反比例函数测试拔高版
反比例函数拔高试题精编一

反比例函数拔高试题精编一一.选择题1.若点(﹣6,y1),(2,y2),(3,y3)都是反比例函数的图象上的点,则下列各式中正确的是()A.y1<y3<y2B.y2<y3<y1C.y3<y2<y1D.y1<y2<y32.如图,正方形ABCD的边长为5,点A的坐标为(﹣4,0),点B在y轴上,若反比例函数y=(k ≠0)的图象过点C,则该反比例函数的表达式为()A.y=B.y=C.y=D.y=3.如图所示,已知菱形OABC,点C在x轴上,直线y=x经过点A,菱形OABC的面积是4,若反比例函数的图象经过点B,则此反比例函数表达式为()A.B.C.D.4.如图,点A是反比例函数在第二象限内图象上一点,点B是反比例函数在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,则△AOB的面积是()A.2B.2.5C.3D.3.55.如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,P A∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=2,则S△ABP=8A.①③B.②③C.②④D.③④6.如图,平行四边形ABOC中,对角线交于点E,双曲线y=经过C、E两点,若平行四边形ABOC的面积为10,则k的值是()A.﹣B.﹣C.﹣4D.﹣57.如图所示,已知:(x>0)图象上一点P,P A⊥x轴于点A(a,0),点B坐标为0,b)(b>0).动点M在y轴上,且在B点上方,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连接AQ,取AQ的中点为C.若四边形BQNC是菱形,面积为2,此时P点的坐标为()A.(3,2)B.(,3)C.()D.(,)二.填空题1.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(,5),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是.2.已知双曲线y=与直线y=x交于A、B两点(点A在点B的左侧).如图,点P是第一象限内双曲线上一动点,BC⊥AP于C,交x轴于F,P A交y轴于E,则的值是.3.如图所示,P1(x1,y1)、P2(x2,y2),…P n(x n,y n)在函数y=(x>0)的图象上,△OP1A1,△P2A1A2,△P3A2A3…△P n A n﹣1A n…都是等腰直角三角形,斜边OA1,A1A2…A n﹣1A n,都在x轴上,则y1+y2+…y n=.4.如图,点A在双曲线y=的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为,则k的值为.5.如图所示,Rt△ABC在第一象限,∠BAC=90°,AB=AC=2,点A在直线y=x上,其中点A的横坐标为1,且AB∥x轴,AC∥y轴,若双曲线(k≠0)与△ABC有交点,则k的取值范围是.6.如图,在平面直角坐标系中,C,A分别为x轴、y轴正半轴上的点,以OA,OC为边,在第一象限内作矩形OABC,且S矩形OABC=4,将矩形OABC翻折,使点B与原点重合,折痕为MN,点C的对应点C′落在第四象限,过M点的反比例函数y=(k≠0),其图象恰好过MN的中点,则点M的坐标为.7.如图反比例函数y=的图象与直线y=﹣x+m(m>0)交于A,B两点(点A在点B左侧),过点A 作x轴的垂线,垂足为点C,连接AO,BO,图中阴影部分的面积为6,则m的值为.8.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=(k>0,x>0)的图象经过AE上的两点A,F,且AF =EF,△ABE的面积为18,则k的值为.9.如图,在平面直角坐标系中,双曲线y=(k1>0)与直线y=k2x(k2≠0)交于A、B两点,点H 是双曲线第一象限上的动点(在点A左侧),直线AH、BH分别与y轴交于P、Q两点,若HA=a•HP,HB=b•HQ,则a﹣b的值为.10.如图,函数y=x与y=(k>0)的图象相交于A,B两点,P是反比例函数图象上任一点(不与A,B重合),连接P A,PB.对于△ABP,有如下性质:|∠PBA﹣∠P AB|恒为定值且等于90°.根据上述性质完成:若在图中,tan∠P AB=,△P AB的面积S△P AB=12,则k=.11.如图,反比例函数y=﹣的图象与直线y=x+b(b>0)交于A,B两点(点A在点B右侧),过点A作x轴的垂线,垂足为点C,连接AO,BO,图中阴影部分的面积为12,则b的值为.12.如图,在平面直角坐标系xOy中,点A,B在反比例函数y=的图象上(点A在第一象限),且线段AB经过点O,将线段AB绕点A逆时针旋转60°得到线段AC,线段AC交x轴于点D,若=,则点C的坐标是.13.如图,函数y=(k>0)在第一象限内的图象绕坐标原点O顺时针旋转60°后,和过点A(2,2),B(1,﹣)的直线相交于点M、N,若△OMN的面积是2,则k的值为.14.在直角坐标系中,已知A(0,4)、B(2,4),C为x轴正半轴上一点,且OB平分∠ABC,过B的反比例函数y=交线段BC于点D,E为OC的中点,BE与OD交于点F,若记△BDF的面积为S1,△OEF的面积为S2,则=.15.如图,矩形OABC在直角坐标系中,延长AB至点E使得BE=BC,连接CE,过A作AD∥CE交CB 延长线于点D,直线DE分别交x轴、y轴于F,G点,若EG:DF=1:4,且△BCE与△BAD面积之和为,则过点B的双曲线y=中k的值为.16.如图,在平面直角坐标系xOy中,点A的坐标为(4,0),点C在函数(x>0)的图象上,若点A绕点C顺时针旋转120°,所得对应点B刚好落在y轴的正半轴上,则△ABC的面积为.17.如图,点P为双曲线y=﹣(x<0)上一动点,连接OP并延长到点A,使P A=PO,过点A作x 轴的垂线,垂足为B,交双曲线于点C.当AC=AP时,连接PC,将△APC沿直线PC进行翻折,则翻折后的△A′PC与四边形BOPC的重叠部分(图中阴影部分)的面积是.18.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+8于A,B两点,若反比例函数y =(x>0)的图象与△ABC有公共点,则k的取值范围是.三.解答题1.如图,已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的点A(1,6)和点B(6,m),与x轴交于点C.(1)分别求出这两个函数的表达式;(2)不等式k1x+b≥的解集是;(3)点D在y轴上,在反比例函数的图象上是否存在一点P,使以A、C、D、P为顶点的四边形是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(n,)、B(2,)两点.(1)求反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)直接写出不等式kx+b<的解集.3.如图,反比例函数y=(x>0)的图象与直线OP相交于点A(1,),点C为反比例函数图象上一点,且AC=2OA,分别过点A、C作x轴和y轴的平行线,四线相交于点B、D,直线AB,CD分别交x轴于点E,F,连接OD交AC于点G.(1)求k的值;(2)证明:点B在直线OD上;(3)求∠DOF的度数.4.已知一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S△OAB=.(1)求反比例函数与一次函数的表达式;(2)直接写出不等式>kx+b的解集;(3)若点P在y轴上,Q在反比例函数y=(x>0)的图象上,且四边形ABPQ恰好是平行四边形,直接写出此时点P的坐标.5.矩形AOBC中,OB=4,OA=3.分别以OB,OA所在直线为x轴,y轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=(k>0)的图象与边AC交于点E.(1)当点F运动到边BC的中点时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)如图2,将△CEF沿EF折叠,点C恰好落在边OB上的点G处,求此时反比例函数的解析式.。
反比例函数考试题(含答案)

反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。
解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。
2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。
解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。
反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。
同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。
将其化简可得反比例函数的图像方程为 $xy=6$。
因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。
3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。
解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。
由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。
点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。
点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。
(完整版)反比例函数练习题含答案

1 测试1 反比例函数的概念一、填空题1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值范围是______.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别..写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数.函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数;函数; 当S =18时,a 与h 的关系式为____________,是____________函数.函数.(4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x ky =、②xk y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、⑥31-=x y 、⑦24x y =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m xy (m 是常数)是反比例函数,则m =____________,解析式为____________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________. 二、选择题 6.已知函数xk y =,当x =1时,y =-3,那么这个函数的解析式是(). (A)xy 3=(B)xy 3-=(C)xy 31=(D)xy 31-=7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于(). (A)4 (B)-4 (C)3 (D)-3 三、解答题8.已知y 与x 成反比例,当x =2时,y =3. (1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.的值.9.若函数522)(--=k xk y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数.函数. 二、选择题11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为(). (A)y =100x (B)x y 100= (C)xy 100100-= (D)y =100-x12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是().