学习心得小论文“浅谈悖论”

合集下载

悖论的总结(通用26篇)

悖论的总结(通用26篇)

悖论的总结第1篇例子:为了对抗授权经销商,一些平行进口商强调个性化的服务,而其他进口商则不断寻找新的货源,即使它们现在的货源看起来还很保险。

B&N的xxx先生感到切断化妆晶业务供应是比较困难的,因为总会有人愿意把货物卖给平行进口商的。

因此,与授权经销商希望的相反,平行进口商能够生存下来,而且会通过利用大企业的弱点生存得很好,而大企业也不愿积极反对产品的平行进口。

也许这就是为什么xxx先生竭力主张与授权经销商共存,他说:“如果我们还击,是不符合任何一方的利益的。

”认识到对抗平行进口商无益,一些化妆品公司的授权经销商采取了这样一种战略:“如果你打不败它们,就加入它们!”这些经销商反而去接近平行进口商,让它们分销自己的产品。

例如,B&N的行政主管xxx先生曾说,现在主要化妆品品牌70%的授权经销商都会以折扣价向平行进口商供应商品。

事实是,有能力向平行进口商提供货物的授权经销商强烈要求,卖给授权经销商的产品成本不能高于平行进口商在别处获得产品时支付的价格。

这进一步反驳了用来解释平行进口起因的价格歧视论。

B&N开始只是一个小平行进口商,但后来发展为拥有7个店面的连锁店。

这是连锁店悖论的一个典型的案例。

那些化妆品的授权经销商除了容忍B&N之类的平行进口商进入,并容忍其店铺数量不断增长以外别无选择。

虽然授权经销商为化妆晶支付的价格较低,但是它们不得不为在高档地段陈列商品而向百货商店支付高额费用。

再加上高额的营销和广告费用,意味着授权经销商无力挑起价格战来赶走平行进口商。

这点解释了为什么香奈儿和雅诗兰黛之类的品牌授权经销商只能将唇膏价格从大约34新元降到28新元,但从不会低于平行进口商开出的24新元的价位。

悖论的总结第2篇“说谎者悖论”的内容是:如果某人说自己正在说谎,那么Ta说的话是真还是假?举个例子:“我说的这句话是假的。

”如果这句话是真的,那就不符合“我说的这句话是假的”,则这句话就是假的;如果这句话是假的,那就符合“我说的这句话是假的”,则这句话就是真的。

读《悖论》有感300字

读《悖论》有感300字

读《悖论》有感300字
今天,我读了一本叫《马小跳玩数学》,让我知道了许多平常生活中经常遇到的问题,也给了我许多的启迪,尤其是里面一篇叫《悖论》的文章。

大概是讲:在一个小山村里,有一位理发师在门口的招牌上写着:只给村中所有不能给自己理发的男子理发。

有人就问他,自己的头发谁来理?理发师顿时瞠目结舌,无言以对。

如果他自己不能给自己理发,就属于村中不能给自己理发的男人,按招牌上的说法,他就应该给自己理发;假如他给自己理了发,他就不属于村中不能给自己理发的男人,所以是自相矛盾。

读了这篇故事,我不仅学会了数学中的逻辑知识,还悟出了一个道理:说出去的话是收不回来的,因此,我们要想好再说,那样才不会自相矛盾,自己打自已的嘴巴。

模板,内容仅供参考。

对芝诺悖论的总结(优选3篇)

对芝诺悖论的总结(优选3篇)

