(陈 微)饮用水中氯化消毒副产物及其控制技术研究
自来水处理过程中的加氯消毒副产物和控制方法

自来水处理过程中的加氯消毒副产物和控制方法发布时间:2021-12-15T06:24:07.006Z 来源:《福光技术》2021年20期作者:蒋晓[导读] 氯消毒是自来水处理的重要手段,本文简要介绍了自来水氯消毒副产物的概念、分类、形成过程。
详细论述了氯消毒副产物的控制方法。
沭阳县城乡水务发展有限公司摘要:氯消毒是自来水处理的重要手段,本文简要介绍了自来水氯消毒副产物的概念、分类、形成过程。
详细论述了氯消毒副产物的控制方法。
关键词:氯消毒;自来水;副产物;控制方法引言1902年,比利时在水处理工艺过滤前首次使用了氯化石灰,这被普遍认为是饮用水氯消毒技术的开始。
1905年,英国伦敦首次在公共供水系统中采用连续加氯消毒技术。
1908年,美国芝加哥首次使用次氯酸钠消毒技术。
随后,氯消毒技术得到了广泛应用并不断发展完善,水传播疾病得到了有效控制,进而改善饮用水水质,保障了人们的用水安全。
一百多年来,世界范围内的许多学者对氯消毒机理展开了广泛而深入的研究,如何克服由于氯消毒所带来的不利影响和危害也成为广大饮用水者所关心的问题之一。
1氯消毒副产物介绍1.1氯消毒副产物的概念当采用消毒剂(如氯气、臭氧、二氧化氯、氯胺等)对饮用水进行消毒处理时,由于饮用水中的天然有机物(Natural Organic Matter,NOM)、人为污染物或溴/碘离子等前体物质的存在,导致两者反应生成一系列卤代化合物,称为消毒副产物(DisinfectionBy-products,DBPs)。
1.2氯消毒副产物的分类最初的饮用水DBPs主要指因氯消毒产生的副产物,随着消毒剂种类的增多,消毒方式的多样化,DBPs的涵盖范围也大大增加。
自20世纪70年代,Rook等首次证实了氯处理后的饮用水中有三卤甲烷的存在以来,得到确认的DBPs已有600多种,仅占水中DBPs总类的50%不到,其中大约有85种得到了人们一定程度的研究。
一般而言,DBPs主要分为以下四类,即三卤甲烷(Trihalomethanes,THMs)、卤乙酸(Haloaceticacids,HAAs)、卤乙腈(Haloacetonitriles,HANs)和致诱变化合物(Mutagenx,MX)。
生活饮用水中消毒副产物的危害及检测探讨

生活饮用水中消毒副产物的危害及检测探讨摘要:目前我国生活饮用水净化处理过程大多采用氯化消毒方式,加氯消毒是一种常见的水消毒方法,但由于其极易产生有害性消毒副产物,且具有致癌性或致突变性,因此人们开始对这一传统消毒方式的安全性提出了质疑,并积极寻找替代品,比如二氧化氯。
文章对几种主要消毒剂进行了介绍,对部分消毒副产物所具有的危害性进行了分析,详细探讨了检测方法。
关键词:生活饮用水;消毒;副产物;检测;危害性引言:研究表明,生活饮用水中普遍存在属性独特的天然有机物,它们产生于水与消毒剂所发生的化学反应,种类繁多。
其中,部分有机物易与氯消毒处理过程中的氯发生氧化、加成和取代等一系列化学反应,如藻类,从而生成其他消毒副产物,比如卤乙酸。
消毒副产物的多样性与消毒剂种类和消毒方式多样化有直接关系。
其生成情况主要受环境温度、环境酸碱度、接触时间、消毒剂含量大小等因素影响。
通常情况下,水源中有机物含量越高,消毒处理后,水体中消毒副产物含量也就越高。
1生活饮用水消毒剂种类与特点概述1.1氯氯是一种最早被应用的化学消毒剂,性价比高、易储存、便于运输、氧化性强,在所有消毒剂中应用最多,氯化消毒液是我国自来水厂经常采用的一种消毒方式。
其原理在于,液氯或次氯酸盐与水发生化学反应后会生成次氯酸,次氯酸在进入细胞后会在氧化作用下使微生物酶系统受到破坏,以此实现杀菌目的。
影响杀菌效果的主要因素包括:氯量、作用时间、微生物数量和种类、环境酸碱度、水温与水浑浊度等。
其中,环境酸碱度影响最大,酸性环境下次氯酸比例较高,杀菌效果好。
此杀菌方式弊端在于,氯会与水中的酚发生反应产生臭味,且在作用于有机物后生成副产物,对人体健康有一定危害。
1.2氯胺在反应机理上,氯胺与液氯具有相似之处,通过破坏微生物膜的功能来影响其呼吸,达到杀菌目的。
相比之下,氯胺氧化能力更弱,若要达到与液氯相同的杀菌效果,则需获得更多接触时间。
显然,其杀菌性还是比较有限的,一般不建议单独使用。
典型高级氧化技术控制抗生素氯化消毒副产物的研究进展

第42卷第1期吉林师范大学学报(自然科学版)Vol.42ꎬNo.1㊀2021年2月JournalofJilinNormalUniversity(NaturalScienceEdition)Feb.ꎬ2021收稿日期:2020 ̄12 ̄15基金项目:国家自然科学基金项目(51778267)ꎻ国家水体污染控制与治理科技重大专项项目(2012ZX07408001)ꎻ吉林省科技发展计划项目(20190201113JC)ꎻ吉林省生态环境厅环境保护科研项目(吉环科字第2019 ̄15号)第一作者简介:林英姿(1968 )ꎬ女ꎬ吉林省长春市人ꎬ教授ꎬ博士ꎬ硕士生导师.研究方向:饮用水安全保障技术及污水处理与资源化技术.doi:10.16862/j.cnki.issn1674 ̄3873.2021.01.014典型高级氧化技术控制抗生素氯化消毒副产物的研究进展林英姿1ꎬ2ꎬ王高琪1ꎬ张代华1ꎬ杨㊀昊1ꎬ刘莞青1(1.吉林建筑大学市政与环境工程学院ꎬ吉林长春130118ꎻ2.吉林建筑大学松辽流域水环境教育部重点实验室ꎬ吉林长春130118)摘㊀要:许多国家的饮用水水源中都检出了磺胺类㊁青霉素类㊁四环素类等抗生素ꎬ甚至是在饮用水中也有检出.这些抗生素在饮用水消毒处理过程中容易转化为具有致癌㊁致畸㊁致突变作用的消毒副产物(DBPs)ꎬ对水生态的稳定与人类健康造成了威胁ꎬ已经引起了学者的广泛关注.高级氧化技术(AOPs)由于具有强氧化性的特点ꎬ为解决这一环境威胁提供了有效的途径.本文概述了光催化氧化㊁臭氧氧化和高铁酸盐氧化技术控制抗生素氯化DBPs生成的研究进展.关键词:高级氧化ꎻ抗生素ꎻ消毒副产物中图分类号:X52㊀㊀文献标志码:A㊀㊀文章编号:1674 ̄3873 ̄(2021)01 ̄0076 ̄060㊀引言药品及个人护理用品(PharmaceuticalsandpersonalcareproductsꎬPPCPs)是一种新兴污染物ꎬ近年来由于频频在水体中检出而成为研究的热点.PPCPs主要包括化妆品㊁遮光剂㊁香料以及人和动物用药品等ꎬ具有浓度低㊁毒性强㊁难去除的特点[1].抗生素是其众多污染物种类中重要的一种ꎬ在许多国家的饮用水源中都检出了氟喹诺酮类㊁磺胺类㊁大环内酯类等抗生素ꎬ甚至是在饮用水中也有检出[2].天然水体中残留的抗生素经过自然截留和稀释ꎬ浓度一般较低ꎬ含量通常在ng/L~μg/L级别ꎬ具有难以降解和持续输入的特性ꎬ通过水体流动会不断污染受纳水体ꎬ或被土壤截留ꎬ通过食物链进入动植物以及人体内ꎬ可能对生物机能起到抑制作用ꎬ威胁到人类健康[3].痕量有机污染物近年来才备受关注ꎬ即使长期接触痕量的抗生素ꎬ也会对人体健康和生态环境造成危害.目前净水厂还没有针对抗生素类PPCPs开发专门的处理技术ꎬ饮用水安全也缺乏相应标准.