三、解答题13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系;函数关系;(2)如果S =3cm 2时,h =16cm ,求:,求:①h (cm)与S (cm 2)之间的函数关系式;②S =4cm 2时h 的值以及h =4cm 时S 的值.的值.14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.的函数关系式.15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x=1时,y 的值都是1.求y 关于x 的函数关系式.的函数关系式.测试2 反比例函数的图象和性质(一)一、填空题1.反比例函数xk y =(k 为常数,k ≠0)的图象是______;当k >0时,双曲线的两支分别位于______象限,在每个象限内y 值随x 值的增大而______;当k <0时,双曲线的两支分别位于______象限,在每个象限内y值随x 值的增大而______.2.如果函数y =2x k +1的图象是双曲线,那么k =______.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而______. 4.如果点(1,-2)在双曲线x ky =上,那么该双曲线在第______象限.象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限内,那么满足条件的正整数k 的值是____________. 二、选择题 6.反比例函数xy 1-=的图象大致是图中的().7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)x y 1= (C)x y 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ). (A)xm y =(B)xm y 1+=(C)xm y 12+=(D)xm y -=9.反比例函数y =221)(2--m xm ,当x >0时,y 随x 的增大而增大,则m 的值是(). (A)±1(B)小于21的实数的实数 (C)-1(D)1 10.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数x ky =(k >0)的图象上的两点,若x 1<0<x 2,则有(). (A)y 1<0<y 2(B)y 2<0<y 1(C)y 1<y 2<0(D)y 2<y1<0三、解答题11.作出反比例函数xy 12=的图象,并根据图象解答下列问题:的图象,并根据图象解答下列问题:(1)当x =4时,求y 的值;(2)当y =-2时,求x 的值;(3)当y >2时,求x 的范围.的范围.一、填空题12.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第______象限.象限.13.已知一次函数y =kx +b 与反比例函数xk b y -=3的图象交于点(-1,-1),则此一次函数的解析式为____________,反比例函数的解析式为____________. 二、选择题14.若反比例函数x ky =,当x >0时,y 随x 的增大而增大,则k 的取值范围是(). (A)k <0(B)k >0(C)k ≤0(D)k ≥015.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则(). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3 (C)y 3<y 2<y 1(D)y 1<y 3<y 216.对于函数xy 2-=,下列结论中,错误..的是( ). (A)当x >0时,y 随x 的增大而增大的增大而增大 (B)当x <0时,y 随x 的增大而减小的增大而减小(C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限内,y 随x 的增大而增大的增大而增大17.一次函数y =kx +b 与反比例函数x ky =的图象如图所示,则下列说法正确的是( ). (A)它们的函数值y 随着x 的增大而增大(B)它们的函数值y 随着x 的增大而减小的增大而减小 (C)k <0 (D)它们的自变量x 的取值为全体实数的取值为全体实数 三、解答题18.作出反比例函数xy 4-=的图象,结合图象回答:的图象,结合图象回答:(1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值范围;(3)当1≤y <4时,x 的取值范围.的取值范围.19.已知一次函数y =kx +b 的图象与反比例函数x my =的图象交于A (-2,1),B (1,n )两点.两点.(1)求反比例函数的解析式和B 点的坐标;点的坐标;(2)在同一直角坐标系中画出这两个函数的图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值? (3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式.个单位长度后所得函数图象的解析式.测试3 反比例函数的图象和性质(二)一、填空题 1.若反比例函数x ky =与一次函数y =3x +b 都经过点(1,4),则kb =______. 2.反比例函数xy 6-=的图象一定经过点(-2,______). 3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是______. 4.函数y 1=x (x ≥0),x y 42=(x >0)的图象如图所示,则结论:的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2);②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小.的增大而减小. 其中正确结论的序号是____________. 二、选择题5.当k <0时,反比例函数x ky =和一次函数y =kx +2的图象大致是().(A) (B)(C) (D)6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,B C ∥x 轴,A C ∥y 轴,△ABC 的面积记为S ,则( ). (A)S =2 (B)S =4(C)2<S <4 (D)S >47.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为(). (A)2 (B)2-(C)2±(D)±2三、解答题8.如图,反比例函数xk y =的图象与直线y =x -2交于点A ,且A 点纵坐标为1,求该反比例函数的解析式.数的解析式.一、填空题9.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2,1),则m =______,n =______. 10.直线y =2x 与双曲线xy 8=有一交点(2,4),则它们的另一交点为______. 11.点A (2,1)在反比例函数xky =的图象上,当1<x <4时,y 的取值范围是__________. 二、选择题12.已知y =(a -1)x a 是反比例函数,则它的图象在(). (A)第一、三象限第一、三象限 (B)第二、四象限第二、四象限 (C)第一、二象限第一、二象限 (D)第三、四象限第三、四象限13.在反比例函xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值可以是( ). (A)-1(B)0(C)1(D)214.如图,点P 在反比例函数xy 1=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P ′.则在第一象限内,经过点P ′的反比例函数图象的解析式是()(A))0(5>-=x x y (B))0(5>=x x y (C))0(5>-=x x y (D))0(6>=x x y15.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x轴于D ,则四边形ACBD 的面积为(). (A)S >2 (B)1<S <2 (C)1 (D)2三、解答题16.如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xk y =2(k为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标;的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值范围.的取值范围.17.已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC=3,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式.两点的直线的解析式.18.已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式;函数的解析式;(3)在(2)中的一次函数图象与x 轴、y 轴分别交于C 、D ,求四边形OABC 的面积.的面积.测试4 反比例函数的图象和性质(三)一、填空题1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B点坐标是______. 2.观察函数x y 2-=的图象,当x =2时,y =______;当x <2时,y 的取值范围是______;当y ≥-1时,x 的取值范围是______. 3.如果双曲线x ky =经过点)2,2(-,那么直线y =(k -1)x 一定经过点(2,______).4.在同一坐标系中,正比例函数y =-3x 与反比例函数)0(>=k xk y 的图象有______个交点.5.如果点(-t ,-2t )在双曲线xky =上,那么k ______0,双曲线在第______象限.象限. 二、选择题6.如图,点B 、P 在函数)0(4>=x xy 的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是().(A)长方形BCFG 和长方形GAEP 的面积相等(B)点B 的坐标为(4,4)(C)x y 4=的图象关于过O 、B 的直线对称的直线对称 (D)长方形FOEP 和正方形COAB 面积相等面积相等7.反比例函数xky =在第一象限的图象如图所示,则k 的值可能是(). (A)1(B)2(C)3(D)4三、解答题8.已知点A (m ,2)、B (2,n )都在反比例函数x m y 3+=的图象上.的图象上.(1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.′的坐标.9.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l .直线l 与反比例函数xk y =的图象的一个交点为A (a ,2),求k 的值.的值.一、填空题10.如图,P 是反比例函数图象上第二象限内的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______. 11.如图,在直角坐标系中,直线y =6-x 与函数)0(5>=x xy 的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是______. 12.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为____________.13.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与x ky 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”)二、选择题14.若m <-1,则函数①)0(>=x xm y ,②y =-mx +1,③y =mx ,④y =(m +1)x 中,y 随x增大而增大的是(). (A)①④①④ (B)② (C)①②①②(D)③④③④15.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是().三、解答题16.如图,A 、B 两点在函数)0(>=xxm y 的图象上.