对芝诺悖论的总结第1篇悖论:物体在到达目的地之前必须先到达全程的一半,这个要求可以无限的进行下去,所以,如果它起动了,它永远到不了终点,或者,它根本起动不了。

例如:一位旅行者步行前往一个特定的地点。

他必须先走完一半的距离,然后走剩下距离的一半,然后再走剩下距离的一半,永远有剩下部分的一半要走。

因而这位旅行者永远走不到目的地!悖论:若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。

故事:在阿基里斯和乌龟之间展开一场比赛。

乌龟在阿基里斯前头1000米开始爬,但阿基里斯跑得比乌龟快10倍,比赛开始,当阿基里斯跑了1000米时,乌龟仍然在他前头100米。

而当阿基里斯又跑了100米到达乌龟前此到达的地方时,乌龟又向前爬了10米。

芝诺争辩说,阿基里斯将会不断地逼近乌龟,但他永远无法赶上它。

悖论:任何东西占据一个与自身相等的处所时是静止的,飞着的箭在任何一个瞬间总是占据与自身相等的处所,所以也是静止的。

解释:箭在运动过程中的任一瞬间时必在一个确定位置上,即是静止的,而时间是由无限多个瞬时组成的,因此箭就动不起来了。

悖论:两列物体B、C相对于一列静止物体A相向运动,B越过A的数目是越过C的一半,所以一半时间等于一倍时间。

对芝诺悖论的总结第2篇虽然我不是很清楚经济学引入芝诺是为了什么(积分?),但作为哲学思辩,还是很有意思的。

有待高人进一步阐述和论证,也许从此开启另一个世界!“因此,芝诺的假设ii)不能成立”这个结论怎么得到的?百科VIP无广告阅读免验证复制昵称未设置未开通收藏夹账号安全中心我的页面我的贡献我的讨论页我的设置以上内容根据网友推荐自动排序生成对芝诺悖论的总结第3篇诚如亚里士多德所说,阿基里斯追龟说其实可以归结为二分说。

按照二分说,阿基里斯在到达乌龟的起跑点之前,必须先走过这段距离的1/2,为此,又必须先走过1/4,1/ 8,等等,即必须在有限的时间内通过无限多个点,因此按芝诺的理由,阿基里斯根本就动弹不了。

学习悖论有感

学习悖论有感

学习悖论有感悖论是指在逻辑上可以推导出互相矛盾之结论,但表面上又能自圆其说的命题或理论体系。

悖论的出现往往是因为人们对某些概念的理解认识不够深刻正确所致。

悖论的成因极为复杂且深刻,对它们的深入研究有助于数学、逻辑学、语义学等等理论学科的发展,因此具有重要意义。

悖论主要有逻辑悖论、概率悖论、几何悖论、统计悖论和时间悖论等。

悖论有三种主要形式。

1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。

2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。

3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。

同时假定两个或更多不能同时成立的前提,是一切悖论问题的共同特征。

(引自百度词条—悖论)在离散数学这门课程中,我第一次学习到了第一个悖论——我正在说谎。

粗略地看来这句话只是一句普通的句子,可是细看就会发现其中包含着矛盾:如果我在说谎,那么“我正在说谎”就是一个谎,因此我说的是实话;但是如果这是实话,我又在说谎。

矛盾不可避免。

在课程中我印象深刻的还有一个悖论就是:在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。

”有人问他:“你给不给自己理发?”理发师顿时无言以对。

这个是为什么呢?仔细去品味其中的深意,你就会发现:如果理发师不给自己理发,他就属于招牌上的那一类人。

有言在先,他应该给自己理发。

反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。

之后,你又给出了下面这样的一个悖论。

甲乙两人偷东西,人赃俱获。

他们被分开审问,可能的惩罚如下:甲否认乙否认:甲、乙各一年监禁。

甲否认乙承认:乙释放、甲五年监禁。

甲承认乙否认:甲释放、乙五年监禁。

甲承认乙承认:甲、乙各三年监禁。

问他们会怎么选择。

最好的答案当然是第一个甲否认乙否认了,只要这样他们都只会被监禁一年。

可是最终他们的选择就是这个结果么?在同学们的讨论之后,你给出了这样的一个答案——甲乙二囚犯都会想到对自己最有利的去做:以甲而言,甲若承认,最多三年监禁,如果乙也承认;双方都监禁三年;如果乙否认,甲马上获得自由。

