数据模型基本概念及建模方法论

合集下载

数据建模与应用作业指导书

数据建模与应用作业指导书

数据建模与应用作业指导书第1章数据建模基础 (2)1.1 数据建模的概念与意义 (2)1.2 数据建模的流程与步骤 (3)1.3 常见数据建模方法 (3)第2章数据预处理 (4)2.1 数据清洗 (4)2.1.1 缺失值处理:针对数据集中的缺失值,采用填充、删除或插值等方法进行处理。

(4)2.1.2 异常值检测与处理:通过统计分析、箱线图等方法识别数据集中的异常值,并采用合理的方式进行处理。

(4)2.1.3 重复数据处理:对数据集中的重复数据进行识别和删除,避免对后续分析产生影响。

(4)2.1.4 数据类型转换:对数据集中的数据类型进行统一和转换,保证数据的一致性。

42.2 数据整合与转换 (4)2.2.1 数据集成:将来自不同来源的数据进行合并,形成统一的数据集。

(5)2.2.2 数据变换:对数据集中的数据进行规范化、标准化等变换,消除数据量纲和尺度差异的影响。

(5)2.2.3 特征工程:基于业务需求,提取和构造具有代表性的特征,提高模型功能。

(5)2.2.4 数据归一化与标准化:对数据集中的数值型数据进行归一化或标准化处理,降低数据分布差异的影响。

(5)2.3 数据规约 (5)2.3.1 特征选择:从原始特征集中选择具有较强预测能力的特征,降低数据维度。

(5)2.3.2 主成分分析:通过线性变换,将原始数据投影到低维空间,实现数据降维。

(5)2.3.3 聚类分析:对数据进行聚类,识别数据集中的潜在模式,为特征选择和降维提供依据。

(5)2.3.4 数据压缩:采用编码、哈希等方法对数据进行压缩,减少存储和计算负担。

(5)2.4 数据可视化 (5)2.4.1 分布可视化:通过直方图、散点图等展示数据集中各特征的分布情况。

(5)2.4.2 关系可视化:利用热力图、相关性矩阵等展示特征之间的关系。

(5)2.4.3 聚类可视化:通过散点图、轮廓图等展示数据聚类结果。

(5)2.4.4 时间序列可视化:采用折线图、面积图等展示时间序列数据的变化趋势。

【onemodel】数据模型建设方法论

【onemodel】数据模型建设方法论

数据模型建设方法论数据模型是数据分析和数据管理中的核心概念,用于描述现实世界中的数据和数据关系。

建设一个合适的数据模型能够帮助企业更好地管理和利用数据,提高决策效率和业务竞争力。

本文将介绍数据模型建设方法论,包括数据模型的定义、分类、设计和实现等方面。

数据模型建设方法论数据模型是数据分析和数据管理中的核心概念,用于描述现实世界中的数据和数据关系。

建设一个合适的数据模型能够帮助企业更好地管理和利用数据,提高决策效率和业务竞争力。

本文将介绍数据模型建设方法论,包括数据模型的定义、分类、设计和实现等方面。

一、数据模型的定义数据模型是指对现实世界中的数据和数据关系进行抽象和描述的一种形式化表达方式。

数据模型可以通过图形化方式呈现,例如实体关系图 (ER 图)、数据流程图等。

数据模型主要包括数据实体、数据属性、数据关系和数据约束等元素。

二、数据模型的分类根据不同的分类标准,数据模型可以分为不同的类型。

以下是常见的几种数据模型分类方式:1. 概念模型和逻辑模型概念模型是指对现实世界中的数据和数据关系进行概念抽象和描述的数据模型。

逻辑模型是指对概念模型进行逻辑设计和实现的数据模型。

2. 关系模型和面向对象模型关系模型是指采用关系代数和二维表格方式表示数据和数据关系的数据模型。

面向对象模型是指采用面向对象编程思想和类、对象、继承、多态等方式表示数据和数据关系的数据模型。

3. 静态模型和动态模型静态模型是指对数据和数据关系进行静态描述的数据模型。

动态模型是指对数据和数据关系进行动态描述的数据模型,包括数据流模型、事件驱动模型等。