的图象上. (1)求m 的值及直线AB 的解析式;的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.所含格点的个数.17.如图,等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上,A 点在x 轴正半轴上,求A 点坐标.标.18.如图,如图,函数函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式;的函数关系式; (2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积.的面积.19.如图,一次函数y =kx +b 的图象与反比例函数xm y =的图象交于A (-3,1)、B (2,n )两点,直线AB 分别交x轴、y 轴于D 、C 两点.两点.(1)求上述反比例函数和一次函数的解析式;求上述反比例函数和一次函数的解析式; (2)求CDAD的值.的值.测试5 实际问题与反比例函数(一)一、填空题1.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值范围是______. 2.若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系是______ (不考虑x 的取值范围).3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是().4.下列各问题中两个变量之间的关系,不是反比例函数的是(). (A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系之间的关系(B)长方形的面积为24,它的长y 与宽x 之间的关系之间的关系(C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系之间的关系5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:汽缸壁所产生的压强,如下表:体积x /ml100 80 60 40 20 压强y /kPa 60 75 100 150 300 则可以反映y 与x 之间的关系的式子是( ). (A)y =3000x(B)y =6000x(C)xy 3000=(D)xy 6000=6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为v (km/h),到达时所用的时间为t (h),那么t 是v 的______函数,v 关于t 的函数关系式为______.7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________. 二、选择题8.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是().三、解答题9.一个长方体的体积是100cm 3,它的长是y (cm),宽是5cm ,高是x (cm). (1)写出长y (cm)关于高x (cm)的函数关系式,以及自变量x 的取值范围;的取值范围; (2)画出(1)中函数的图象;(3)当高是3cm 时,求长.时,求长.测试6 实际问题与反比例函数(二)课堂学习检测一、填空题1.一定质量的氧气,密度ρ是体积V 的反比例函数,当V =8m 3时,ρ=1.5kg/m 3,则ρ与V 的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R =20Ω时,电流强度I =0.25A .则.则 (1)电压U =______V ;(2)I 与R 的函数关系式为______; (3)当R =12.5Ω时的电流强度I =______A ; (4)当I =0.5A 时,电阻R =______Ω.3.如图所示的是一蓄水池每小时的排水量V /m 3·h -1与排完水池中的水所用的时间t (h)之间的函数图象.之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m 3; (2)此函数的解析式为____________;(3)若要在6h 内排完水池中的水,那么每小时的排水量至少应该是______m 3;(4)如果每小时的排水量是5m 3,那么水池中的水需要______h 排完.排完.二、解答题4.一定质量的二氧化碳,当它的体积V =4m 3时,它的密度p =2.25kg/m 3.(1)求V 与ρ的函数关系式;的函数关系式;(2)求当V =6m 3时,二氧化碳的密度;时,二氧化碳的密度;(3)结合函数图象回答:当V ≤6m 3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少?5.下列各选项中,两个变量之间是反比例函数关系的有(). (1)小张用10元钱去买铅笔,购买的铅笔数量y (支)与铅笔单价x (元/支)之间的关系(2)一个长方体的体积为50cm 3,宽为2cm ,它的长y (cm)与高x (cm)之间的关系之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y (亩/人)与该村人口数量n (人)之间的关系之间的关系(4)一个圆柱体,体积为100cm 3,它的高h (cm)与底面半径R (cm)之间的关系之间的关系(A)1个 (B)2个 (C)3个 (D)4个6.一个气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.其图象如图所示. (1)写出这一函数的解析式;写出这一函数的解析式;(2)当气体体积为1m 3时,气压是多少?(3)当气球内的气压大于140kPa 时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7.一个闭合电路中,当电压为6V 时,回答下列问题:时,回答下列问题:(1)写出电路中的电流强度I (A)与电阻R (Ω)之间的函数关系式;之间的函数关系式; (2)画出该函数的图象;画出该函数的图象;(3)如果一个用电器的电阻为5Ω,其最大允许通过的电流强度为1A ,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.试通过计算说明理由.三、解答题8.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例;药物释放完毕后,y 与x 成反比例,如图所示.根据图中提供的信息,解答下列问题:解答下列问题:(1)写出从药物释放开始,y 与x 之间的两个函数关系式及相应的自变量取值范围;之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:天试销,试销情况如下:第1天 第2天 第3天 第4天 第5天 第6天 第7天 第8天售价售价x (元/千克) 400250 240 200 150 125 120 销售量y /千克千克 304048608096100观察表中数据,发现可以用反比例函数表示这种海产品每天的销售量y (千克)与销售价格x (元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y (千克)与销售价格x (元/千克)之间都满足这一关系.之间都满足这一关系. (1)写出这个反比例函数的解析式,并补全表格;写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?参考答案测试1 反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数.的一切实数. 2.(1)x y 8000=,反比例;(2)x y 1000=,反比例;(3)s =5h ,正比例,h a 36=,反比例;,反比例;(4)x wy =,反比例.,反比例.3.②、③和⑧..②、③和⑧.4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A . 8.(1)xy 6=;(2)x =-4. 9.-2,⋅-=xy 4 10.反比例..反比例.11.B . 12.D . 13.(1)反比例;反比例;(2)①Sh 48=; ②h =12(cm), S =12(cm 2). 14.⋅-=325x y 15..23x x y -=测试2 反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大..双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大..增大.4.二、四..二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A . 11.列表:.列表:x … -6 -5 -4 -3 -2 -1 1 2 3 4 56 … y … -2-2.4-3-4-6-12126432.42…由图知,(1)y =3;(2)x =-6;(3)0<x <6. 12.二、四象限..二、四象限.13.y =2x +1,⋅=x y 114.A . 15.D 16.B 17.C 18.列表:.列表:x … -4 -3 -2 -11 2 3 4 … y…134 2 4-4-2-34 -1 …(1)y =-2;(2)-4<y ≤-1;(3)-4≤x <-1. 19.(1)xy 2-=,B (1,-2); (2)图略x <-2或0<x <1时;时; (3)y =-x . 测试3 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④..①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4).11..221<<y . 12.B .13.D.14.D .15.D . 16.(1)x y 3=,y =x +2;B (-3,-1);(2)-3≤x <0或x ≥1.17.(1))0(3>=x x y ;(2).332+-=x y18.(1)x y x y 9,==;(2)23=m ; ;29-=x y(3)S 四边形OABC =1081. 测试4 反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224-- 4.0. 5.>;一、三..>;一、三.6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 3 11.5,12. 12.2. 13.<..<.14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个.个.17.A(4,0). 18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ; (2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y xy ;(2).2=CDAD测试5 实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=xy 90 3.A . 4.D .5.D . 6.反比例;⋅=t V 3007.y =30πR +πR 2(R >0). 8.A . 9.(1))0(20>=x x y ; (2)图象略;图象略; (3)长cm.320. 测试6 实际问题与反比例函数(二)1.).0(12>=V v ρ 2.(1)5; (2)R I 5=; (3)0.4;(4)10. 3.(1)48; (2))0(48>=t tV ; (3)8;(4)9.6. 4.(1))0(9>=ρρV ; (2)ρ=1.5(kg/m 3);(3)ρ有最小值1.5(kg/m 3). 5.C . 6.(1)Vp 96=; (2)96 kPa ;(3)体积不小于3m 3524. 7.(1))0(6>=R R I ; (2)图象略;(3)I =1.2A >1A ,电流强度超过最大限度,会被烧.,电流强度超过最大限度,会被烧.8.(1)x y 43=,0≤x ≤12;y =x 108(x >12);(2)4小时.小时.9.(1)xy 12000=;x 2=300;y 4=50;(2)20天第十七章 反比例函数全章测试一、填空题1.