关于悖论的论文悖论的形态论文(5篇可选)

关于悖论的论文悖论的形态论文(5篇可选)

关于悖论的论文悖论的形态论文(5篇可选)一、悖论存在与否悖论是以一种什么形态来存在:首先是否存在,是要通过解析才能说明它的存在,因为它确实是有,并且能推动逻辑、数学等学科的发展;但是它是不存在,是因为它是我们思维构造出来的一种形式,它的形态是语言、是文字或是其他。

但是在客观世界中,确实是一种大家认为荒谬不存在的认知。

悖论是真实存在的。

首先质疑的不存在,是因为反应的事实不存在,如“白马非马”。

但是悖论的定义就是推出的结论似是而非。

推理本身并没有错,推理的过程也是合乎逻辑,只看重推理本身的有效,抛开结论的真假,有效的推理得出结论,当然是一个真实的存在。

如果只是认为结论的不真实性,不确定或是荒谬,从而认为整个悖论都不存在,是否定整个推理的过程。

我们本身就只是研究推理的有效而忽视结论,但是如果认为悖论不存在,那是从结论的有效来决定整个推理的有效,这是和逻辑研究、悖论研究的初衷相悖的。

(一)不能因为结论的真假来断定推理(悖论)的存在根据推理的定义可以知道:由已知的判断为前提,来推导出一个未知的结论的思维过程就是推理。

其作用就是要从己知的知识,来得出一个合乎逻辑的结论。

但是如果这个前提是错误的,那结论就可能是正确的、错误的或是不可确定的;如果是有意或无意以一个错误的前提去推出结论,那悖论也就存在了出现的条。

但是,不可否认,推理是我们思维认识的最好的工具。

逻辑学作为研究思维的学科,在悖论的研究上更注重的是推理的有效,而不研究结论的有效。

1)既然是一个有效的推理,推理过程是合乎逻辑的,尽管可能前提不同,但是这个推理是有效的,是真实存在的当然悖论也是存在的。

2)悖论的定义:它本来就是一个看上去合理,得出的结论却充满矛盾的命题。

就更加不能因为其结论的多样性而直接否定整个命题不存在。

3)既然是一个有效的推理,推理过程是合乎逻辑的,尽管可能前提不同,但是这个推理是有效的,是真实存在的当然悖论也是存在的。

如1+1=2,这是一个正确的推理得出正确的结论,1+1=3,则是一个错误的结论,但是这个结论的错误不能说这个推理就不存在,否则既然是不存在的,无意义,不可证明之类的东西,还有对错之分吗?综上所述,悖论指可以经过推理得出合乎逻辑的结论,但是这个结论往往跟我们由正确的认识而得出的结论不同,甚至这个悖论的命题形式,自己都能推翻自己。

学习心得小论文“浅谈悖论”

学习心得小论文“浅谈悖论”

浅谈悖论悖论,它就在我们身边,是随着人类文明产生的一种不符合正常逻辑的事物。

生活中,总会有一些事物想不明白、辩不清楚,对悖论的研究也就随之发展起来。

我看过一些关于悖论的作品,学习研究一些关于悖论的知识对我们是有所帮助的,所以我来浅谈一下悖论。

首先,从概念上:悖论,亦称为吊诡、诡局或佯谬,是指一种导致矛盾的命题。

在逻辑学上指可以同时推导或证明出两个互相矛盾的命题的理论体系或命题。

悖论的定义可以这样表述:由一个被承认是真的命题为前提,设为B,进行正确的逻辑推理后,得出一个与前提互为矛盾命题的结论非B;反之,以非B 为前提,亦可推得B。

那么命题B就是一个悖论。

当然非B也是一个悖论。

我们可以按照某些制定或约定的公理规则去判定或证明某一命题的真假,但是我们按照制定或约定的公理规则去判定或证明有些命题的真假时,有时却出现发生了无法解决的悖论问题,这种情况说明了什么问题呢?自然在整体上是包含多样性的,而我们却置这些情况于不顾,而专门关注属于我们感兴趣的那一种特殊情况,当特殊情况与其它相反的情况或普遍性存在的一般情况相遇时必然产生某种相悖的结论。