因此ꎬ抗生素处理工艺的开发对于保障人类健康具有非常重要的意义.净水处理厂常见的工艺主要有预氧化㊁混凝㊁沉淀㊁过滤㊁消毒等.其中混凝㊁沉淀㊁过滤等技术投入低㊁效率较高ꎬ应用较为广泛.但是随着对微污染有机物的研究增多ꎬ人们发现这些传统水处理方式对PPCPs等微污染有机物去除效率低下.A.Göbel等[4]㊁C.Adams等[5]研究发现ꎬ采用传统的净水工艺处理大环内脂类㊁磺胺类和喹酮类等抗生素ꎬ去除率在30%以下.因此ꎬ陆续引入了氯气(Cl2)㊁次氯酸钠(NaClO)和二氧化氯(ClO2)等含氯氧化剂进行消毒处理.R.Nassar等[6]的研究证明了含氯氧化剂对PPCPs的去除作用.然而ꎬ含氯氧化剂在接触氧化芳香类㊁苯胺类等物质ꎬ如腐殖酸的时候ꎬ容易生成具有 三致 作用的氯代消毒副产物ꎬ对水生态及生物健康带来更大的风险.这使得含氯氧化剂作为消毒77第1期林英姿ꎬ等:典型高级氧化技术控制抗生素氯化消毒副产物的研究进展剂使用出现了局限性[7 ̄8].在已知的DBPs中ꎬ三卤甲烷(THMs)和卤代乙酸(HAAs)是氯化消毒过程中形成的两类最主要的消毒副产物ꎬ美国环保署已对其在饮用水中的浓度限值作出了规定[9].还有一些后期陆续发现的新兴DBPsꎬ例如碘代三卤甲烷(I ̄THMs)ꎬ卤代乙腈(HANs)ꎬ卤代酮(HKs)和三氯硝基甲烷(TCP)ꎬ由于更高的毒性ꎬ致癌性和致突变性而引起了人们的关注[10].此外ꎬ在溴化物和碘化物水平较高的水域中ꎬ溴㊁碘离子氯化过程中溴㊁碘与游离氯发生取代反应生成游离溴㊁碘ꎬ会导致NOM溴化㊁碘化ꎬ容易形成溴代和碘代DBPsꎬ溴代和碘代DBPs比氯代DBPs毒性更大ꎬ因此需要更多的关注.由于氯胺消毒仅产生痕量的THMs和HAAsꎬ许多净水厂已转为采用氯胺消毒ꎬ以控制成品水中的DBPs形成[9].然而ꎬ氯胺可能导致其他水质问题ꎬ例如生成卤乙腈(HANs)等含氮消毒副产物ꎬ比含碳消毒副产物毒性更强.为了控制DBPs前体物的水平ꎬ研究人员相继开发了光催化㊁臭氧㊁高铁酸盐㊁类芬顿等高级氧化方法.光催化氧化㊁臭氧氧化和高铁酸盐氧化是近些年水处理的研究热点.光催化氧化是在可见光或紫外光作用下降解有机污染物的过程.近紫外光(200~400nm)极易被有机污染物吸收ꎬ因此会发生剧烈的光化学降解反应.氯化与光降解联用是近年来用于污染物去除的新技术.UV/过硫酸盐(PS)联用可以产生具有强氧化性的硫酸根自由基和羟基自由基ꎬ具有很好的降解效果ꎬ已成为具有广泛应用前景的新型水处理技术.臭氧不仅可以通过O3分子直接与污染物反应ꎬ还可以通过臭氧水解生成 OH与污染物发生氧化降解反应.臭氧作为强氧化剂ꎬ其氧化还原电位高于含氯氧化剂ꎬ为2.07V[11]ꎬ但化学性质极不稳定ꎬ尤其在非纯水中ꎬ氧化分解速率以分钟计[12].臭氧与有机物的反应是有选择性的ꎬ而且不能将有机物彻底降解矿化为CO2和H2Oꎬ氧化后的产物往往为羧酸类有机物.臭氧消毒的过程中能很快分解成氧气ꎬ不会造成二次污染.但臭氧是有毒气体ꎬ过量会对人的呼吸系统造成威胁ꎬ要求密封使用时人不能在臭氧过量的环境中停留过长时间.高铁酸盐(有效成分为高铁酸根[FeO2-4])氧化性强ꎬ可以氧化许多水体污染物.与其他更常用于水处理的氧化剂相比ꎬ会产生比较少的卤代副产物.此外ꎬ高铁酸盐分解产生的三价铁有助于混凝ꎬ对于去除DBPs前体物效果好.有研究表明ꎬ在饮用水处理过程中添加高铁酸盐对水质有积极影响ꎬ对下游工艺没有负面影响[13].高铁酸盐可同时用于氧化ꎬ混凝和消毒[14]ꎬ在处理微生物ꎬ悬浮颗粒和天然有机物质(NOM)时是一种方便有效的化学药品.高铁酸盐的杀菌效能优于NaClOꎬ杀灭相同数量的大肠杆菌需要投加的Fe(Ⅵ)量要比其他消毒剂少得多ꎻ同时ꎬ高铁酸盐杀菌作用不受水中pH值的影响.此外ꎬ还报道了高铁酸盐可以控制氯化消毒副产物的形成以及可能在臭氧化过程中产生的致癌溴酸盐(BrO3-)[15].Fe(Ⅵ)在碱性条件下氧化还原电位为0.7Vꎬ在酸性条件下为2.2Vꎬ是实际用于水和废水处理的所有物质中最强的[16].因此ꎬ高铁酸盐氧化法可以作为去除水中新兴污染物的替代方法[17].但是ꎬFe(Ⅵ)在强碱性条件下稳定ꎬ中性及酸性条件下易分解ꎬ应用受到一定限制.此外ꎬ在净水处理工艺中ꎬ光催化氧化㊁臭氧氧化以及高铁酸盐氧化等高级氧化技术作为消毒工艺使用后的水体均没有保护性余量ꎬ无法在市政管网中保持杀菌消毒能力.因此ꎬ在净水工艺中ꎬ高级氧化技术通常作为预氧化工艺与后续含氯消毒剂联合使用ꎬ以减少含氯消毒剂的使用剂量并降低出水DBPs浓度ꎬ降低毒性.1㊀典型高级氧化技术控制抗生素氯化DBPs的研究进展1.1㊀传统含氯消毒剂氧化抗生素生成DBPs的研究目前ꎬ次氯酸钠㊁液氯㊁二氧化氯等含氯消毒剂仍然是水处理厂应用最广泛的消毒技术.次氯酸钠消毒的原理是通过水解作用生成次氯酸ꎬ次氯酸再进一步分解生成新生态氧[O]ꎬ这种新生态氧的氧化性极强ꎬ可以使菌体和病毒的蛋白质变性ꎬ从而使病原微生物致死.氯气消毒的原理也是以产生次氯酸ꎬ然后释放出新生态氧[O]的方式[18].然而含氯消毒剂在杀灭病原微生物的同时ꎬ还可能与水中残留的化学污染物发生反应ꎬ生成具有 三致 作用的消毒副产物ꎬ对水生物及人类健康产生威胁.已有大量研究表明ꎬ在所有消毒方式中ꎬ氯化消毒产生的副产物种类㊁数量最多[19].而抗生素作为新兴有机污染物ꎬ在87吉林师范大学学报(自然科学版)第42卷消毒处理环节中可与含氯消毒剂发生化学反应ꎬ生成含碳或含氮消毒副产物[20].由于在氯化水中检测到600多种具有潜在健康影响的消毒副产物ꎬ引起了广泛关注[21].在许多国家的饮用水标准中ꎬ对三卤甲烷(THMs)和卤乙酸(HAAs)含量进行了限制ꎬ它们是由含氯消毒剂与水中的有机成分反应生成的[22].倪先哲等[23]研究了源水中典型抗生素磺胺甲恶唑(SMX)氯化消毒处理后消毒副产物生成势(DBPsFP)及影响因素.结果表明:SMX与氯反应后可生成三卤甲烷㊁卤乙腈㊁卤乙酸㊁卤乙醛㊁卤代丙酮等多种DBPsꎬ且加氯量㊁反应时间㊁反应温度㊁pH值等因素均会影响其DBPsFP.找到控制或去除消毒副产物前体物的有效方法ꎬ能促进氯化法处理高浓度抗生素水体的广泛应用.1.2㊀光催化氧化控制抗生素Cl ̄DBPs的研究光催化氧化是在催化剂作用下进行的降解反应.能将有机污染物彻底矿化ꎬ分解为二氧化碳㊁水和无机物.紫外/过硫酸盐(UV/PS)㊁紫外/过氧化氢(UV/H2O2)等是近年来净水领域研究较多的光催化氧化技术.光催化二氧化钛㊁氧化锌等半导体化合物时ꎬ对于工业废水处理具有较好的效果.UV/PS在催化过程中会生成硫酸根自由基(SO-4 )ꎬUV/H2O2在催化过程中会生成羟基自由基( OH)ꎬ均被广泛应用于降解有机污染物.P.Xie等[24]研究发现ꎬUV/PS预处理后联合含氯消毒剂使用ꎬ会使氯仿㊁卤乙酸等碳质消毒副产物(C ̄DBPs)的生成略有增加ꎬ而卤乙腈㊁三氯硝基甲烷等含氮消毒副产物(N ̄DBPs)的生成略有下降.UV/H2O2预处理显著增加了C ̄DBPs和N ̄DBPs的生成.而且过硫酸盐的固相性和高水溶性使其比H2O2更容易储存和运输[25].