三、数据模型的设计数据模型的设计是指根据业务需求和数据特点,设计合适的数据模型,主要包括数据实体的识别、数据属性的定义、数据关系的确定和数据约束的设置等。

四、数据模型的实现数据模型的实现是指根据设计好的数据模型,采用合适的数据库管理系统 (DBMS) 或数据管理工具,实现数据模型并将数据导入到系统中。

数据模型建设方法及工艺分享

数据模型建设方法及工艺分享

维度建模最简单的描述就是,按照事实表, 维表来构建数据仓库,数据集市。这种数 据模型易于用户理解和数据分析操作,从 数据分析的需求场景出发,重点关注用户 如何快速的完成数据分析需求。最常用的 就是星型模型和雪花模型。
优点: ➢ 宽表设计、关联少、性能高,业务
相对好理解 ➢ 采用字段冗余来换取少关联
缺点: ➢ 需求出发,会造成孤立主题域,数
优点: ➢ 模型稳定性好 ➢ 减少冗余
缺点: ➢ 需要全面了解企业业务和数据; ➢ 实施周期比较长; ➢ 对建模人员要求高,要熟悉所有主
要业务,要有深度的模型功底; ➢ 3NF的建模,虽然冗余低、扩展性
高,但做了拆分,导致业务理解和 使用困难,需要多表关联。
DataVault
维度
DataVault的主要思想。其设计理念是要 满足企业对灵活性、可扩展性、一致性和 对需求的快速适应性等要求。在物理建模 时,混合了包括范式建模和星型模型在内 的建模方法,在范式与宽表间寻找一个平 衡点。
数据模型建设方法及工艺 分享
目录
1
背景知识
2 模型建设方法原则
3
模型建设工艺
4
指标库探讨
数据抽象层次
现实世界
概念模型
Subject, Definition and Scope
逻辑数据模型
Entity, Attribute and Cardinality
物理数据模型
Table, Column and Relationship
据冗余,难以扩展。 ➢ 在构建星型模式之前需要进行数据
预处理,因此导致进行大量数据处 理、统一计算才能形成事实表。 ➢ 当业务发生变化,需要重新进行维 度定义时,需要重新进行维度数据 的预处理。

onedata建模方法论

onedata建模方法论

onedata建模方法论(原创版4篇)《onedata建模方法论》篇1OneData 是一种数据建模方法论,旨在帮助企业构建高质量的数据仓库。

该方法论包括以下主要内容:1. 数据仓库定义:OneData 将数据仓库定义为一个集成的、稳定的、易于访问的数据存储库,用于支持企业管理、决策和分析需求。

2. 数据建模流程:OneData 提出了一套完整的数据建模流程,包括需求分析、概念设计、逻辑设计、物理设计和实施等阶段。

在每个阶段,都有相应的方法和工具支持。

3. 数据模型设计:OneData 强调数据模型设计的重要性,提出了一些设计原则,如实体完整性、属性完整性、参照完整性和数据一致性等。

OneData 还提供了一些数据模型设计工具,如ER 图、数据字典和数据流图等。

4. 数据仓库实现:OneData 提供了一些数据仓库实现的技术和工具,如数据清洗、数据转换、数据加载、数据存储和数据查询等。

OneData 还强调了数据仓库的性能和安全性的重要性。

5. 数据仓库管理:OneData 提供了一些数据仓库管理方法和工具,如数据质量管理、数据备份和恢复、数据安全和数据审计等。

OneData 还强调了数据仓库的可用性和可扩展性的重要性。

《onedata建模方法论》篇2OneData 是一种数据仓库建模方法论,其核心思想是将数据仓库视为一个企业级的数据中心,通过建立一套完整的数据模型来实现数据的统一管理和运营。

OneData 方法论主要包括以下方面:1. 数据仓库概念模型设计:该阶段主要通过业务领域模型的设计,将企业的业务需求转化为数据模型,包括数据实体的定义、属性的设计以及实体之间的关系等。