不是数学悖论对数学基础产生大的危机影响,而是对逻辑和认识产生重大影响。

比如无限集合本身就是一个模糊不清的概念规定,有限是可以称为集合,无限是不能称为集合的。

集合是指表示在某一个范围内,无限则是指范围为无限大的,否则就不应该称为无限而称有限。

无限不应该成为一个任意性选择或适用的范围,一个数量当超过人类所能达到或认识的程度便进入无限的范围之中。

到现在为止,人类还没有完全清楚地知道我们所能认识到的半径有多大,所以无法准确精确地规定无限与有限它们之间的界限究竟在那里。

集合本身的概念就是一个没有限制性的概念,总的集合可任意分成若干集合,都是集合,确切地说我们不知道究竟是在那种意义前提限制下的集合。

子集合中存在悖论,或与别的集合之间存在悖论,子母集合之间也还存在悖论,因为在每种具体的子集合中都有属于它自身的规定规则,只在自身范围有效。

对悖论现象的思考

对悖论现象的思考

对悖论现象的感悟
琢磨某一个悖论,常常有些烧脑。

站在更高的层面,跳出悖论本身来思考,或者可以得到更清晰轮廓。

一所有的悖论都是思想范畴的,真实的世界就是那个样子------没有悖论,没有矛盾------自自然然地存在着。

二悖论都是由人类思维方式和不完全的认识产生的。

首先预设一个公理,然后按逻辑法则推演下去,结果产生了自相矛盾------悖论。

所以说悖论是思考的缺陷。

三真实的世界就那个自自然然的样子,人类理解和解释世界的方式出了问题,就在思想层面产生了悖论。

比如说引力是个什么东西?是牛顿说的相互作用还是爱因斯坦的空间弯曲?------其实两者都是人类解释自然的模式而已-------模式本身一定是有缺陷的-----按这个缺陷的模式,思考推演下去,一定会在更陌生的地方产生解释矛盾(悖论)------而自然本身就是那个样子------牛顿和爱因斯坦只是给出了人类相对近似的解释------最完美的解释其实是自然本身-----不能被完全绝对地描述。

从近似的描述开始的逻辑思考,推演下去,不可能得到绝对完美的结论,得到所谓悖论就是非常正常的事情了。

如何对待悖论这一思考现象呢?实事求是地认识世界。

越贴近真实的世界,思考的结论就会越少荒谬。

浅谈对悖论的认识

浅谈对悖论的认识

浅谈对悖论的认识浅谈对悖论的认识________________________________________自古以来,悖论在人类探索真理的历史中起到了极其重要的作用。