因此ꎬUV/PSAOPs可以替代用于水处理的UV/H2O2AOPs.Z.Hua等[26]系统研究了在UV/H2O2和UV/PS处理24h后氯化处理5种NOM模型化合物的DBPs生成情况.与独自氯化相比ꎬ三氯甲烷(TCM)和二氯乙腈(DCAN)等环状物分子下降了50%和54%.UV/H2O2处理对DBPs形成的影响与UV/PS处理相似ꎬ但DBPs形成高于后者.含有高氧化还原电位的SO-4 比 HO更具选择性ꎬ并且与许多有机物反应迅速.因此ꎬSO-4 与有机物反应时ꎬ吸氢㊁电子转移和加成是三种反应途径.紫外光解降低了样品溶液中H2O2的浓度ꎬ然后降低了氯的消耗量ꎬ这导致UV/H2O2预氧化后NOM氯化过程中的余氯比单独H2O2预氧化后的余氯更多.H2O2与氯反应生成的单线态氧ꎬ通过加成反应增加有机物活性中心的电子密度ꎬ也能提高氯与有机物的反应活性.在H2O2存在下ꎬ包括单线态氧和有机物氧化的中间反应物生成大量醛㊁酮和羧酸ꎬ它们是卤代乙醛㊁卤代酮和卤代乙腈的前体物ꎬ这可以解释为什么H2O2和UV/H2O2预处理都会显著增加卤代乙醛等的生成.此外ꎬZ.Gao等[27]研究比较了低压汞灯(LPUVꎬ254nm)和紫外发光二极管(UV ̄LEDꎬ275nm和310nm)在紫外/氯处理过程中腐植酸(HA)的降解情况ꎬ并对紫外/氯消毒过程中消毒副产物(DBPs)的形成进行了评价.结果表明ꎬHA的降解遵循准一级动力学规律ꎬ且降解效果受紫外波长和溶液pH的影响显著.在254nm时ꎬ随着溶液pH的增加ꎬHA的降解速率显著降低ꎬ而在275nm和310nm时降解速率则相反.在275nm的高紫外荧光和碱性pH条件下ꎬ观察到DBPs的形成和与DBPs相关的计算理论细胞毒性的显著抑制.1.3㊀臭氧氧化控制抗生素Cl ̄DBPs的研究在AOPs中ꎬ臭氧气体在水和废水处理中得到了广泛的应用.该气体能与多种有机化合物发生反应ꎬ主要是由于其氧化电位高(E0=2.07V)ꎬ大于KMnO4和Cl2.在某些条件下ꎬ臭氧生成羟基自由基( OH)ꎬ其氧化电位甚至更高(E0=2.80V)ꎬ并且在处理某些难降解化合物时更有效.臭氧的稳定性取决于几个因素ꎬ特别是pHꎬ因为羟基离子引发臭氧分解过程.在酸性环境中ꎬ臭氧将与具有特定功能基团的化合物发生反应ꎬ如亲电性㊁亲核性或偶极加成(与O3直接反应).然而ꎬ在高pH(碱性)下ꎬ臭氧分解成 OHꎬ与有机化合物无选择性反应.臭氧化通常用于分解Cl ̄DBPs的前体物.G.Hua等[28]研究表明ꎬ预臭氧化可以破坏NOM中氯化DBPs形成的反应部位ꎬ并降低成品水的毒性.臭氧被发现以二卤乙腈类(DHANs)>三卤甲烷类(THMs)>三卤乙酸类(THAAs)>二卤乙酸类(DHAAs)的顺序破坏Cl ̄DBPs前体物ꎬ并且还降低了氯胺化产生的二卤乙酸类(DHAAs)和三卤甲烷类(THMs)DBPs的产率.然而ꎬ发现臭氧预氧化后氯化作用可使不同水域的氯硝基甲烷(CP)形成增加2~10倍[29 ̄30].水源水中的有机物主要来源于植物腐败所产生的腐殖质等和一些溶解性微生物产物.预氧化剂可能对混凝产生97第1期林英姿ꎬ等:典型高级氧化技术控制抗生素氯化消毒副产物的研究进展不利影响ꎬ预氧化剂会使水中的DOM极性增强ꎬ更加亲水和破碎ꎬ使其更加难以混凝去除[31].臭氧氧化能力强㊁反应时间短㊁设备简单ꎬ除高溴碘水体外ꎬ一般无二次污染ꎬ在抗生素废水的处理领域中有广泛的应用潜力.应当注意的是ꎬ臭氧氧化高溴废水的过程中可能产生毒性更强的溴酸盐类副产物.臭氧与溴反应会产生中间产物次溴酸根和次溴酸ꎬ这两种物质会促进溴代消毒副产物的生成ꎬ溴代消毒副产物对人体危害极大ꎬ尤其是毒性较高的溴代乙腈类.低浓度的预氧化剂会氧化水中的有机物使其变为亲水性且分子量下降ꎬ而溴与低分子量和亲水性的前体反应更强ꎬ因此产生了更多的溴代消毒副产物.在经过预氧化剂氧化后ꎬ水中藻类等微生物被不同程度杀灭ꎬ这些物质的胞内有机物大多含有蛋白质㊁多肽㊁氨基酸ꎬ在氧化剂作用下产生硝基ꎬ因而三种预氧化剂都不同程度的增加了水中三氯硝基甲烷的生成势.因此为了避免臭氧带来的溴化消毒副产物ꎬ引入了联合预氧化.P.Xie等[24]研究表明ꎬKMnO4/O3复合氧化对溴酸盐的抑制能力随温度的升高而增强ꎬ随pH值的升高而减弱ꎬ随水中腐植酸浓度的增加而减弱.因为KMnO4的中间产物加速了水中臭氧的分解ꎬ减少了分子臭氧途径生成的溴酸盐.并且低价态的锰中间氧化产物与溴竞争ꎬ消耗臭氧浓度ꎬ导致溴酸盐生成量较低.1.4㊀高铁酸盐氧化控制抗生素Cl ̄DBPs的研究Fe(Ⅵ)的降解产物常为Fe3+ꎬ在水中容易形成氢氧化铁沉淀ꎬ可通过絮凝被分离[32].不同于臭氧和含氯氧化剂ꎬFe(Ⅵ)具有能够处理含溴的废水并且其降解产物毒性较低的特点[33].Fe(Ⅵ)氧化降解污染物的性质(如降解机制ꎬ动力学性质等)也与其它氧化剂不同.S.Zimmermaim等[34]比较了Fe(Ⅵ)和O3对药物曲马多的降解过程ꎬ结果发现利用Fe(Ⅵ)氧化的初级代谢产物为去甲基产物ꎬ而利用O3氧化的初级代谢产物为氮氧化产物ꎬ研究猜测造成这种现象的原因是由于两种氧化剂对应的氧化机理有所不同.高铁酸盐可以被认为是臭氧的一种替代品ꎬ生产便捷.但是与O3相比ꎬFe(Ⅵ)所生成的三价铁固体存在需要处理的问题.Fe(Ⅵ)已经用于处理工业废水ꎬ但是饮用水处理的应用依然受到限制ꎬ部分原因是由于安全性适用性等方面研究不充分.V.Sharma等[35]用高铁酸盐氧化磺胺类抗生素的动力学评估表明ꎬ它们可以有效被去除.与传统的消毒剂处理不同ꎬFe(Ⅵ)不会产生二次污染.W.Zhou等[36]研究发现ꎬFe(Ⅵ)不会像臭氧一样与溴离子发生反应ꎬ因此作为预氧化剂的Fe(Ⅵ)可以有效减少后续氯化过程中产生的DBPs量.经Fe(Ⅵ)预氧化处理的SN的毒性较未经Fe(Ⅵ)预氧化处理的SN的毒性低ꎬ说明Fe(Ⅵ)不仅是一种强氧化剂ꎬ而且是一种环境友好的氧化剂.随着Fe(Ⅵ)浓度的增加ꎬ其毒性降低.结果表明ꎬFe(Ⅵ)氧化氨基可以产生较少的对氨基苯甲酸ꎬ而对氨基苯甲酸是合成叶酸的必要成分.因此ꎬFe(Ⅵ)预氧化可以降低水处理的二次生物毒性.而且ꎬFe(Ⅵ)可以与富含电子的有机部分发生反应ꎬ包括苯酚ꎬ苯胺和胺ꎬ这是潜在的THM前体物[37].根据C.Guo等[38]之前的研究ꎬ由于在NS结合处的裂解ꎬSDZ和SMZ中的SO2很容易消除ꎬ这在氧化后会生成醇和胺.醇显示出与Fe(Ⅵ)的反应性ꎬ从而形成醛.醇的氯化反应会生成羰基ꎬ并转化为氯仿ꎬ这是THM形成的原因[39].因此ꎬ磺胺和含氯氧化剂之间的反应是THM形成的主要原因.Fe(Ⅵ)对醇的预氧化可减少后续氯化反应中THM的形成.高铁酸钾在高浓度下对水中有机物起到一定的矿化作用ꎬDOC减少.在较高浓度的预氧化剂投加量下ꎬ高铁酸钾对溴代消毒副产物的抑制能力要强于臭氧和高锰酸钾.高铁酸钾在高浓度作用下可以破坏一些溴的反应位点ꎬ从而减少溴代消毒副产物的生成.较低浓度的高铁酸钾无法完全氧化NOMꎬ较大分子的NOM被小剂量的高铁酸钾裂解ꎬ产生了新的DBP前体.高铁酸钾对消毒副产物前体的去除离不开其絮凝㊁助凝㊁氧化于一身的特性ꎬ这种特性配合适当的混凝剂可以去除水中一定量的DOCꎬ从而影响消毒副产物生成.2㊀结语近些年抗生素滥用造成的水环境危害不容忽视.