2. 数据仓库逻辑模型设计:该阶段主要通过数据模型的逻辑设计,将概念模型转化为具体的数据表结构,包括数据表的定义、表之间的关系、索引的设计等。

3. 数据仓库物理模型设计:该阶段主要通过数据模型的物理设计,将逻辑模型转化为具体的数据存储结构,包括数据分区、数据备份、数据恢复等。

字节跳动数据建模方法论

字节跳动数据建模方法论

字节跳动数据建模方法论
数据建模这事儿,就像是搭建乐高积木。

得先清楚自己想要搭出个啥玩意儿,也就是明确业务目标。

比如说,咱是想通过数据看看用户喜欢啥内容,还是想知道产品哪个功能受欢迎。

这目标就像是蓝图,指引着咱后面的操作。

然后嘞,得去收集数据。

这数据啊,就好比是积木块,各种各样的都有。

咱得从不同的地方把它们都找来,像用户的行为数据、系统的日志数据等等。

而且啊,这些数据得是靠谱的,不能稀里糊涂的,不然搭出来的“乐高城堡”说不定就歪歪扭扭啦。

收集完数据,接下来就是处理数据。

这就像是把那些形状不太对的积木稍微修整修整,让它们能完美地拼在一起。

要去除掉一些没用的、重复的数据,还要处理处理那些缺失的数据。

比如说,有的用户信息不全,咱得想办法补全或者合理地处理,不能让它影响咱后面的搭建。

再说说设计模型这一步。

这就好比是设计咱们的乐高城堡的造型啦。

得根据业务目标和数据的特点,选择合适的模型结构。

是用关系型的,还是非关系型的,这都得好好琢磨。

就像搭城堡,是搭个传统的欧式城堡,还是搞个有创意的未来风格城堡,得看咱手里的积木和自己的想法。

最后搭建模型的时候,就像是真的动手拼乐高啦。

要把处理好的数据按照设计好的模型结构一点点放进去,看看效果咋样。

如果搭得不太对,那就调整调整,就像乐高拼错了可以拆了重新拼一样。

在这个过程中啊,还得不断地验证和优化。

就好比搭完城堡后,看看稳不稳,外观好不好看,要是有问题,就再改进改进。

数据模型基本概念及建模方法论

数据模型基本概念及建模方法论

数据模型基本概念及建模方法论数据模型是数据库设计过程中的关键步骤,它用于描述现实世界中的实体、属性和关系,这些内容会被转化为关系型数据库的表结构。

数据模型包含了数据的逻辑结构和组织方式,并通过建模方法论来指导我们进行数据的抽象和设计。

本文将介绍数据模型的基本概念以及常用的建模方法论。

1.数据模型的基本概念1.1 实体(Entity):在现实世界中可以独立存在并具有唯一标识的事物。

实体可以是具体的,如一个人、一辆车,也可以是抽象的,如一个订单,一个公司。

1.2 属性(Attribute):实体具有的特征或者性质,用于描述实体的一些方面。

属性可以是简单的,如一个人的姓名、性别,也可以是复杂的,如一个产品的描述、详细内容。

2.1实体-关系模型(E-R模型):E-R模型是最基本也是最常用的数据模型之一,它通过实体、属性和关系来描述现实世界中的实体和它们之间的关系。

E-R模型的核心是实体和实体之间的关系,实体通过属性来描述实体的特征。

2.2属性-关系模型(A-R模型):A-R模型是对E-R模型的扩展和补充,它将属性看作是独立存在的,可以被多个实体使用,从而增加了模型的灵活性和复用性。

通过将属性提取到一个独立的实体中,可以避免数据冗余和数据一致性的问题。

2.3面向对象建模方法(OO模型):OO模型是一种用于建立逻辑模型和实现模型的方法,它将现实世界中的事物看作是对象,通过封装、继承和多态来描述对象之间的关系。

OO模型充分利用了面向对象编程的特性,如封装、继承和多态,使得模型更加直观、灵活和易于维护。

2.4关系模型(RDB模型):关系模型是一种用于建立数据库的方法,它通过用关系、属性和约束来描述数据和数据之间的关系。

关系模型将数据组织为一个或多个关联的表,每个表包含多个行和列,行表示一个实体,列表示实体的属性。

关系模型是最常用和最成熟的数据模型之一,大部分商业数据库都是基于关系模型实现的。

3.数据建模的过程3.1需求分析:收集用户需求,理解业务流程和数据处理逻辑,明确数据建模的目标和范围。