悖论是一种引人入胜的智力游戏,它让人们对世界有一种新的认识,不断地挑战人们的思维和认知。

下面,我们就来浅谈一下对悖论的认识。

一、悖论的基本定义________________________________________首先,我们要明确悖论的基本定义。

悖论是一种逻辑推理,其中包含两个相互冲突的命题,但它们都是逻辑正确的,而且这两个命题都可以从相同的前提条件出发。

悖论可以用来阐明一个问题,而不是用来求解一个问题,它可以暗示一个结论,但不能用作证明一个结论。

二、悖论的形式________________________________________其次,我们要了解悖论的形式。

根据不同的命题,悖论可以分为两种:一种是形式悖论,即命题中包含有歧义或冗余性;另一种是内容悖论,即命题中包含有不相容的事实或理念。

形式悖论只是一种语言上的歧义,它不会产生实际的冲突;而内容悖论则会产生实际的冲突,因为它所包含的命题是相互冲突的。

三、悖论的作用________________________________________最后,我们要明白悖论的作用。

悖论最重要的作用是帮助我们思考和理解复杂的问题。

它可以带来全新的思考方式和另一种看待问题的能力。

此外,它还能带来创新和发展,并促进对真理、哲学和人生价值的思考。

结语________________________________________总之,悖论在人类思考和理解问题方面发挥了重要作用。

它不仅能够引发全新的思考方式和另一种看待问题的能力,还能带来创新和发展,并促进对真理、哲学和人生价值的思考。

因此,我们应该充分利用悖论来帮助我们理解复杂的问题,在这个过程中找到真理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈悖论
悖论,它就在我们身边,是随着人类文明产生的一种不符合正常逻辑的事物。

生活中,总会有一些事物想不明白、辩不清楚,对悖论的研究也就随之发展起来。

我看过一些关于悖论的作品,学习研究一些关于悖论的知识对我们是有所帮助的,所以我来浅谈一下悖论。

首先,从概念上:悖论,亦称为吊诡、诡局或佯谬,是指一种导致矛盾的命题。

在逻辑学上指可以同时推导或证明出两个互相矛盾的命题的理论体系或命题。

悖论的定义可以这样表述:由一个被承认是真的命题为前提,设为B,进行正确的逻辑推理后,得出一个与前提互为矛盾命题的结论非B;反之,以非B 为前提,亦可推得B。

那么命题B就是一个悖论。

当然非B也是一个悖论。

我们可以按照某些制定或约定的公理规则去判定或证明某一命题的真假,但是我们按照制定或约定的公理规则去判定或证明有些命题的真假时,有时却出现发生了无法解决的悖论问题,这种情况说明了什么问题呢?
自然在整体上是包含多样性的,而我们却置这些情况于不顾,而专门关注属于我们感兴趣的那一种特殊情况,当特殊情况与其它相反的情况或普遍性存在的一般情况相遇时必然产生某种相悖的结论。

不是数学悖论对数学基础产生大的危机影响,而是对逻辑和认识产生重大影响。

比如无限集合本身就是一个模糊不清的概念规定,有限是可以称为集合,无限是不能称为集合的。

集合是指表示在某一个范围内,无限则是指范围为无限大的,否则就不应该称为无限而称有限。

无限不应该成为一个任意性选择或适用的范围,一个数量当超过人类所能达到或认识的程度便进入无限的范围之中。

到现在为止,人类还没有完全清楚地知道我们所能认识到的半径有多大,所以无法准确精确地规定无限与有限它们之间的界限究竟在那里。

集合本身的概念就是一个没有限制性的概念,总的集合可任意分成若干集合,都是集合,确切地说我们不知道究竟是在那种意义前提限制下的集合。

子集合中存在悖论,或与别的集合之间存在悖论,子母集合之间也还存在悖论,因为在每种具体的子集合中都有属于它自身的规定规则,只在自身范围有效。

超越范围则失效,这是永远不可避免或取消的。

除非取消类的集合层次之间的区别,那么又不符合对待具体事物的态度,无法满足实际应用要求。

另外集合的本
义与引申义常混合使用,有时与元素意义混同,集合在低层次相当于元素,当上升时为集合,当再次上升时又相当于元素,是累积式的。

罗素悖论在当它们还没有进行相互联系时是有效的,当它们进行相互联系时即它们已经成为一个类或一个整体,那么一个类或一个整体中是不允许或无法执行两种衡量标准或规定的,自我否定是和没说一个样,或等于没有规定一样。

哥德尔关于一阶逻辑完全性定理与不完全性定理的本身就是悖论,已经暴露出逻辑导致发生的问题。

哥德尔不完全性定理是缺乏评判,以决定的主导方面为衡量标准,或衡量标准过多而引起的悖论。

所谓的标准也是一种规定。

失效以后还可以根据实际需要再次进行新的规则规定,反正原来的规则也是规定,为什么出现发生悖论以后不可以再次重新进行规定规则,以满足实际应用的目的的需要呢?明明是自己的规定,可是自己又制造新的规定来破坏原来的规定,如果这样来干活,那么将永远有活干了,永远有干不完的活。