水处理厂常用的处理工艺难以去除此类微污染物ꎬ且DBPs已被证明含有较强的 三致 作用.含氯消毒剂对于多数抗生素降解效果较好ꎬ但是氯化消毒副产物的大量产生严重威胁着生态及人体健康.光催化氧化㊁臭氧氧化以及高铁酸盐氧化等高级氧化技术08吉林师范大学学报(自然科学版)第42卷应用较为方便ꎬ但是也存在以下问题:(1)光催化氧化效率相对较低ꎬ经济实用性有待加强ꎻ(2)臭氧无法处理高溴水ꎬ生成的溴酸盐具有强致癌性ꎬ且不具有广谱性ꎬ对部分抗生素的降解效果较差ꎻ(3)高铁酸盐价格较贵ꎬ且投药量远大于其他氧化剂ꎬ难以取代含氯消毒剂的地位.高级氧化技术是目前水处理领域比较有前景的.寻找廉价高效的消毒剂有助于降低水厂运行成本㊁提高消毒效果.高级氧化技术与光等联用以及作为预氧化手段对于DBPs的去除效果明显ꎬ值得深入探索.参㊀考㊀文㊀献[1]EVGENIDOUEꎬKONSTANTINOUIꎬLAMBROPOULOUD.OccurrenceandremovaloftransformationproductsofPPCPsandillicitdrugsinwastewaters:areview[J].SciTotalEnvironꎬ2015ꎬ505:905 ̄926.[2]OGUTVERICIAꎬYILMAZLꎬYETISUꎬetal.TriclosanremovalbyNFfromarealdrinkingwatersource ̄effectofnaturalorganicmatter[J].ChemEngJꎬ2016ꎬ283(11):330 ̄337.[3]姜蕾ꎬ谢丽ꎬ周琪ꎬ等.水处理中微量抗生素去除的研究及进展[J].中国给水排水ꎬ2010ꎬ26(18):18 ̄22ꎬ35.[4]GÖBELAꎬMCARDELLCꎬJOSSAꎬetal.Fateofsulfonamidesꎬmacrolidesꎬandtrimethoprimindifferentwastewatertreatmenttechnologies[J].SciTotalEnvironꎬ2007ꎬ372(2/3):361 ̄371.[5]ADAMSCꎬWANGYꎬLOFTINKꎬetal.Removalofantibioticsfromsurfaceanddistilledwaterinconventionalwatertreatmentprocesses[J].JEnvironEngꎬ2002ꎬ128(3):253 ̄260.[6]NASSARRꎬRIFAIAꎬTRIVELLAAꎬetal.Aqueouschlorinationofsulfamethazineandsulfamethoxypyridazine:Kineticsandtransformationproductsidentification[J].JMassSpectromꎬ2018ꎬ53(7):614 ̄623.[7]ACEROJꎬBENITEZPꎬRDDFꎬetal.Kineticsofaqueouschlorinationofsomepharmaceuticalsandtheireliminationfromwatermatrices[J].WaterResꎬ2010ꎬ44(14):4158 ̄4170.[8]NAVALONSꎬALVAROMꎬGARCIAH.Reactionofchlorinedioxidewithemergentwaterpollutants:ProductstudyofthereactionofthreeB ̄lactamantibioticswithClO2[J].WaterResꎬ2008ꎬ42(8/9):1935 ̄1942.[9]SEIDELCꎬSAMSONCꎬBARTRANDTꎬetal.Disinfectionbyproductoccurrenceatlargewatersystemsafterstage2DBPR[J].JAmWaterWorkAssocꎬ2017ꎬ109(7):17 ̄30.[10]PLEWAMꎬWAGNEREꎬRICHARDSONSꎬetal.Chemicalandbiologicalcharacterizationofnewlydiscoveredlodoaciddrinkingwaterdisinfectionbyproducts[J].EnvironSciTechnolꎬ2004ꎬ38(18):4713 ̄4722.[11]徐武军ꎬ张国臣ꎬ郑明霞ꎬ等.臭氧氧化技术处理含抗生素废水[J].化学进展ꎬ2010ꎬ5:1002 ̄1009.[12]储金宇ꎬ吴春笃.臭氧技术及应用[M].北京:化学工业出版社ꎬ2002.[13]JIANGYJꎬGOODWILLJEꎬTOBIASONJEꎬetal.Comparisonofferrateandozonepre ̄oxidationondisinfectionbyproductformationfromchlorinationandchloramination[J].WaterResꎬ2019ꎬ156:110 ̄124.[14]JIANGJ.Researchprogessintheuseofferrate(Ⅵ)fortheenvironmentalremediation[J].JHazardMaterꎬ2007ꎬ146(3):617 ̄623. [15]JIANGJꎬLLOYDB.Progressinthedevelopmentanduseofferrate(Ⅵ)saltasanoxidantandcoagulantforwaterandwastewatertreatment[J].WaterResꎬ2002ꎬ36:1397 ̄1408.[16]ENGYꎬSHARMAVꎬRAYAꎬetal.Ferrate(Ⅵ):greenchemistryoxidantofdegradationofcationicsurfactant[J].Chemosphereꎬ2006ꎬ63:1785 ̄1790.[17]LUOZꎬLIXꎬZHAIJ.Kineticinvestigationsofquinolineoxidationbyferrate(Ⅵ)[J].EnvironTechnolꎬ2016ꎬ37(10):1249 ̄1256. [18]樊力ꎬ刘宝会ꎬ李锋涛ꎬ等.次氯酸钠在超滤化学清洗和加强反洗中的应用[J].化工管理ꎬ2017ꎬ439(5):92.[19]潘艳秋ꎬ姜明基ꎬ林英姿.饮用水中氯化消毒副产物的研究现状[J].中国资源综合利用ꎬ2010ꎬ28(2):31 ̄34.[20]周超.饮用水典型含氮消毒副产物亚硝胺类的生成机制研究综述[J].净水技术ꎬ2014ꎬ33(3):22 ̄29.[21]RICHARDSONSꎬPLEWAMꎬWAGNEREꎬetal.Occurrenceꎬgenotoxicityꎬandcarcinogenicityofregulatedandemergingdisinfectionby ̄productsindrinkingwater:Areviewandroadmapforresearch[J].MutatRes/RevMutatResꎬ2007ꎬ636(1/3):178 ̄242.