反比例函数x m y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数x k y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值范围是____ __;若反比例函数xky =与一次函数y =kx +2的图象有交点,则k 的取值范围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:.一个函数具有下列性质: ①它的图象经过点(-1,1); ②它的图象在第二、四象限内;②它的图象在第二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.的增大而增大.则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数x ky =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______. 二、选择题7.下列函数中,是反比例函数的是( ). (A)32x y =(B 32xy =(C)xy 32=(D)x y -=328.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线xy 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会().(A)逐渐增大逐渐增大(B)不变不变(C)逐渐减小逐渐减小(D)先增大后减小先增大后减小9.如图,直线y =mx 与双曲线xk y =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM =2,则k 的值是().(A)2(B)m -2(C)m(D)410.若反比例函数xky =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ). (A)c >a >b(B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和x ky 2=的图象大致是().12.当x <0时,函数y =(k -1)x 与x ky 32-=的y 都随x 的增大而增大,则k 满足(). (A)k >1(B)1<k <2 (C)k >2(D)k <1 13.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球内的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应().(A)不大于3m 3524 (B)不小于3m 3524 (C)不大于3m 3724(D)不小于3m 3724 14.一次函数y =kx +b 和反比例函数ax ky =的图象如图所示,则有().(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0 (D)k <0,b <0,a >015.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。
九年级下册人教版反比例函数专项拔高训练

反比例函数专项拔高训练1.下列函数表达式中,x是自变量,属于反比例函数的有(). ①y=−4x ; ②y=3x−1; ③y=x2; ④xy=2.A. 1个B. 2个C. 3个D. 4个2.下列各组的两个变量间满足反比例关系的是().A. 三角形面积一定时,它的一边长与该边上的高B. 等腰三角形的周长一定时,它的底边与腰长C. 正方形的面积与边长之间的关系D. 圆的面积与它的半径3.若y关于x的函数y=(m−2)x+n是正比例函数,则m、n应满足的条件是().A. m≠2且n=0B. m=2且n=0C. m≠2且n≠0D. m=2且n≠04.在同一直角坐标系中,正比例函数y=(m−1)x与反比例函数y=4mx的图像大体位置不可能是().A. B. C. D.5.现有一根水管向某个容器中匀速地注入水,最初容器中是空的,设注水的时间为t,容器中盛水的高度为h,且h与t之间的函数关系如图所示,则容器的大致形状是()A. B. C. D.(k≠0)图像在同一坐标系内,且图像上点的纵、横坐标异号,则图像为().6.函数y=kx与y=kxA. B. C. D.7.当x>0时,y与x的函数解析式为y=2x,当x≤0时,y与x的函数解析式为y=−2x,则在同一直角坐标系中的图像大致为().A. B. C. D.8.函数y=1的定义域是().x+1A. x≥−1B. x≠−1C. x<−1D. x>−1(x>0)的图像上,点B在函数y=9.如图,在平面直角坐标系中,点A在函数y=3xk(x<0)的图象上,AB⊥y轴于点C.若AC=3BC,则k的值为().xA. −1B. 1C. −2D. 210.如图,直线y1=x+b与x轴、y轴分别交于A,B两点,与反比例函(x<0)交于C,D两点,点C的横坐标为−1,过点C作数y2=−5xCE⊥y轴于点E,过点D作DF⊥x轴于点F.下列说法:①b=6;②BC=AD;③五边形CDFOE的面积为35;④当x<−1时,y1>y2,其中正确的有()A. 1个B. 2个C. 3个D. 4个11.若y与−3x成反比例,x与4z成正比例,则y是z的().A. 正比例函数B. 反比例函数C. 既不是正比例也不是反比例函数D. 不能确定12.对于反比例函数y=2x,下列说法中,正确的是()C. yA. 图象经过点(−2,1)B. 图象位于第二、第四象限随x的增大而减小D. 当x>1时,0<y<213.直线y=−12x−1与反比例函数y=kx(x<0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为()A. −12B. −8C. −6D. −414.在平面直角坐标系中,反比例函数y=kx的图象上有三点P(2,2),Q(−4,m),M(a,b),若a<0且PM>PQ,则b的取值范围为()A. b<4B. b<−1或−4<b<0C. −1<b<0D. b<−4或−1<b<015.如图,点A、B在反比例函数y=kx(k>0,x>0)的图像上,过点A、B作x轴的垂线,垂足分别为M,N,延长线段AB交x轴于点C,若OM=MN=NC,SΔBNC=2,则k的值为()A. 4B. 6C. 8D. 1216.如图,已知第一象限的点A在反比例函数y=√3x上,过点A作AB⊥AO交x轴于点B,∠AOB=30°,将△AOB绕点O逆时针旋转120°,点B的对应点B恰好落在反比例函数y=kx上,则k的值为()A. −4√3B. −4√33C. −2√3 D. −2√3317.如图,点A、B在反比例函数y=k+1的图象上,且点A,B的横坐标分别x为a,2a(a<0),若S△AOB=3,则k的值为()A. 5B. −5C. 4D. −418.如图,已知在平面直角坐标系xOy中,O是坐标原点,△OAC和△BAD都是等腰在第一象限的图象经过点B,直角三角形,∠ACO=∠ADB=90°,反比例函数y=16x则△OAC与△BAD的面积之差为()A. 8B. 16C. 32D. 6419.在函数y=|k|+1的图像上有三点A1(x1,y1)、A2(x2,y2)、A3(x3,y3),且x1<x2<0<x3,则用“<”连接xy1、y2、y3为.20.如图,已知一次函数y=x+1的图象与反比例函数y=k的图象在第一象限相交于点xA,与x轴相交于点轴于点B,▵AOB的面积为1,则AC的长为.21.如图,点A、B是正比例函数y=k1x(k1<0)与反比例函数y=−2图象x的交点,以线段AB为边长作等边三角形ABC,此时点C正好落在反比例(x>0)图象上,则k2的值为______函数y=k2x(k<0)图象上的两点,延长线段AB交y轴于点C,且点B为线段22.如图,点A、B是反比例函数y=kxAC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k=________ .23.两个反比例函数y=kx (k>1)和y=1x在第一象限内的图象如图所示,点P在y=kx的图象上,PC⊥x轴于点C,交y=1x 的图象于点A,PD⊥y轴于点D,交y=1x的图象于点B,BE⊥x轴于点E,当点P在y=kx图象上运动时,以下结论:①BA与DC始终平行;②PA与PB始终相等;③四边形PAOB的面积不会发生变化:④△OBA的面积等于四边形ACEB的面积.其中一定正确的是______.(填序号)24.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=kx (x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=12,则BN的长为______.25.如图,反比例函数y=kx(x>0,k≠0)的图象经过点A(1,6),过点A作AC⊥x轴于点C,点B在直线AC 右侧的函数图象上,过点B作BD⊥y轴于点D,交AC于点F,连接BC、AD、CD.(1)k=______ ;(2)四边形ABCD能否为菱形?若可以,求点B的坐标,若不可以,说明理由;(3)连接AB并延长,交x轴于点E,试判断四边形BDCE的形状,并证明你的结论.26.若函数y=(k−2)x k2−5k+5是y关于x的反比例函数.(1)求k的值;(2)此函数图像位于第几象限?在每个象限内y随x的增大而增大,还是减小?(3)当−3≤x≤−1时,求函数值的取值范围.227.如图,P是反比例函数的图像上的一点,且S△PQO=10.(1)求反比例函数的解析式;(2)若P(p,5)在这图像上,求p的值,并说明P点到x轴的距离;(3)若M(√5−1,m)在这图像上,求M点坐标.(x<0)的图象过点A(−1,a),28.如图,∠AOB=90∘,反比例函数y=−2x(k>0,x>0)的图象过点B,且AB//x轴.反比例函数y=kx(1)求a和k的值;(2)过点B作MN//OA,交x轴于点M,交y轴于点N,交双曲线y=kx 于点C,求△OBC的面积.29.如图,一次函数y1=k1x+4与反比例函数y2=k2的图象交于点A(2,m)和B(−6,−2),与y轴交于点C.x(1)k1=__,k2=___;(2)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=4:1时,求点P的坐标.(3)点M是y轴上的一个动点,当△MBA为直角三角形时,求出点M的坐标.。
九年级数学下册第二十六章反比例函数26.1反比例函数拔高习题3新版新人教版

反比例函数的图象和性质一、选择题(每小题4分,共12分)1.(2013·绍兴中考)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是( )2.下面的表格列出了一个实验的统计数据,表示皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是( )d 50 80 100 150b 25 40 50 75A.b=d2B.b=2dC.b=D.b=d+253.(2013·营口中考)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C 处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到( )A.点C处B.点D处C.点B处D.点A处二、填空题(每小题4分,共12分)4.(2013·孝感中考)如图,一个装有进水管和出水管的容器,从某时刻开始的4min内只进水不出水,在随后的8min内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:mi n)之间的部分关系如图所示.那么,从关闭进水管起min该容器内的水恰好放完.5.声音在空气中传播的速度y(m/s)(简称音速)与气温x(℃)之间的关系如下:]气温(x/℃)0 5 10 15 20音速y(m/s) 331 334 337 340 343从表中可知音速y随温度x的升高而加快.运动会当天的气温为20℃,某人看到发令枪的烟0.2s后,听到了枪声,则由此可知,这个人距发令地点m.6.如图是某工程队在“村村通”工程中,修筑的公路长度y(m)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是m.三、解答题(共26分)7.(12分)某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这两种卡租书,租书金额与租书时间之间的关系如图所示.(1)从图中看出,办理会员卡是否需要交费?(2)使用租书卡租书,每天收费多少元?(3)使用会员卡租书,每天收费多少元?(4)若租书卡和会员卡的使用期限均为1年,则在这一年中如何选取这两种租书方式比较划算?【拓展延伸】8.(14分)某衡器厂生产的RG—120型体重秤,最大称重120kg,已知指针顺时针旋转角x(度)与体重y(kg)有如下关系:x(度) 0 72 144 216 … y(kg)255075…(1)根据表格中的数据在平面直角坐标系中描出相应的点,顺次连接各点后,你发现这些点有什么规律?猜想这个图象的函数解析式.(2)验证这些点的坐标是否满足函数解析式(写出自变量x 的取值范围).(3)当指针旋转到158.4度的位置上时,显示盘上的体重读数模糊不清,请用函数解析式求出此时的体重.参考答案1. C.2. C.3.B.4. 85. 68.66. 5047. (1)办理会员卡需要交费20元. (2)租书卡每天租书花费:50÷100=0.5(元). 故使用租书卡租书,每天收费0.5元. (3)设使用会员卡每天租书花费x 元, 则20+100x=50, 解得x=0.3.故使用会员卡租书,每天收费0.3元.(4)一年内的租书时间在100天以内时,使用租书卡划算;当超过100天时,使用会员卡划算;当恰好为100天时,两种方式费用一样.8.【解析】(1)如图,描点、连线,发现四个点在经过原点的一条直线上.猜想y=2572x.(2)当x=0时,y=0; 当x=72时,y=25; 当x=144时,y=50; 当x=216时,y=75.所以这些点的坐标满足此函数解析式. 当y=120时,x=345.6.所以自变量x 的取值范围是0≤x≤345.6. (3)当x=158.4时,y=2572 x=2572 ×158.4=55.此时的体重是55kg.。