类是人为区分出来的,但类是根据需要人为任意性制造的,若分类,故类有所不同。

在整体上却不存在类同与不同,由于类不同,故数也有所不同,有些不同相悖是很正常必然的。

然而人们又想进行类与数之间变换,那么又不得不重新再作新的规定。

证明也只是按照预先所设置和认为的规定去操作,必然会符合规定,我们只管按规定操作执行好了,证明又有什么作用或意义呢?类的悖论问题不是通过进行证明就所能解决得了的。

悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。

这就是说它带有强烈的游戏色彩。

然而,切莫以为大数学家都看不起“趣味数学”问题。

欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。

莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。

希尔伯特证明了切割几何图形中的许多重要定理。

冯·纽曼奠基了博弈论。

最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。

爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。

悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。

这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。

悖论是自相矛盾的命题。

即如果承认这个命题成立,就可
推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出这个命题成立如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。

古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。

解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。

最早的悖论的来源是让人最感兴趣的,也是最简单最容易懂的。

最早的悖论被认为是古希腊的"说谎者悖论"。

说谎者悖论讲的是:公元前六世纪,哲学家克利特人艾皮米尼地斯(Epimenides):“所有克利特人都说谎,他们中间的一个诗人这么说。

”这就是这个著名悖论的来源。

《圣经》里曾经提到:“有克利特人中的一个本地中先知说:‘克利特人常说谎话,乃是恶兽,又馋又懒’”(《提多书》第一章)。

可见这个悖论很出名,但是保罗对于它的逻辑解答并没有兴趣。

人们会问:艾皮米尼地斯有没有说谎?再换一种表现形式,这个悖论最简单的形式是:“我在说谎”。

如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。

矛盾不可避免。

再联系生活,它的一个翻版就是:“这句话是错的”。

这类悖论的一个标准形式是:如果事件A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。

拓扑学中的单面体是一个形像的表达。

其实悖论也是有理可循的,悖论也有其产生的原理:同时假定两个或更多不能同时成立的前提,是一切悖论问题的共同特征。

一般地说,由于悖论是一种形式矛盾,即是某些特殊的思想规定的产物,它们就不可能是事物辩证性质的直接反映;进而,我们也就不能把它们说成是“特殊的客观真理”,而只能说它们是“歪曲了的真理”。

因此,悖论实质上是客观实在的辩证性与主观思维的形而上学性及形式逻辑化的方法的矛盾的集中表现。

具体地说,作为客观世界的一个部分或侧面,认识或理论(数学理论、语义学理论)的研究对象在本质上往往是辩证的,即是诸对立环节的统一体;然而,由于主观思维方法上的形而上学或形式逻辑化的方法的限制,客观对象的这种辩证性在认识过程中常常遭到了歪曲:对立统一的环节被绝对地割裂开来,并被片面地夸大,以致达到了绝对、僵化的程度,从而辩证的统
一就变成了绝对的对立;而如果再把它们机械地重新联结起来,对立环节的直接冲突就是不可避免的了,而这就是悖论。

悖论有三种主要形式:1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。

2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。

3.一系列推理看起来好像无法打破,可是却导致逻辑上自相矛盾。

悖论主要有逻辑悖论、概率悖论、几何悖论、统计悖论和时间悖论等。

以上就是对悖论的一些浅层的讲解,最后告诉大家的是不要以为悖论是错误的,因此它的存在会让数学往相反的方向走去,其实恰恰相反,它的存在会让数学的基础越来越坚固。

一些悖论之所以会出现,并非恶意,是由于实际上它确实存在,也就是说数学上尚存在这个漏洞,比如说集合论里的“罗素悖论”,它的消除使得集合论更加健全!。

相关文档
最新文档