[22]RICHARDSONSꎬTERNEST.Wateranalysis:emergingcontaminantsandcurrentissues[J].AnalChemꎬ2014ꎬ45(20):2813 ̄2848. [23]倪先哲ꎬ王刚ꎬ周彩云ꎬ等.磺胺甲噁唑氯化消毒副产物生成势及影响因素研究[J].中国给水排水ꎬ2019ꎬ35(5):48 ̄54.[24]XIEPꎬMAJꎬLIUWꎬetal.ImpactofUV/persulfatepretreatmentontheformationofdisinfectionbyproductsduringsubsequentchlorinationofnaturalorganicmatter[J].ChemEngJꎬ2015ꎬ269:203 ̄211.[25]HOUSꎬLINGLꎬDIONYSIOUDꎬetal.Chlorateformationmechanisminthepresenceofsulfateradicalꎬchlorideꎬbromideandnaturalorganicmatter[J].EnvironSciTechnolꎬ2018ꎬ52(11):6317 ̄6325.[26]HUAZꎬKONGXꎬHOUSꎬetal.DBPalterationfromNOMandmodelcompoundsafterUV/persulfatetreatmentwithpostchlorination[J].WaterResꎬ2019ꎬ158:237 ̄245.[27]GAOZꎬLINYꎬXUBꎬetal.EffectofUVwavelengthonhumicaciddegradationanddisinfectionby ̄productformationduringtheUV/chlorine18第1期林英姿ꎬ等:典型高级氧化技术控制抗生素氯化消毒副产物的研究进展process[J].WaterResꎬ2019ꎬ154:199 ̄209.[28]HUAGꎬRECKHOWD.Effectofpre ̄ozonationontheformationandspeciationofDBPs[J].WaterResꎬ2013ꎬ47(13):4322 ̄4330. [29]HOIGNÉJꎬBADERH.Theformationoftrichloronitromethane(chloropicrin)andchloroforminacombinedozonation/chlorinationtreatmentofdrinkingwater[J].WaterResꎬ1988ꎬ22(3):313 ̄319.[30]JACANGELOJꎬPATANIANꎬREAGANKꎬetal.Ozonation:Assessingitsroleintheformationandcontrolofdisinfectionbyproducts[J].AmWaterWorkAssocꎬ1989ꎬ81(8):74 ̄84.[31]李昂.预氧化强化混凝处理微污染地表水控制氯化消毒副产物研究[D].长春:吉林建筑大学ꎬ2018.[32]SHARMAVꎬZBORILRꎬVARMAR.Ferrates:Greeneroxidantswithmultimodalactioninwatertreatmenttechnologies[J].AccChemResꎬ2015ꎬ48(2):182 ̄191[33]SHARMAVꎬCHENLꎬZBORILR.ReviewonhighvalentFeⅥ(Ferrate):Asustainablegreenoxidantinorganicchemistryandtransformationofpharmaceuticals[J].ACSSustainableChemEngꎬ2016ꎬ4(1):18 ̄34.[34]ZIMMERMANNSꎬSCHMUKATAꎬSCHULZMꎬetal.Kineticandmechanisticinvestigationsoftheoxidationoftramadolbyferrateandozone[J].EnvironSciTechnolꎬ2012ꎬ46(2):876 ̄884.[35]SHARMAVꎬMISHRASꎬNESNAN.Oxidationofsulfonamideantimicrobialsbyferrate(Ⅵ)[FeⅥO2-4][J].EnvironSciTechnolꎬ2006ꎬ40(23):7222 ̄7227.[36]ZHOUWꎬBOYDJꎬQINFꎬetal.FormationofN ̄nitrosodiphenylamineandtwonewN ̄containingdisinfectionbyproductsfromchloraminationofwatercontainingdiphenylamine[J].EnvironSciTechnolꎬ2009ꎬ43(21):8443 ̄8448.[37]LEEYꎬGUNTENU.Oxidativetransformationofmicropollutantsduringmunicipalwastewatertreatment:comparisonofkineticaspectsofselective(chlorineꎬchlorinedioxideꎬferrateⅥꎬandozone)andnon ̄selectiveoxidants(hydroxylradical)[J].WaterResꎬ2010ꎬ44(2):555 ̄566.[38]GUOCꎬXUJꎬWANGSꎬetal.Photodegradationofsulfamethazineinanaqueoussolutionbyabismuthmolybdatephotocatalyst[J].CatalSciTechnolꎬ2013ꎬ3:1603 ̄1611.[39]DEBORDEMꎬGUNTENU.Reactionsofchlorinewithinorganicandorganiccompoundsduringwatertreatment ̄kineticsandmechanisms:Acriticalreview[J].WaterResꎬ2008ꎬ42(1/2):13 ̄51.Researchprogressoftypicaladvancedoxidationprocesstocontrolchlorinationdisinfectionby ̄productsofantibioticsLINYing ̄zi1ꎬ2ꎬWANGGao ̄qi1ꎬZHANGDai ̄hua1ꎬYANGHao1ꎬLIUWan ̄qing1(1.CollegeofMunicipalandEnvironmentalEngineeringꎬJilinJianzhuUniversityꎬChangchun130118ꎬChinaꎻ2.KeyLaboratoryofSongliaoAquaticEnvironmentMinistryofEducationꎬJilinJianzhuUniversityꎬChangchun130118ꎬChina)Abstract:Currentlyꎬantibioticshavebeendetectedindrinkingwatersourcesinmanycountriesꎬandevensulfonamidesꎬpenicillinsandtetracyclineantibioticshavebeendetectedindrinkingwater.Theseantibioticswereeasytobeconvertedintodisinfectionby ̄products(DBPs)inthedisinfectiontreatmentofdrinkingwaterꎬwhichposedathreattoaquaticecologyandhumanhealthandhadbecomeanenvironmentalissueofgreatconcern.Advancedoxidationprocessprovidedaneffectivewaytosolvethisenvironmentalproblemduetoitsstrongoxidationproperty.Thisarticlesummarizedtheresearchprogressofphotocatalyticoxidationꎬozoneandferratesoxidationcontrolantibiotic sDBPsproduction.Keywords:advancedoxidationprocessꎻantibioticꎻdisinfectionby ̄products(责任编辑:徐㊀娜)。
饮用水消毒副产物分析探讨

饮用水消毒副产物分析探讨【摘要】饮用水消毒是控制水中致病茵、保障人类安全使用的重要技术手段,但因此而产生的消毒副产物却危害着人类的健康,直接影响饮用水的质量安全。
本文探讨了近年来消毒副产物分析领域中常用的各种技术及检测方法,以供同行参考。
【关键词】饮用水;消毒副产物;分析一、饮用水消毒副产物概述1. 氯化消毒副产物水的加氯消毒技术是水处理技术发展历史上一个重大进展。
氯气消毒价格低廉、杀菌能力强,且持续时间长,多年来一直是饮用水消毒的首选药剂。
目前在氯化消毒的饮水中已经监测到300多种DBPS,包括THMS、卤乙酸、卤乙腈、卤代酮、三氯硝基甲烷、三氯乙醛等。
随着DBPS研究的多方面展开,越来越多的DBPS 的毒性被认识到,一些国家和组织也不断对相关规定进行调整。
(1)MX及其同系物。
尽管MX 在水中的浓度很低,但它能使TA100 菌株直接诱变,它的致突变性占饮用水突变活性的15%—57%,是现在已知的饮用水氯化消毒副产物中最重要的致突变性的物质。
(2)N-亚硝基二甲基胺。
NDMA 是一种不易挥发的化合物,普遍存在于各类食品及工业制品中,为大家所熟悉。
但它作为DBPs 存在于饮用水中是1998 年在加拿大安大略被发现的。
由于对它的毒性也已广为研究,因此在水环境领域很快掀起了一股NDMA研究热。
现在的研究还不能确定NDMA 是怎么形成的,但要形成NDMA 需要3个条件,即氯、无机物和胺。
当用氯或氯胺给流动水消毒时,3种物质互相接触就会形成NDMA。
USEPA 认为这种物质在极低的浓度就会致癌。
2. 臭氧消毒副产物臭氧作为消毒剂的前景一度显得非常光明。
它不会产生像THMs之类的卤代消毒副产物,却产生了包括醛类、酮类、羧酸、酮酸、腈类以及无机卤氧化物等的一系列产物。
消毒时同样会产生有毒的副产物,当源水中Br- 的浓度稍高时,溴离子能取代氯离子主要生成溴代乙酸,溴代乙酸被认为比氯代乙酸具有更强的DNA损伤能力;另外溴酸盐具有强致癌性。
消毒处理副产物

氯氯消毒主要是通过次氯酸的氧化作用来杀灭细菌,次氯酸是很小的中性分子,只有它才能扩散到带负电的细茵表面,通过细菌的细胞壁穿透到细菌内部,起氧化作用破坏细菌的酶系统,而使细菌死亡。
但对于水中的病毒、寄生虫卵的杀灭效果较差,需要在较高值消毒剂浓度乘以接触时间才能达到理想的除菌效果。
然而,氯在水中的作用是相当复杂的,它不仅可以起氧化反应,还可与水中天然存在的有机物起取代或加成反应而得到各种卤代物。
研究发现氯在进行饮用水预氧化和消毒时与水中某些有机物发生氧化反应,同时发生亲电取代反应,产生易挥发和不易挥发的氯化有机物如三氯甲烷等,这些有机化合物有许多是致癌物或诱变剂而常规处理工艺对于氯化产生的副产物不能有效去除。
二氧化氯二氧化氯的消毒机理主要是氧化作用,能较好杀灭细菌、病毒,且不对动植物产生损伤,杀菌作用持续时间长,受影响小,可除臭、去色,二氧化氯是一种强氧化剂,对细菌的细胞壁有较好的吸附和穿透性能,可以有效地氧化细胞酶系统,快速地控制细胞酶蛋白的合成,因此在同样条件下,对大多数细菌表现出比氯更高的去除效率,对很多病毒的杀灭作用强于氯是一种较理想的消毒剂,二氧化氯可以与多种无机离子和有机物发生作用,可以去除水中的多种有害物质,还可以将水中溶解的还原态铁、锰氧化,对去除铁和锰很有效,同时对于硫化物、氰化物和亚硝酸盐也有一定的氧化去除效果。
二氧化氯几乎不与水中的有机物作用而生成有害的卤代有机物,二氧化氯在净水过程中产生的副产物包括两部分,一部分是被其氧化而生成的有机副产物;另一部分是本身被还原以及其它原因而生成的无机副产物。
与氯相比,二氧化氯净化的有机副产物较少且毒性较轻,二氧化氯主要的消毒副产物为亚氯酸盐和氯酸盐,它们对人体健康有潜在的危害,世界卫生组织对亚氯酸盐在水溶液中的质量浓度建议控制在以200L下,而对氯酸盐的毒性还在进一步的研究之中,另外,二氧化氯本身也有害,且不能贮存,需现场制备。
氯胺氯胺消毒是氯衍生物的消毒方法之一,由于氯胺消毒作用缓慢,它不能作为基本杀菌消毒剂,曾一度停用,但由于氯胺能避免或减缓氯与水中有机污染物质的某些化学反应,从而使消毒后水中氯化副产物的生成量显著降低,氯胺消毒被广泛认为是控制消毒副产物形成的有效手段。
氯化消毒副产物

及指标、DBPs 的健康风险评价等方面 的研究,以便采取更好的饮用水中 DBPs 的控制措施,制定出切实可行的 健康指标,更好地保障人体健康。
氯化消毒副产物对人体健康的影响
饮用水消毒副产物(DBPs)是消毒剂和一些天然有机物(NOM)反 应生成的化合物,主要包括三卤甲烷(THMs)、卤代乙酸(HAAs)、 卤代乙腈(HANs)和致诱变化合物(MX)等,
研究内容:文章介绍了饮用水中消毒副产物的研究状况,对 DBPs 的种类与分布状况、生成影响因素、 毒性与健康效应、饮水DBPs 控制方法的研究概况及进展进行了 综述。
源水中有机污染物对饮用水氯化消毒副产物形成的影响研究
研究方法:流行病学实验研究 研究目的: 研究源水中有机物污染对饮用水中氯化消毒副
产物形成的影响 研究方法: 采用安捷伦7890A气相色谱仪、ECD 检测器,
对自贡市36家自来水厂出厂水管网末梢水中的 三卤甲烷、卤乙酸、高锰酸钾耗氧量进行测定
研究结果:
减少氯化消毒副产物的措施
采用生物活性炭法去除或降低有机前体物含 量
通过混凝沉淀和活性炭过滤等净化措施;
改变传统氯化消毒工艺,采用其他消毒方法;
Thank you!