完整版)反比例函数练习题含答案

完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。
自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。
1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。
2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。
3) 设三角形的底边、对应高、面积分别为a、h、S。
当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。
4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。
3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。
4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。
5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。
二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。
(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。
)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。
九年级中考数学反比例函数培优拔高(含答案)
20200921手动选题组卷2副标题题号一总分得分一、解答题(本大题共23小题,共184.0分)(x>0)的图1.如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=kx.象经过点C,交AB于点D.已知AB=4,BC=52(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.2.月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.(k为常数)的图象过点(2,2).3.已知反比例函数y=5−kx(Ⅰ)求这个反比例函数的解析式;(Ⅱ)当−3<x<−1时,求反比例函数y的取值范围;(Ⅲ)若点A(x1,y1),B(x2,y2)是这个反比例函数图象上的两点,且x1<0<x2,试比较y1,y2的大小,直接写结果.4.环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?5.如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.(1)求该反比例函数的解析式;(2)若△ABC的面积为6,求直线AB的表达式.6.如图,在平面直角坐标系中,O为坐标原点,△ABO的(x>边AB垂直与x轴,垂足为点B,反比例函数y=kx0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=k的解析式;x(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.7.如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直x轴,垂足为Q,的图象上,分别作PF⊥x轴已知∠ACB=60°,点A,C,P均在反比例函数y=4√3x于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.(1)求点B的坐标;(2)求四边形AOPE的面积.8.家用电灭蚊器的发热部分使用了PTC发热材料,它的电阻R(kΩ)随温度t(℃)(在一定范围内)变化的大致图象如图所示.通电后,发热材料的温度在由室温10℃上升到30℃的过程中,电阻与温度成反例关系,且在温度达到30℃时,电阻下降到最小kΩ.值;随后电阻承温度升高而增加,温度每上升1℃,电阻增加415(1)求R和t之间的关系式;(2)家用电灭蚊器在使用过程中,温度在什么范围内时,发热材料的电阻不超过4kΩ.9.如图,一次函数y=kx+b与反比例函数y=m(x>0)的图象交于A(a,6),B(3,a+1)两点x(1)求反比例函数的解析式;<0(2)根据图象直接写出满足不等式kx+b−mx的x的取值范围;(3)求△AOB的面积.10.已知O为坐标原点,点C在x轴的正半轴上,四边形OABC是平行四边形,且∠AOC=45°,设OA=√2a,反比例函数y=k在第一象限内的图象经过点A,交BC于点D,xD是BC边的中点.(1)如图1,当a=4时,求k的值及边OC的长;(2)如图2,连结AD、OD,若△OAD的面积是27,求a的值及点B的坐标.11.反比例函数y=k在第一象限的图象如图所示,过点xA(1,0)作x轴的垂线,交反比例函数y=k的图象于点xM,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的图的正方形ABCD有一个顶点在反比例函数y=kx象上,求t的值.12.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2−9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(k≠0)的图象经过点H,则k=______;(2)若反比例函数y=kx(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.13.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=6x (x>0)和y=kx(x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若ΔPOQ的面积为8,求k的值.14.如图1,已知点A(a,0),B(0,b),且a、b满足√a+1+(a+b+3)2=0,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=kx经过C、D两点.(1)求k的值;(2)点P在双曲线y=kx上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,MNHT的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.15.如图,在四边形OABC中,BC//AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且ADBD =12,双曲线y=kx(k>0)经过点D,交BC于点E.(1)求双曲线的解析式;(2)求四边形ODBE的面积.16.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=k2(k2≠0)的图象交于点A(−1,2),B(m,−1).x(1)求这两个函数的表达式;(2)在x轴上是否存在点P(n,0)(n>0),使△ABP为等腰三角形?若存在,求n的值;若不存在,说明理由.17.某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格x(元/个)的函数关系如图所示.(1)当30≤x≤60时,求y与x的函数关系式;(2)求出该厂生产销售这种产品的纯利润W(万元)与销售价格x(元/个)的函数关系式;(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?18.方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.19.如图,在直角坐标系中矩形OABC的顶点O与坐标原点重合.点A、C分别在坐标轴上,反比例函数y=kx(k>0)的图象与AB、BC分别交于点E、F(E、F不与B点重合),连接OE,OF.(1)若B点的坐标为(4,2),且E为AB的中点.①求四边形BEOF的面积.②求证:F为BC的中点.(2)猜想AEBE 与CFBF的大小关系,并证明你的猜想.20.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=kx(k≠0)的图象在第二象限交于点C,CE⊥x轴,垂足为点E,sin∠ABO=√55,OB=2,OE=1.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF,如果S△BAF=4S△DFO,求点D的坐标.21.如图,在平面直角坐标系xOy中,点A(12,2),B(3,n),在反比例函数y=mx(m为常数)的图象上,连接AO并延长与图象的另一支有另一个交点为点C,过点A的直线l与x轴的交点为点D(1,0),过点C作CE//x轴交直线l于点E.(1)求m的值,并求直线l对应的函数解析式;(2)求点E的坐标;(3)过点B作射线BN//x轴,与AE的交于点M(补全图形),求证:tan∠ABN=tan∠CBN.22.初三某班同学小戴想根据学习函数的经验,通过研究一个未学过的函数的图象,从而探究其各方面性质.下表是函数y与自变量x的几组对应值:x…−10123456912…y…−40481297.2643…(1)在平面直角坐标系xOy中,每个小正方形的边长为一个单位长度,描出了以上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象.(2)请根据画出的函数图象,直接写出该函数的关系式y=______(请写出自变量的取值范围),并写出该函数的一条性质:______.x+b与该函数图象有3个交点时,求b的取值范围.(3)当直线y=−1223.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于的图象上.点C,点A(√3,1)在反比例函数y=kx(1)求k的值;(2)若将△BOA绕点B按逆时针方向旋转60°,得到△BDE,判断点E是否在该反比例函数的图象上,并说明理由.答案和解析1.【答案】解:(1)作CE ⊥AB ,垂足为E ,∵AC =BC ,AB =4, ∴AE =BE =2.在Rt △BCE 中,BC =52,BE =2, ∴CE =32,∵OA =4,∴C 点的坐标为(52,2), ∵点C 在y =kx 的图象上, ∴k =5;(2)设A 点的坐标为(m,0), ∵BD =BC =52,AB =4, ∴AD =32,∴D ,C 两点的坐标分别为:(m,32),(m −32,2). ∵点C ,D 都在y =kx 的图象上, ∴32m =2(m −32), ∴m =6,∴C 点的坐标为:(92,2), 作CF ⊥x 轴,垂足为F , ∴OF =92,CF =2, 在Rt △OFC 中, OC 2=OF 2+CF 2,∴OC =√972.