40~ 60
复 杂 (有 焦 化产物) 9 .2
铝冶金设备—融盐电解槽
铝电解槽系列
铝电解槽系列是铝生产的单元,每一个系列都有它 额定的直流电源和电解槽数目, 系列中电解槽串联连接,直流电从整流器之正极经 铝母线送到电解槽的阳极,经电解质和铝液层流过 阴极,然后进入下一台电解槽的阳极,依次类推,从最 后一台电解槽阴极出来的电流,返回整流器的负极,
电解厂房内电解槽的配置方式有纵向排列和横向排 列两种,每一种排列方式又可分为单行排列和双行 排列, 在电解厂房中间设有氧化铝贮仓, 大型槽采用各自的自动加料装置,
铝冶设备—融盐电解槽
2.3.4 未来铝电解槽的改进
目前的铝电解槽尚存在一些问题:生产过程能量利用率较低, 电流效率不太理想,单位产品的投资费用较高,控制污染的设备 费用也很贵, 1 .原有电解槽的改造:阴极材料、阳极材料及槽内衬等的改造, 2. 新型电解槽: Grjotheim的理想槽;该槽具有一系列优点,在双 极性电解槽设计中优先采用了不耗惰阳极和可泄性或可湿润 性的耐热硬质金属阴极,
10.2.3.3 连续预焙阳极电解槽
相对于非连续式有如下特 点:
优点:无阳极残极,预焙 炭块消耗量小;阳极电流 分布均匀,故阳极消耗均 匀;生产的连续性,
缺点:阳极不能用氧化铝 保温,热损失大;炭块之 间接缝存在接触电压降, 故槽电压较高,
连续式预焙阳极电解槽简图 1-阳极炭块;2-阳极棒;3-阳极母线;4-槽壳; 5-炭块接缝;6-阴极炭块;7-阴极棒;8-保温层
铝冶金设备—融盐电解槽
作业
1 试述融盐电解的原理、特征及适用范围, 2 铝电解槽的类型有哪些 各有何优缺点 3 阳极电流密度对铝电解技术经济指标的影响如何 与哪些因素有关 4 铝母线的配置方式有几种 各适用于哪些槽型, 5 什么叫经济电流密度 其大小如何确定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、电解槽结构
自焙阳极旁插式电解槽 • 基础:绝缘 • 阴极:保温、坚固、密封防氧化、底糊
防侵蚀、挡板防淌料、侧部炭糊筑坡 • 阳极: 铝箱、钢质框架 • 上部金属结构:支柱、平台、AO料斗、
阳极升 降机构、槽帘和排烟系统 • 导电母线和绝缘设施
三、电解槽结构
自焙阳极上插式电解槽:
三、电解槽结构
四、电解槽系列
• 为保证系列的连续稳定运行,需备用电源;
• 电解槽排布方式:
• 横向排列 • 纵向排列
单行排列 双行排列
四、电解槽系列
铝电解
目录 CONTENTS
铝电解基本知识 铝电解槽结构 电解槽焙烧与启动 铝电解正常生产
02
铝电解槽结构
一、工作原理
• 电解质:冰晶石—氧化铝融盐, • 电流:直流电(4~22kA); • 电解温度:950~970℃; • 电极:阴、阳极均为碳质,阴极上析出铝、
而阳 极上析出CO2(70%)和CO2(30%) 气体; • 电解总反应: • 2Al2O3(aq)+3C(s)=4Al(l)+3CO2 (g)
部打壳电解槽
• 阳极炭块组:阳极导杆、钢爪、炭 块
• 阴极装置:阴极炭块、钢质导电棒 • 铝母线:阳极母线、阴极母线、立
柱母线
三、电解槽结构
连续预焙阳极电解槽 • 相对于非连续式有如下特点: 优点: • 无阳极残极,预焙炭块消耗量小; • 阳极电流分布均匀,故阳极消耗均匀; • 生产的连续性。 缺点: • 阳极不能用氧化铝保温,热损失大; • 炭块之间接缝存在接触电压降,故槽电压较大。
二、电解槽的发展
• 铝电解槽的发展从19世纪末至今已经有了一百多年的历史。 • 三个发展阶段: • 铝电解工业初期的小型预焙电解槽; • 20世纪20~40年代,相继采用旁插棒式自焙阳极和上插棒式自焙
阳极; • 50年代后大型预焙阳极。
三、电解槽结构
预焙阳极电解槽 • 依加料方式分:边部打壳电解槽、中
很复杂
磁场隆起影 响
轻微
感觉到 感觉到
强烈感觉 到
废气捕集效 率/%
90~95

60~70 40~60
气体净化
不复杂(只有 粉尘和废气)

复杂(有焦 复杂(有焦 化产物) 化产物)
工时数/h·t-1
6.7

11.2
9.2
• 目前国内外绝大部分电解铝厂 均采用那种电解槽?
中间点式加 料预焙阳极
电解槽
预焙
自焙
不连续式 连续式 旁插棒式 上插棒式
电流/kA
220
120 50~130 50~150
d 阳/A·cm-2 0.7~0.8
0.7 0.7~1.0 0.55~0.7
电耗/kWh·t-1 阳极操作
13000~
16000 简单
160000
150000~ 170000
150000~ 170000
不复杂 复杂
相关文档
最新文档