36 家自来水厂的出厂水管网末梢水不同程度检 出氯化消毒副产物三卤甲烷( 三氯甲烷、二氯一 溴甲烷 一氯二溴甲烷、三溴甲烷) , 卤乙酸( 二氯乙酸、 三氯乙酸) 。
研究结论: 水源水种类、有机物污染是影响消毒副产物
生成的因素,江河水、耗氧量高的源水消毒
副产物较多。
消毒及消毒副产物的控制研究

表1 原水 数据 (2 008年 6月)
项目数值 浊度NTU 水温℃ CODmg/L
最高
6.62
25.2
3. 6
最低
2.16
19.8
3. 0
平均
3.1 3
2 2.5
3. 3
pH
8.2 7.75 7 .9 5
细菌总数 色度mg/L 氨氮mg/L
个∕ml
10
0. 09
490
5
0. 01
701
5
0. 04
231
总大肠菌群 个∕L 330 <20 65
耐热大肠菌群 个∕100Ml 26 2 9
藻类计数 万个/l 1311 622 9 29
95
第四届水处理行业新技术、新工艺应用交流会论文选登
是本公司不可或缺的保障饮用水安全的手段。消毒工 艺是传统的三点加氯。作为消毒研究的范畴,也从消 毒工艺、水中微生物和水处理工艺三者基础上增加了 水中有机物及颗粒物和消毒副产物。严格意义上的消 毒副产物包括氯化消毒副产物和采用替代消毒技术时 生成的副产物。鉴于本公司使用氯化消毒,通常所说 的消毒副产物也指的是氯化消毒副产物。本文中用消 毒副产物这一术语指氯化消毒副产物。
表3 同氯投量消毒副产物对比如表
加氯点
投氯量6.55mg/l
数值
气浮工艺 沉淀工艺
三氯甲烷 21.6
(ug/l)
2 0. 8
一溴二氯 13.4
(ug/l)
1 2. 5
二溴一氯
饮用水中多种氯化消毒副产物对生物的综合毒性

饮用水中多种氯化消毒副产物对生物的综合毒性一、研究背景1.1研究背景饮用水消毒开始于20世纪初,其目的在于杀灭水中的微生物病原体以防止介水传染病的传播和流行。
目前,我国常用的饮用水消毒方法有:氯化消毒、二氧化氯消毒、臭氧消毒和紫外线消毒。
氯化消毒以其价格低廉、来源广、具有余氯持续作用等优点[1],广泛应用于饮用水深度处理工艺中,也是我国最主要的饮用水消毒方法。
然而,饮用水消毒杀菌的同时伴随着消毒剂与源水中含有的一些天然有机物和环境有机污染物以及溴或碘化物的化学反应,从而产生多种消毒副产物( disinfection by-products,DBPs),对人体健康构成潜在的威胁。
DBPs涵盖的范围很广,主要的大致可分为4类,即三卤甲烷( Trihalomethanes,THMs )、卤代乙酸(Haloacetic acids,HAAs ) 、卤代乙腈( Haloacetonitriles,HANs) 和致诱变化合物(Mutagen X,MX)[2]。
氯化消毒是应用时间最久且范围最广泛的消毒方法,通过近年来的大量研究表明,在常用的消毒方式中,氯化消毒是产生氯化消毒副产物最多的消毒方式。
自20世纪七十年代研究者发现饮用水中存在DBPs以来,人们对加氯消毒后饮用水中存在的DBPs给予了极大的关注, 从DBPs的成分、毒性、流行病学、饮用水中的污染状况以及干预措施等方面进行了大量的研究。
本文主要是针对多种加氯消毒副产物对生物的综合毒性进行进一步研究。
1.2研究意义饮用水安全与人类健康息息相关,如今,DBPs是影响应用水安全的主要因素,是饮用水安全研究的热点之一。
有关DBPs毒理学的研究进展很快, 到目前为止THMs已被公认为对动物具有致癌作用,DBPs的“三致性”(致癌、致畸、致突变)作用正引起研究者的广泛关注。
流行病学研究表明,加氯消毒的饮用水与膀胱癌、直肠癌及结肠癌等的发病率之间存在潜在相关[3-7],另外,饮用水DBPs还可能引起生殖、发育副作用[8,9]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
饮用水中氯化消毒副产物及其控制技术研究陈微上海师范大学环境工程系2006级1班,上海,200234摘要:与人类生存息息相关的饮用水安全问题一直倍受关注。
使用液氯对饮用水消毒已有近百年历史,液氯消毒是长期以来普遍采用的消毒方法。
70年代以来,氯消毒产生的副产物越来越引起人们的广泛关注。
本文针对饮用水源的严重污染以及由此而引发的有机消毒副产物(DBPs)的种类和数量增加这一问题,引用大量的文献, 分析了饮用水中氯消毒副产物(CDBPs)的危害,介绍了目前对氯消毒副产物控制措施的研究现状,论述了控制这些副产物的各种方式和各自特点。
关键词:消毒副产物、危害、控制技术氯化消毒是消灭水中病菌和微生物的有效方法, 自20世纪初运用于饮用水处理以来已有近百年的历史。
氯消毒以其价格低廉、来源广、具有余氯持续作用等优点,广泛应用于饮用水深度处理工艺中,也是我国多年来在给水处理中一直沿用的消毒手段。
但是氯在水中的作用是相当复杂的,它不仅可以起氧化反应,还可与水中天然存在的有机物起取代或加成反应而得到各种卤代物。
1 卤代消毒副产物研究现状1974年, Rock首次报道水中有色物质可形成氯化消毒副产物(CDBPs) 三氯甲烷会增加消化和泌尿系统癌症的危险性。
1983年Miller和Uden 又发现了非挥发性的消毒副产物卤乙酸(haloacetic acids, HAAs)与低沸点、易挥发的三卤甲烷相比, 沸点较高的卤乙酸具有更大的致癌风险。
目前已检测到的CDBPs 多达数百种, 主要包括三卤甲烷(THMs) 、卤乙酸(HAAs) 、卤乙腈(HANs) 、致诱变化合物(MX) 、卤代酮(HKs) 、卤代酚、卤乙醛、卤硝基甲烷等类物质[1,2] 。
2 卤代消毒副产物对人体健康的危害1976年, 美国国家癌症协会发现, 氯仿对动物具有致癌作用; 研究证实, HAAs 的致癌风险较THMs 大10倍以上, 其它消毒副产物的Ames 实验也多呈阳性, 存在着很强的致突变性[3]; 流行病学研究发现, 饮用水氯化消毒的量与膀胱癌、直肠癌等的发病率之间有相关性[4,5]。
在CDBPs 毒理学的研究方面,THMs 和HAAs 已被公认为对动物具有致癌作用。
其致癌作用可用单位致癌风险表示[3]。
单位致癌风险是指人终生饮用水中(每人平均体重70kg, 每天饮用2 L的水) , 1μg/L 该污染物所产生的癌症发病率。
例如三氯乙酸的致癌风险是5.6×10- 6, 即终生饮用含1μg/L 三氯乙酸的水的人群中, 每100万人中有5.6人得癌症。
目前水处理工作者及医学工作者关注较多的是消毒副产物的“三致”(致癌、致畸、致突变)作用。
吴建军等人通过实验研究发现MX对DNA有损伤作用[6]。
氯化产生的二氯乙酸(DCA)和三氯乙酸(TCA)会毒害人体的肝脏,而且可能导致神经病变和胎儿畸形[7]。
鉴于CDBPs 对人体健康的危害, 应最大限度地降低其在饮用水中的含量。
为保证饮用水安全, 许多国家在饮用水标准中限定了THMs、HAAs 的最高浓度。
我国生活饮用水卫生标准(GB5749-85)[8]规定CHCl3为60μg/ L。
消毒副产物产生于氯消毒工艺,故改进传统氯化工艺是首先想到也常用的消毒副产物控制措施之一。
除了改进传统氯化工艺之外,消毒副产物控制还包括消毒剂替代、前体物去除、副产物直接去除等措施。