【解析】(1)利用等腰三角形的性质得出AE ,BE 的长,再利用勾股定理得出OA 的长,得出C 点坐标即可得出答案;(2)首先表示出D ,C 点坐标进而利用反比例函数图象上的性质求出C 点坐标,再利用勾股定理得出CO 的长.此题主要考查了等腰三角形的性质以及勾股定理和反比例函数图象上的性质,正确得出C 点坐标是解题关键.2.【答案】解:(1)当4≤x ≤8时,设y =kx ,将A(4,40)代入得k =4×40=160,∴y 与x 之间的函数关系式为y =160x;当8<x ≤28时,设y =k′x +b ,将B(8,20),C(28,0)代入得, {8k′+b =2028k′+b =0,解得{k′=−1b =28, ∴y 与x 之间的函数关系式为y =−x +28,综上所述,y ={160x(4≤x ≤8)−x +28(8<x ≤28);(2)当4≤x ≤8时,s =(x −4)y −160=(x −4)⋅160x−160=−640x,∵当4≤x ≤8时,s 随着x 的增大而增大, ∴当x =8时,s max =−6408=−80;当8<x ≤28时,s =(x −4)y −160=(x −4)(−x +28)−160=−(x −16)2−16, ∴当x =16时,s max =−16; ∵−16>−80,∴当每件的销售价格定为16元时,第一年年利润的最大值为−16万元.(3)∵第一年的年利润为−16万元, ∴16万元应作为第二年的成本, 又∵x >8,∴第二年的年利润s =(x −4)(−x +28)−16=−x 2+32x −128, 令s =103,则103=−x 2+32x −128, 解得x 1=11,x 2=21,在平面直角坐标系中,画出s 与x 的函数示意图可得:观察示意图可知,当s≥103时,11≤x≤21,∴当11≤x≤21时,第二年的年利润s不低于103万元.【解析】(1)依据待定系数法,即可求出y(万件)与x(元/件)之间的函数关系式;(2)分两种情况进行讨论,当x=8时,s max=−80;当x=16时,s max=−16;根据−16>−80,可得当每件的销售价格定为16元时,第一年年利润的最大值为−16万元.(3)根据第二年的年利润s=(x−4)(−x+28)−16=−x2+32x−128,令s=103,可得方程103=−x2+32x−128,解得x1=11,x2=21,然后在平面直角坐标系中,画出s与x的函数图象,根据图象即可得出销售价格x(元/件)的取值范围.本题主要考查了反比例函数与二次函数的综合应用,在商品经营活动中,经常会遇到求最大利润,最大销量等问题,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义;解题时注意,依据函数图象可得函数关系式为分段函数,解决问题时需要运用分类思想以及数形结合思想进行求解.3.【答案】解:(Ⅰ)∵反比例函数过点(2,2)∴2=5−k∴k=1∴这个反比例函数的解析式为:y=4x;(Ⅱ)∵5−k=4>0∴y随x的增大而减小.当x=−3时,y=−43,当x=−1时,y=−4.∴y的取值范围为−4<y<−43;(Ⅲ)当x 1<0<x 2时,y 1<y 2.【解析】(Ⅰ)利用待定系数法把点(2,2)代入反比例函数y =5−k x中即可得到k 的值,也就得到了关系式;(Ⅱ)根据反比例函数的性质,分别求出y 的最大值和最小值,即可得到答案;(Ⅲ)根据反比例函数图象上的点的特征,此题中横纵坐标的积=4,再根据且x 1<0<x 2,可比较y 1,y 2的大小.此题主要考查了利用待定系数法求函数关系式,反比例函数的性质,以及反比例函数图象上的点的特征,同学们要掌握①凡是图象经过的点都满足关系式,②横纵坐标的积是一个定值.4.【答案】解:(1)分情况讨论:①当0≤x ≤3时,设线段AB 对应的函数表达式为y =kx +b ; 把A(0,10),B(3,4)代入得{b =103k +b =4,解得:{k =−2b =10,∴y =−2x +10; ②当x >3时,设y =mx , 把(3,4)代入得:m =3×4=12, ∴y =12x;综上所述:当0≤x ≤3时,y =−2x +10;当x >3时,y =12x;(2)能;理由如下: 令y =12x=1,则x =12<15,故能在15天以内不超过最高允许的1.0mg/L .【解析】(1)分情况讨论:①当0≤x ≤3时,设线段AB 对应的函数表达式为y =kx +b ;把A(0,10),B(3,4)代入得出方程组,解方程组即可;②当x >3时,设y =mx ,把(3,4)代入求出m 的值即可; (2)令y =12x=1,得出x =12<15,即可得出结论.本题考查了一次函数的应用、反比例函数的应用;根据题意得出函数关系式是解决问题的关键.5.【答案】解:(1)由题意得,k=xy=2×3=6∴反比例函数的解析式为y=6x.(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b)∵反比例函数y=6x的图象经过点B(a,b)∴b=6 a∴AD=3−6a.∴S△ABC=12BC⋅AD=12a(3−6a)=6解得a=6∴b=6=1∴B(6,1).设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得{2k+b=36k+b=1,解得{k=−12b=4,直线AB的解析式为y=−12x+4.【解析】本题考查了反比例函数,利用待定系数法求反比例函数的解析式,正确利用a,b表示出BC,AD的长度是关键.(1)把A的坐标代入反比例函数的解析式即可求得;(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b 的方程求得b 的值,进而求得a 的值,根据待定系数法,可得答案.6.【答案】解:(1)设点D 的坐标为(4,m)(m >0),则点A 的坐标为(4,3+m),∵点C 为线段AO 的中点, ∴点C 的坐标为(2,3+m 2).∵点C 、点D 均在反比例函数y =kx 的函数图象上, ∴{k =4m k =2×3+m 2,解得:{m =1k =4.∴反比例函数的解析式为y =4x . (2)∵m =1, ∴点A 的坐标为(4,4), ∴OB =4,AB =4.在Rt △ABO 中,OB =4,AB =4,∠ABO =90°, ∴OA =√OB 2+AB 2=4√2,cos∠OAB =ABOA =42=√22. (3))∵m =1,∴点C 的坐标为(2,2),点D 的坐标为(4,1). 设经过点C 、D 的一次函数的解析式为y =ax +b , 则有{2=2a +b 1=4a +b ,解得:{a =−12b =3. ∴经过C 、D 两点的一次函数解析式为y =−12x +3.【解析】(1)设点D 的坐标为(4,m)(m >0),则点A 的坐标为(4,3+m),由点A 的坐标表示出点C 的坐标,根据C 、D 点在反比例函数图象上结合反比例函数图象上点的坐标特征即可得出关于k 、m 的二元一次方程,解方程即可得出结论;(2)由m 的值,可找出点A 的坐标,由此即可得出线段OB 、AB 的长度,通过解直角三角形即可得出结论;(3)由m 的值,可找出点C 、D 的坐标,设出过点C 、D 的一次函数的解析式为y =ax +b ,由点C 、D 的坐标利用待定系数法即可得出结论.本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、解直角三角形以及待定系数法求函数解析式,解题的关键是:(1)由反比例函数图象上点的坐标特征找出关于k 、m 的二元一次方程组;(2)求出点A 的坐标;(2)求出点C 、D 的坐标.本题属于基础题,难度不大,但考查的知识点较多,解决该题型题目时,利用反比例函数图象上点的坐标特征找出方程组,通过解方程组得出点的坐标,再利用待定系数法求出函数解析式即可.7.【答案】解:(1)∵∠ACB =60°,∴∠AOQ =60°, ∴tan60°=AQ OQ=√3,设点A(a,b),则{b a=√3b =4√3a, 解得:{a =2b =2√3或{a =−2b =−2√3(不合题意,舍去) ∴点A 的坐标是(2,2√3), ∴点C 的坐标是(−2,−2√3), ∴点B 的坐标是(2,−2√3),(2)∵点A 的坐标是(2,2√3), ∴AQ =2√3, ∴EF =AQ =2√3, ∵点P 为EF 的中点, ∴PF =√3,设点P 的坐标是(m,n),则n =√3 ∵点P 在反比例函数y =4√3x的图象上, ∴√3=4√3m,S △OPF =12|4√3|=2√3,∴m =4, ∴OF =4,∴S 长方形DEFO =OF ⋅OD =4×2√3=8√3, ∵点A 在反比例函数y =4√3x的图象上, ∴S △AOD =12|4√3|=2√3,∴S 四边形AOPE =S 长方形DEFO −S △AOD −S △OPF =8√3−2√3−2√3=4√3.【解析】(1)根据∠ACB=60°,求出tan60°=AQOQ=√3,设点A(a,b),根据点A,C,P均在反比例函数y=4√3x的图象上,求出A点的坐标,从而得出C点的坐标,然后即可得出点B的坐标;(2)先求出AQ、PF的长,设点P的坐标是(m,n),则n=√3,根据点P在反比例函数y=4√3x的图象上,求出m和S△OPF,再求出S长方形DEFO,最后根据S四边形AOPE=S长方形DEFO−S△AOD−S△OPF,代入计算即可.此题主要考查了反比例函数y=kx中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.8.【答案】解:(1)∵温度在由室温10℃上升到30℃的过程中,电阻与温度成反比例关系,∴当10≤t≤30时,设关系为R=kt,将(10,6)代入上式中得:6=k10,解得k=60.故当10≤t≤30时,R=60t;将t=30℃代入上式中得:R=6030,R=2.∴温度在30℃时,电阻R=2(kΩ).∵在温度达到30℃时,电阻下降到最小值;随后电阻随温度升高而增加,温度每上升1℃,电阻增加415kΩ,∴当t≥30时,R=2+415(t−30)=415t−6;故R和t之间的关系式为R={60t(10≤t≤30) 415t−6(t≥30);(2)把R=4代入R=415t−6,得t=37.5,把R=4代入R=60t,得t=15,所以,温度在15℃~37.5℃时,发热材料的电阻不超过4kΩ.【解析】(1)当10≤t≤30时,设关系为R=kt,将(10,6)代入求k;将t=30℃代入关系式中求R′,由题意得t≥30时,R=R′+415(t−30);(2)将R=4分别代入(1)中所求的两个关系式,求出t即可.主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.9.【答案】解:(1)∵A(a,6),B(3,a+1)两点在反比例函数y=mx(x>0)的图象上,∴6a=3(a+1),∴a=1即A(1,6),B(3,2).∴m=6,∴反比例函数的解析式为:y=6x;(2)根据图象可知不等式kx+b−mx<0的x的取值范围x的取值范围是0<x<1或x> 3;(3)∵A(1,6),B(3,2)在一次函数y=kx+b的图象上,∴一次函数的解析式为:y=−2x+8,分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D点.令−2x+8=0,得x=4,即D(4,0).∵A(1,6),B(3,2),∴AE=6,BC=2,∴S△AOB=S△AOD−S△BOD=12×4×6−12×4×2=8.【解析】本题考查了反比例函数与一次函数的交点问题:先由点的坐标求函数解析式,然后解由解析式组成的方程组求出交点的坐标,体现了数形结合的思想.(1)先把A、B点坐标代入y=mx 求出a的值;然后将其代入反比例函数y=mx(x>0)即可得到结论;(2)根据图象可以直接写出答案;(3)分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D 点.S△AOB=S△AOD−S△BOD,由三角形的面积公式可以直接求得结果.10.【答案】解:(1)∵a=4,OA=4√2,∠AOC=45°∴A(4,4),∴k=16;如图1,作DP⊥x轴于点P,∵D是中点,∴CD=2√2,CP=DP=2设OC=x,则点D(x+2,2),∵点D在反比例函数y=16x的图象上,∴2(x+2)=16,解得x=6,即OC=6;(2)∵△OAD的面积是27,点D是中点,∴平行四边形OABC面积是54,∵∠AOC=45°,OA=√2a,∴A(a,a),∴反比例函数是y=a2x,∴54=OC×a,OC=54a,如图2,作DP⊥x轴于点P,∵D是中点,PC=PD=a2,∴D(54a +a2,a2),∵点D在图象上,∴(54a +a2)⋅a2=a2,解得a=±6,B点在第一象限,去掉−6,∴OC=9,∴点B(15,6).