数据模型培训

数据模型培训

凭证
当事人角色 适销产品 金融资产 凭证当事人角色 适销产品凭证用法 金融资产凭证用法 凭证 财务记录凭证用法 业务约定凭证用法 财务记录 执行交易凭证用法 业务约定 执行交易 存储区域 凭证区域 凭证生命周期 凭证关系 通讯事件记录凭证 通讯事件记录
时间表
金融资产
产品交付交易
金融资产
结算
有形资产
– 从分户账、总账、交易信息,等等,任何一个角度进行统计,结果一致
数据管理体系
数据管理体系
组织、活动、交付、职责、技术
数据提供者
核心 国结 资金 信贷 理财 中间业务 其他 外部数据 ETL 处 理 ETL 处 理
数据服务工厂
抽取、清洗、转换、加载
数据使用者
业务报表
Credit
ALM
GL CRM MA 数 据 访 问 和 发 布
主题域 逻辑数据模型 Subject Area Logical Data Model
主题域 逻辑数据模型 Subject Area Logical Data Model
主题域 逻辑数据模型 Subject Area Logical Data Model
DW主题域 逻辑数据模型 DW Subject Area Logical Data Model
数据平台的安全、协调运行
• 具有良好的拓展性,满足银行不断推出的新业务、新服务的要求
– 制定FSD管理流程,保证FSD与数据平台产品的同步升级 – 建立FSD数据管理方法论,保证新增数据与数据模型、历史数据的有效衔接 – 协助银行,制定有效的数据管理制度

从任何角度统计,在业务逻辑一致的情况下,结果相同

是进行各种数据管理、分析和交流的重要手 段;

数据模型基本概念及建模方法论

数据模型基本概念及建模方法论
数据模型的基本概念 及建模方法论
崔大强 技术经理
NCR(中国)有限公司数据仓库事业部
内容安排
什么是数据模型 数据模型相关术语 数据模型方法论 建模注意事项
2
什么是数据模型?
以数学的方式对现实事物的一种抽象表达,„ 特征: 内容:描述了数据、及其之间的关系 形式:反映了数据的组织与管理形式
设计人员:业务人员、IT人员
设计目标
设计蓝图,指导整个数据仓库系统的建设 业务语言,业务人员与技术人员沟通的手段和方法 业务视图,独立于数据库技术实现
设计内容:实体、关系和属性 建模方法:3NF的设计方法 后续工作:物理数据模型的输入
7
物理数据模型
Physical Data Model(PDM)物理数据模型

决 方 案 集 成
使用工具:
ERWin
交付项目:
物理数据模型(PDM) 《物理数据模型说明书》 《数据库描述语言DDL》
33
物理数据模型命名规范
序号 主题
1 PARTY 2 OFFER
缩写
PAR OFR
中文
参与人 产品策划
3 FINANCE
4 LOCATION 5 ADVERTISEMENT 6 EVENT 7 NETWORK 8 REFERENCE CODE
31
Step 5: 确认模型 (2)
1. 通过回答以下问题,持续地对模型的范围进行验证: • • 这一模型组件的含义、与业务的关系是什么? 这一模型组件驱动的业务需求是什么?
2. 对模型是否已经满足所有业务需求、业务问题及限制条件等,进行验证 3. 绝对不要考虑任何与物理实施相关的问题! 4. 当所有回答业务需求所必须的数据已经齐备时,停止对模型进行优化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设计蓝图,指导整个数据仓库系统的建设 业务语言,业务人员与技术人员沟通的手段和方法 业务视图,独立于数据库技术实现
设计内容:实体、关系和属性 建模方法:3NF的设计方法 后续工作:物理数据模型的输入
7
物理数据模型
Physical Data Model(PDM)物理数据模型
设计目标:面向物理实施的具体细节 输入条件
17
逻辑数据模型基本术语 (示例)
• Logical Data Model (LDM)