3.1 寻找替代的消毒剂由于传统加氯消毒鲜明的优点和缺点,为满足饮用水安全性要求,人们开始关注其他消毒方法,其中常见的有臭氧、二氧化氯、紫外线、氯胺、双氧水以及它们的联合工艺。
3.1.1 二氧化氯消毒二氧化氯消毒技术与氯消毒技术不同之处在于二氧化氯一般只起氧化作用,不起氯化作用,故它与水中杂质形成的三卤甲烷等副产物比氯消毒要少得多。
二氧化氯用于饮用水消毒时,几乎不产生三卤甲烷及其它有机卤代物。
与氯相比,二氧化氯对pH 有较宽的适应范围,当pH> 6.5时,杀菌效率远高于氯。
作者简介:陈微,女,(1987- ),环境工程专业,主要特长(兴趣):饮用水安全问题,E-mail:1000211622@二氧化氯氧化能力强,是氯气氧化能力的5倍,杀菌同时可以去除水中色度、臭味、锰等杂质;与臭氧相比, 二氧化氯在水中持续残留时间较长,可以有效控制二次污染发生。
此外,二氧化氯除酚能力很强。
但是,二氧化氯消毒的无机反应产物氯酸盐及亚氯酸盐毒性很强,对血红细胞有损害作用, 可以引起高铁血红蛋白症, 减少氧的运送,并会干扰碘的吸收代谢[9]。
另外,二氧化氯价格昂贵、处理费用较高、制备技术不成熟等问题,限制了其在饮用水消毒处理中的推广应用。
3.1.2 过氧化氢消毒过氧化氢氧化消毒是依靠其强氧化性的‐OH作为氧化中间产物来实现氧化。
它能直接氧化水中有机污染物和构成微生物的有机物质。
同时, 过氧化氢分解后成为水和氧气,不会带来二次污染;在饮用水处理中过氧化氢分解速度很慢, 能保证较长时间的残留消毒作用;又可作为脱氯剂(还原剂),不会产生有机卤代物。
此外,过氧化氢稳定性好,储存时每年活性氧的损失率低于1%;没有腐蚀性,能较容易地处理液体;能与水完全混溶,避免了溶解度的限制等。
因此,过氧化氢是较为理想的饮用水预氧化剂和消毒剂。
3.1.3 紫外线消毒紫外线消毒的优点是管理简单、杀菌速度快而且效率高、无消毒副产物产生,同时基本上不改变水的物理性质;缺点是成本高,无持续杀菌能力,细菌可能在管网中再次繁殖,需与其他工艺联合以弥补。
一般仅在特殊情况下小规模使用。
3.1.4 氯胺消毒氯胺虽然氧化能力较弱, 但具有较强的持续性。
焦中志[10]等人在研究氯胺对消毒副产物得控制中发现,将氯与氨氮的比值降至5,能够使单独氯消毒所生成的消毒副产物减少89%,而二溴一氯甲烷也不再检出;另外,消毒副产物的生成量与氯胺的投加量呈很好的线性关系,接触时间对消毒副产物的生成量影响很小,pH升高至8,消毒副产物的总量比pH为7时减少82.3%,而一溴二氯甲烷不再检出。
马蓉[11]等人通过研究发现,消毒副产物的浓度及其含溴的程度基本上随着pH降低、Cl2∶N升高而增大。
3.1.5 臭氧消毒臭氧消毒能力最强(臭氧> 二氧化氯> 氯气>氯胺),不但可以迅速杀灭细菌和芽孢病毒,而且可以去除色、嗅、味等污染物,同时能提高水中有机物的生物可降解性。
此外,臭氧能将有机物氧化成亚硝酸盐等无机物,不会产生二次污染。
由于臭氧不稳定需用臭氧发生器就地制取,投资费用较高,而且臭氧发生器产氧率低的问题一直没有解决,在一定程度上限制了其应用。
3.1.5组合工艺。
组合工艺对有机物的去除有良好的作用。
例如,张金松[12]等人采用臭氧化—生物活性炭(O3/BAC)深度处理工艺去除水中消毒副产物前质的试验。
结果表明,该工艺能够有效去除水中消毒副产物前质,可控制氯化消毒副产物的生成,其中臭氧化对三卤甲烷前质和卤乙酸前质均具有很好的去除效果,生物活性炭对卤乙酸前质表现出较好的去除效果,但对三卤甲烷前质的去除效果有限。
张可欣[13]采用预臭氧氧化技术与陶粒生物滤池组合工艺去除原水中消毒副产物的前驱物,试验结果表明,该工艺对二氯乙酸前驱物质有一定的去除作用,对三氯乙酸前驱物质的去除效果显著,但对三卤甲烷前驱物质的去除效果不佳。
3.2 消毒副产物去除消毒副产物的去除分为二个方面:一是直接去除消毒副产物;二是通过去除消毒副产物前体物而减少消毒副产物的产生量。
消毒副产物前体物的去除是降低出水中DBPs 的有效途径之一。
氯消毒副产物去除有混凝、吹脱、活性炭吸附、生物氧化、化学氧化和膜过滤等方法。
3.2.1 混凝法强化混凝是用改善混凝剂匹配和优化混凝工艺条件等方法, 提高混凝沉淀对有机物的去除效率。
常用的混凝剂有A12(SO4)3, FeC13, PFS(聚合硫酸铁)、PAC(聚合铝)等。
混凝法能去除水中的悬浮颗粒、色度,减少消毒副产物前体物的数量。
混疑、沉淀对三卤甲烷生成势(THMsFP) 具有一定的去除效果, 去除率在33%~44%之间, 滤池对THMsFP 的去除率为13%~18%[14]。
3.2.2 吹脱法根据三氯甲烷具有挥发性,采用曝气法吹脱。
曝气法有跌水曝气法、摇动法、煮沸法等。
该方法只适用于处理量较低的情况,且能耗较高。
3.2.3 活性炭吸附研究表明,在常规水处理工艺流程中投加粉状活性炭, 能吸附去除水中各种有机污染物(副产物前驱物和副产物本身),使其致突变活性成阴性[15]。
当粉末活性炭的投加量为10~15mg/L 时,CODMn 去除率可达20%左右[16]。
郭改梅和董肇君按一定顺序在饮用水原水中投加少量Fenton 试剂和粉末活性炭,可在保证常规出水水质指标的情况下,有效去除三卤甲烷前体物(THMFP),从而大大降低饮用水中三卤甲烷的浓度[17]。
3.2.4 生物预处理生物预处理方法是在常规物理化学处理工艺前增设生物处理装置,借助装置中富集的微生物群体的新陈代谢,减少水中三氯甲烷前驱物的量,从而限制三氯甲烷的生成。
生物预处理法对有机物(以TOC计)的去除率不高,仅30% ~40%, 但当该法与传统处理相结合时,对进出水的致突活性比较研究表明:生物预处理与传统处理相组合的处理工艺可以有效降低氯化水中三氯甲烷的含量[18]。
该法对三氯甲烷前驱物控制机理可能是由于生物预处理对水中有机物化学结构的改变导致后续传统工艺提高对三氯甲烷前驱物的去除效果。
饮用水生物预处理一般采用生物膜法,主要包括生物接触氧化、生物滤池、生物转盘、生物流化床等。
生物处理能有效去除前体物质且可大幅度降低后续加氯量,工程运用效果较好[19]。
3.2.5 化学氧化法高锰酸钾(KMnO4)可以显著地控制氯化副产物的生成,降低水的致突变性,使水中有机污染物的数量和浓度均有显著的降低,水的致突变性由阳性转变为阴性或接近阴性。
用KMnO4去除与控制水中的有机物,不必改变常规的净水工艺流程,只需在投加混凝剂之前或同时投加KMnO4溶液,操作简单,投资费用低。
纳米TiO2光催化水处理技术对于有机污染物特别是致畸、致癌的氯仿四氯化碳等处理效果极佳,对于表征混和污染物的化学耗氧量去除效果较好[20]。
3.2.6 膜过滤饮用水深度处理中常用到膜过滤,有微滤(MF)、超滤(UF)、纳滤(NF)和反渗透(RO)等形式,对水中臭味、色度、消毒副产物前体物及其它有机物和微生物均有良好的去除效果,被EPA推荐为最佳工艺之一。
近年来膜技术在给水界迅速发展。
膜处理技术具有简洁、紧凑、处理水质好、可减少混凝剂及消毒剂用量、有效去除病原体、易于自动化操作、维护方便等优点,但是膜的污染、堵塞问题和高成本一直制约着其发展应用,也是业内研究的热点。