【解析】本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点及用待定系数法求反比例函数的解析式,根据题意作出辅助线,构造出等腰直角三角形,利用勾股定理求出D点坐标是解答此题的关键.(1)先根据a=4,OA=4√2,∠AOC=45°得出A点坐标,故可得出k的值,DP⊥x轴于点P,由D是中点得出AD的长,根据等腰直角三角形的性质求出PC的长,设OC=x 可得出D点坐标,代入反比例函数的解析式即可得出OC的长;(2)根据△OAD的面积是27,点D是中点可得出平行四边形OABC面积是54,故可得出A点坐标,由A点坐标可知反比例函数是y=a2x,作DP⊥x轴于点P,可用a表示出D点坐标,代入反比例函数求出a的值,进而可得出结论.11.【答案】解:(1)∵△AOM的面积为3,|k|=3,∴12而k>0,∴k=6,∴反比例函数解析式为y=6;x(2)当以AB为一边的正方形ABCD的顶点D在反比例函数y=6的图象上,则D点与Mx点重合,即AB=AM,得y=6,把x=1代入y=6x∴M点坐标为(1,6),∴AB=AM=6,∴t=1+6=7;的图象上,当以AB为一边的正方形ABCD的顶点C在反比例函数y=6x则AB=BC=t−1,∴C点坐标为(t,t−1),∴t(t−1)=6,整理为t2−t−6=0,解得t1=3,t2=−2(舍去),∴t=3,∴以AB为一边的正方形有一个顶点在反比例函数y=k的图象上时,t的值为7或3.x|k|=3,可得到满足条件的k=6,于【解析】(1)根据反比例函数k的几何意义得到12;是得到反比例函数解析式为y=6x(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=6的图象上,x则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(1,6),则AB=AM=6,所以t=1+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=6的图象上,根据正方形的性质得AB=BC=t−1,x则C点坐标为(t,t−1),然后利用反比例函数图象上点的坐标特征得到t(t−1)=6,再解方程得到满足条件的t的值.本题考查了用待定系数法求反比例函数的解析式:(1)设出含有待定系数的反比例函数解析式y=xk(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.也考查了反比例函数k的几何意义、反比例函数图象上点的坐标特征和正方形的性质.12.【答案】(1)x2−9x+18=0,(x−3)(x−6)=0,x=3或6,∵CD>DE,∴CD=6,DE=3,∵四边形ABCD是菱形,∴AC⊥BD,AE=EC=√62−32=3√3,∴∠DCA=30°,∠EDC=60°,Rt△DEM中,∠DEM=30°,∴DM=12DE=32,∵OM⊥AB,∴S菱形ABCD =12AC⋅BD=CD⋅OM,∴12×6√3×6=6OM,OM=3√3,∴D(−32,3√3);(2)9√3 2(3)①∵DC=BC,∠DCB=60°,∴△DCB是等边三角形,∵H是BC的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC−∠CBF=120°−30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2√3=CP,,√3);∴P(92②如图2,∵四边形QPFC是平行四边形,∴CQ//PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6√3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6√3,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB =90°, ∴Q(−92,6√3),由①知:F(32,2√3),由F 到C 的平移规律可得P 到Q 的平移规律,则P(−92−3,6√3−√3),即P(−152,5√3);③如图3,四边形CQFP 是平行四边形, 同理知:Q(−92,6√3),F(32,2√3),C(92,3√3), ∴P(212,−√3);综上所述,点P 的坐标为:(92,√3)或(−152,5√3)或(212,−√3).【解析】(1)先解方程可得CD 和DE 的长,根据直角三角形的性质可得∠DCA =30°,分别计算AC 、BD 、DM 的长,根据菱形面积的两种计算方法可得高OM 的长,得D 的坐标;(2)∵OB =DM =32,CM =6−32=92, ∴B(32,0),C(92,3√3), ∵H 是BC 的中点, ∴H(3,3√32), ∴k =3×3√32=9√32;故答案为:9√32;(3)分三种情况:①以CF 为边时,在CF 的上方,②以CF 为边,在CF 的下方,③以CF 为对角线时,分别根据平移规律求点P 的坐标.13.【答案】解:(1)∵PQ//x 轴,∴点P 的纵坐标为2, 把y =2代入y =6x 得x =3, ∴P 点坐标为(3,2);(2)∵S △POQ =S △OMQ +S △OMP ,∴12|k|+12×|6|=8 (根据反比例函数K 的几何含义), ∴|k|=10,而k <0, ∴k =−10.【解析】本题考查了反比例函数图象上点的坐标特征:反比例函数y =kx (k 为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k ,即xy =k.也考查了反比例函数系数k 的几何意义.(1)由于PQ//x 轴,则点P 的纵坐标为2,然后把y =2代入y =6x 得到对应的自变量的值,从而得到P 点坐标;(2)由于S △POQ =S △OMQ +S △OMP ,根据反比例函数k 的几何意义得到12|k|+12×|6|=8,然后解方程得到满足条件的k 的值.14.【答案】解:(1)∵√a +1+(a +b +3)2=0,∴{a +1=0a +b +3=0,解得:{a =−1b =−2,∴A(−1,0),B(0,−2), ∵E 为AD 中点, ∴x D =1, 设D(1,t), 又∵DC//AB , ∴C(2,t −2), ∴t =2t −4, ∴t =4, ∴k =4;(2)∵由(1)知k =4,∴反比例函数的解析式为y =4x , ∵点P 在双曲线4x 上,点Q 在y 轴上, ∴设Q(0,y),P(x,4x ), ①当AB 为边时:如图1,若ABPQ 为平行四边形,则−1+x2=0,解得x=1,此时P1(1,4),Q1(0,6);如图2,若ABQP为平行四边形,则−12=x2,解得x=−1,此时P2(−1,−4),Q2(0,−6);②如图3,当AB为对角线时,AP=BQ,且AP//BQ;∴−12=x2,解得x=−1,∴P3(−1,−4),Q3(0,2);故P1(1,4),Q1(0,6);P2(−1,−4),Q2(0,−6);P3(−1,−4),Q3(0,2);(3)MNHT的值不发生改变,理由:如图4,连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,{BF=BH∠ABF=∠ABH BN=BN,∴△BFN≌△BHN,∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°−180°−90°=90°.∴MN=12HT,∴MNHT =12.【解析】(1)先根据非负数的性质求出a、b的值,故可得出A、B两点的坐标,设D(1,t),由DC//AB,可知C(2,t−2),再根据反比例函数的性质求出t的值即可;(2)由(1)知k=4可知反比例函数的解析式为y=4x ,再由点P在双曲线y=4x上,点Q在y轴上,设Q(0,y),P(x,4x),再分以AB为边和以AB为对角线两种情况求出x的值,故可得出P、Q的坐标;(3)连NH、NT、NF,易证NF=NH=NT,故∠NTF=∠NFT=∠AHN,∠TNH=∠TAH=90°,MN=12HT由此即可得出结论.此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,难度较大,解本题(1)的关键是求出a,b的值,解(2)的关键是分类讨论,解(3)的关键是判断出△BFN≌△BHN.15.【答案】解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN//BM,∴△ADN∽△ABM,∴DNBM =ANAM=ADAB,即DN6=AN3=13,∴DN=2,AN=1,∴ON=OA−AN=4,∴D点坐标为(4,2),把D(4,2)代入y=kx得k=2×4=8,∴反比例函数解析式为y=8x;(2)S四边形ODBE =S梯形OABC−S△OCE−S△OAD=12×(2+5)×6−12×8−12×5×2 =12.【解析】(1)作BM ⊥x 轴于M ,作DN ⊥x 轴于N ,利用点A ,B 的坐标得到BC =OM =2,BM =OC =6,AM =3,再证明△ADN∽△ABM ,利用相似比可计算出DN =2,AN =1,则ON =OA −AN =4,得到D 点坐标为(4,2),然后把D 点坐标代入y =kx 中求出k 的值即可得到反比例函数解析式;(2)根据反比例函数k 的几何意义和S 四边形ODBE =S 梯形OABC −S △OCE −S △OAD 进行计算. 本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k 的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.16.【答案】解:(1)把A(−1,2)代入y =k2x ,得到k 2=−2,∴反比例函数的解析式为y =−2x . ∵B(m,−1)在Y =−2x 上, ∴m =2,由题意{−k 1+b =22k 1+b =−1,解得{k 1=−1b =1,∴一次函数的解析式为y =−x +1.(2)∵A(−1,2),B(2,−1), ∴AB =3√2,①当PA =PB 时,(n +1)2+4=(n −2)2+1, ∴n =0, ∵n >0,∴n =0不合题意舍弃.②当AP =AB 时,22+(n +1)2=(3√2)2, ∵n >0, ∴n =−1+√14.③当BP =BA 时,12+(n −2)2=(3√2)2, ∵n >0, ∴n =2+√17.综上所述,n =−1+√14或2+√17.【解析】(1)利用待定系数法即可解决问题;(2)分三种情形讨论①当PA =PB 时,可得(n +1)2+4=(n −2)2+1.②当AP =AB 时,可得22+(n +1)2=(3√2)2.③当BP =BA 时,可得12+(n −2)2=(3√2)2.分别解方程即可解决问题;本题考查反比例函数综合题.一次函数的性质、待定系数法、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.17.【答案】解:(1)当x =60时,y =12060=2,∴当30≤x ≤60时,图象过(60,2)和(30,5), 设y =kx +b ,则 {30k +b =560k +b =2, 解得:{k =−0.1b =8,∴y =−0.1x +8(30≤x ≤60);(2)根据题意,当30≤x ≤60时,W =(x −20)y −50=(x −20)(−0.1x +8)−50=−0.1x 2+10x −210,当60<x ≤80时,W =(x −20)y −50=(x −20)⋅120x−50=−2400x+70,综上所述:W ={−0.1x 2+10x −210 (30≤x ≤60)−2400x+70 (60<x ≤80);(3)当30≤x ≤60时,W =−0.1x 2+10x −210=−0.1(x −50)2+40, 当x =50时,W 最大=40(万元); 当60<x ≤80时,W =−2400x+70,∵−2400<0,W 随x 的增大而增大, ∴当x =80时,W 最大=−240080+70=40(万元),答:当销售价格定为50元/件或80元/件,获得利润最大,最大利润均为40万元.【解析】(1)由图象知,当30≤x ≤60时,图象过(60,2)和(30,5),运用待定系数法求解析式即可;(2)根据销售产品的纯利润=销售量×单个利润,分30≤x ≤60和60<x ≤80两种情况讨论,列出函数关系式即可;(3)当30≤x ≤60时,运用二次函数性质解答,当60<x ≤80时,运用反比例函数性质解答.本题主要考查了一次函数、二次函数、反比例函数的应用.分段讨论和数学建模是解决本题的关键所在.18.【答案】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时,∴v 关于t 的函数表达式为:v =480t ,(t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时, 将t =6代入v =480t得v =80;将t =245代入v =480t得v =100.∴小汽车行驶速度v 的范围为:80≤v ≤100. ②方方不能在当天11点30分前到达B 地.理由如下: 8点至11点30分时间长为72小时,将t =72代入v =480t得v =9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B 地.【解析】(1)由速度乘以时间等于路程,变形即可得速度等于路程比时间,从而得解; (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时,将它们分别代入v 关于t 的函数表达式,即可得小汽车行驶的速度范围;②8点至11点30分时间长为72小时,将其代入v 关于t 的函数表达式,可得速度大于120千米/时,从而得答案.本题是反比例函数在行程问题中的应用,根据时间、速度和路程的关系可以求解,本题属于中档题.19.【答案】解:(1)①∵B 点的坐标为(4,2),∴S 矩形OCBA =4×2=8, ∵E 为AB 的中点, ∴E 点的坐标为(2,2), ∵点E 、F 在双曲线上, ∴k =4,∴S △AEO =S △FCO =12k =2,。