Example
Key Attribute
Cardinality One-to-many 1:M
Entity
Business Rule : • one customer invoice at least
contains one invoice item
16
逻辑数据模型基本术语 (五)
关系 确定关系
父实体的一个实例对应子实体的0、1或多个实例,并且子实体 的一个实例对应0或1个父实体的实例
非确定关系
多对多关系
子类关系
子类实体和所属父实体的关系
完全子类群
所属父实体的每个实例都能够与子类群的一个实体实例相关联
不完全子类群
所属父实体的每个实例不一定都有子类相关联
模型结构 第三范式(3NF)结构 星型结构(多星型结构) 雪花型结构
13
3NF
基础数据模型
Star Schema
汇总数据/已知应 用模型
Snowflake
星型结构的演变
逻辑数据模型基本术语 (二)
实体 独立型实体 依赖型实体
子类实体
主题域 层面
核心实体 关系实体 特征实体 分类实体
5
逻辑数据模型
定义: 符号体系 使用逻辑建模语言 设计内容 定义数据与数据之间的逻辑关系 表现形式 以图形化的形式 反映内容 反映客户的业务规则 设计目标 达到数据组织的设计目标
6
逻辑数据模型
Logical Data Model (LDM) 逻辑数据模型
设计人员:业务人员、IT人员 设计目标
14
逻辑数据模型基本术语 (三)
属性: (描述真实或抽象事物相关联的特征或性质) 主键 (识别实体实例唯一性的属性、属性组) 可选键 (能识别实体实例唯一性的其他属性、属性组) 外键 (通过父实体到子实体关系转移到子实体的属性) 非键属性(不是实体主键属性的其他属性 ) 基础名 (外键的原来名称 ) 角色名 (外键的新名称,表明取值是父实体属性的子集 ) 鉴别器 (取值决定父实体实例属于哪个子类的属性 )
继承于逻辑数据模型 依赖于所选择的数据库 决定于业务需求和性能之间的平衡
设计内容
数据库、表和字段、索引 需要作非正则化处理
后续工作:ETL、元数据管理和前端应用输入
8
应用数据模型
Application Data Model(ADM)应用数据模型
设计目标
满足最终用户对数据的访问(内容、形式要求) 满足应用系统对数据的存取(性能、存储要求)
3
数据模型的分类
数据仓库项目中数据模型可以分为以下几种:
Conceptual Data Model (CDM) 概念数据模型 Logical Data Model (LDM) 逻辑数据模型 Physical Data Model(PDM)物理数据模型 Application Data Model(ADM)应用数据模型
主要特征
面向Power User和业务人员 与具体的应用相关 多维分析时一般采用星型结构或者雪花状结构
的设计方法 是事实表和维度表的组合
9
逻辑数据模型与物理数据模型比较
包含内容 定位记录 使用名称
正则化
冗余数据 派生数据 开发人员
10
逻辑数据模型 实体、属性 主键 业务名称
物理数据模型 表、字段 主索引 物理名称(受限于DBMS)
Relationship
Nonkey Attribute
18
范式理论 Norma基本术语 (四)
关系 二元关系
父实体的一个实例严格关系子实体的0,1或多个实例的这种 关系是二元关系 基数 父、子实体实例的比例,如1:1,1:M
识别(型)关系
子实体实例唯一性的识别与父实体相关联,父实体的主键属 性成为子实体的主键属性
非识别(型)关系
子实体不需要与父实体的关系就可以确定实例唯一性,父实体 的主键属性成为子实体的非键属性
4
概念数据模型
Conceptual Data Model(CDM)概念数据模型
从全局上、宏观上介绍模型设计思路、范围和内容。 主要组成元素
主题 主题间关系 主题中的重要实体 实体间的相互关系
目标与用途
圈定建模的范围 划分建设主题 理清主要业务关系 构造逻辑数据模型的框架
3NF 建设
可能会按照性能、空间要求进行非正则化
无冗余数据 无派生数据 业务人员与建模人员
含冗余数据 包含派生数据 物理数据库设计人员
逻辑数据模型在数据仓库中的定位
采集
存储 和管理
IT 用户
源数据
业务系统 业务系统
业务数据 外部数据
数据导入 析取 清洗 条件 剔除 家庭关系 加载
企业 数据仓库
关系数据库管理系统
数据模型的基本概念 及建模方法论
崔大强 技术经理
NCR(中国)有限公司数据仓库事业部
内容安排
什么是数据模型 数据模型相关术语 数据模型方法论 建模注意事项
2
什么是数据模型?
以数学的方式对现实事物的一种抽象表达,…
特征: 内容:描述了数据、及其之间的关系 形式:反映了数据的组织与管理形式 用途: (数据仓库)系统建设中的数据信息的蓝图 (数据仓库)系统建设的核心 业务人员与IT人员沟通的语言和工具
从属数据集市
回答 业务问题
11
知识发现 数据挖掘 信息存取
工具
业务人员
聚集 统计 人工智能 神经网络
对象语言
多维 可视化 EIS/DSS电子表 开发




应 用
模 型




内容安排
什么是数据模型 数据模型相关术语 数据模型方法论 建模注意事项
12
逻辑数据模型基本术语 (一)
模型分类 概念数据模型 逻辑数据模型 物理数据模型 应用数据模型
相关文档
最新文档