福山区九中九年级数学下册 第二十六章 反比例函数26.1 反比例函数拔高习题3新人教版
反比例函数的图象和性质一、选择题(每小题4分,共12分)1.(2013·绍兴中考)如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是( )2.下面的表格列出了一个实验的统计数据,表示皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是( )d 50 80 100 150b 25 40 50 75A.b=d2B.b=2dC.b=D.b=d+253.(2013·营口中考)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C 处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则当x=7时,点E应运动到( )A.点C处B.点D处C.点B处D.点A处二、填空题(每小题4分,共12分)4.(2013·孝感中考)如图,一个装有进水管和出水管的容器,从某时刻开始的4min内只进水不出水,在随后的8min内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的部分关系如图所示.那么,从关闭进水管起min该容器内的水恰好放完.5.声音在空气中传播的速度y(m/s)(简称音速)与气温x(℃)之间的关系如下:]气温(x/℃)0 5 10 15 20音速y(m/s) 331 334 337 340 343从表中可知音速y随温度x的升高而加快.运动会当天的气温为20℃,某人看到发令枪的烟0.2s后,听到了枪声,则由此可知,这个人距发令地点m.6.如图是某工程队在“村村通”工程中,修筑的公路长度y(m)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是m.三、解答题(共26分)7.(12分)某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡.使用这两种卡租书,租书金额与租书时间之间的关系如图所示.(1)从图中看出,办理会员卡是否需要交费?(2)使用租书卡租书,每天收费多少元?(3)使用会员卡租书,每天收费多少元?(4)若租书卡和会员卡的使用期限均为1年,则在这一年中如何选取这两种租书方式比较划算?【拓展延伸】8.(14分)某衡器厂生产的RG—120型体重秤,最大称重120kg,已知指针顺时针旋转角x(度)与体重y(kg)有如下关系:(1)根据表格中的数据在平面直角坐标系中描出相应的点,顺次连接各点后,你发现这些点有什么规律?猜想这个图象的函数解析式.(2)验证这些点的坐标是否满足函数解析式(写出自变量x的取值范围).(3)当指针旋转到158.4度的位置上时,显示盘上的体重读数模糊不清,请用函数解析式求出此时的体重.参考答案1. C.2. C.3.B.4. 85. 68.66. 5047. (1)办理会员卡需要交费20元.(2)租书卡每天租书花费:50÷100=0.5(元).故使用租书卡租书,每天收费0.5元.(3)设使用会员卡每天租书花费x元,则20+100x=50,解得x=0.3.故使用会员卡租书,每天收费0.3元.(4)一年内的租书时间在100天以内时,使用租书卡划算;当超过100天时,使用会员卡划算;当恰好为100天时,两种方式费用一样.8.【解析】(1)如图,描点、连线,发现四个点在经过原点的一条直线上.猜想y=2572 x.(2)当x=0时,y=0; 当x=72时,y=25; 当x=144时,y=50; 当x=216时,y=75.所以这些点的坐标满足此函数解析式. 当y=120时,x=345.6.所以自变量x 的取值范围是0≤x≤345.6. (3)当x=158.4时,y=2572 x=2572 ×158.4=55.此时的体重是55kg.点与圆的位置关系1.能根据点到圆心的距离与圆的半径大小关系,确定点与圆的位置关系.2.能过不在同一直线上的三点作圆,理解三角形的外心概念.课堂学习检测一、基础知识填空1.平面内,设⊙O的半径为r,点P到圆心的距离为d,则有d>r⇔点P在⊙O______;d=r⇔点P在⊙O______;d<r⇔点P在⊙O______.2.平面内,经过已知点A,且半径为R的圆的圆心P点在__________________________ _______________.3.平面内,经过已知两点A,B的圆的圆心P点在__________________________________________________________.4.______________________________________________确定一个圆.5.在⊙O上任取三点A,B,C,分别连结AB,BC,CA,则△ABC叫做⊙O的______;⊙O叫做△ABC的______;O点叫做△ABC的______,它是△ABC___________的交点.6.锐角三角形的外心在三角形的___________部,钝角三角形的外心在三角形的_____________部,直角三角形的外心在________________.7.若正△ABC外接圆的半径为R,则△ABC的面积为___________.8.若正△ABC的边长为a,则它的外接圆的面积为___________.9.若△ABC中,∠C=90°,AC=10cm,BC=24cm,则它的外接圆的直径为___________.10.若△ABC内接于⊙O,BC=12cm,O点到BC的距离为8cm,则⊙O的周长为___________.二、解答题11.已知:如图,△ABC.作法:求件△ABC的外接圆O.综合、运用、诊断一、选择题12.已知:A,B,C,D,E五个点中无任何三点共线,无任何四点共圆,那么过其中的三点作圆,最多能作出( ).A.5个圆B.8个圆C.10个圆D.12个圆13.下列说法正确的是( ).A.三点确定一个圆 B.三角形的外心是三角形的中心C.三角形的外心是它的三个角的角平分线的交点 D.等腰三角形的外心在顶角的角平分线上14.下列说法不正确的是( ).A.任何一个三角形都有外接圆 B.等边三角形的外心是这个三角形的中心C.直角三角形的外心是其斜边的中点 D.一个三角形的外心不可能在三角形的外部15.正三角形的外接圆的半径和高的比为( ).A.1∶2 B.2∶3 C.3∶4 D.1∶316.已知⊙O的半径为1,点P到圆心O的距离为d,若关于x的方程x2-2x+d=0有实根,则点P( ).A.在⊙O的内部B.在⊙O的外部 C.在⊙O上 D.在⊙O上或⊙O的内部二、解答题17.在平面直角坐标系中,作以原点O为圆心,半径为4的⊙O,试确定点A(-2,-3),B(4,-2),)2,32(C与⊙O的位置关系.18.在直线123-=xy上是否存在一点P,使得以P点为圆心的圆经过已知两点A(-3,2),B(1,2).若存在,求出P点的坐标,并作图.第二章检测题时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.下列函数中,不是二次函数的是( )A .y =1-2x 2B .y =2(x -1)2+4C .y =12(x -1)(x +4) D .y =(x -2)2-x 22.二次函数y =ax 2+bx +c(a≠0)图象上部分点的坐标(x ,y)对应值列表如下:x … -3 -2 -1 0 1 … y … -3 -2 -3 -6 -11 …则该函数图象的对称轴是( )A .直线x =-3B .直线x =-2C .直线x =-1D .直线x =03.已知抛物线y =ax 2+bx +c 过(1,-1),(2,-4)和(0,4)三点,那么a ,b ,c 的值分别是( )A .a =-1,b =-6,c =4B .a =1,b =-6,c =-4C .a =-1,b =-6,c =-4D .a =1,b =-6,c =44.若二次函数y =x 2+bx 的图象的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x 的方程x 2+bx =5的解为( )A .x 1=0,x 2=4B .x 1=1,x 2=5C .x 1=1,x 2=-5D .x 1=-1,x 2=55.将抛物线y =x 2-1向下平移8个单位长度后与x 轴的两个交点之间的距离为( ) A .4 B .6 C .8 D .106.已知函数y =ax 2-2ax -1(a 是常数,a ≠0),下列结论正确的是( )A .当a =1时,函数图象过点(-1,1)B .当a =-2时,函数图象与x 轴没有交点C .若a >0,则当x≥1时,y 随x 的增大而减小D .若a <0,则当x≤1时,y 随x 的增大而增大7.某海滨浴场有100个遮阳伞,每个每天收费10元时,可全部租出;若每个每天提高2元,则减少10个伞租出,若每个每天收费再提高2元,则再减少10个伞租出……为了投资少而获利大,每个每天应提高( )A .4元或6元B .4元C .6元D .8元8.在同一平面直角坐标系中,一次函数y =ax +b 和二次函数y =ax 2+bx +c 的图象可能为( )9.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )10.(2017·广安)如图所示,抛物线y =ax 2+bx +c 的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间,以下结论:①b 2-4ac =0;②a+b +c >0;③2a-b =0;④c-a =3. 其中正确的个数是( ) A .1 B .2 C .3 D .4二、填空题(每小题3分,共24分)11.二次函数y =2(x -3)2-4的最小值为________.12.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则一元二次不等式ax 2+bx +c >0的解是____________.第12题图第16题图第17题图13.若二次函数y =x 2+2x +m 的图象与x 轴没有公共点,则m 的取值范围是________.14.已知二次函数y =-12x 2-7x +152,若自变量x 分别取x 1,x 2,x 3,且0<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系是________________. 15.抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1,则a +b +c =________.16.二次函数y =x 2-2x -3的图象如图所示,若线段AB 在x 轴上,且AB 为23个单位长度,以AB 为边作等边△ABC,使点C 落在该函数y 轴右侧的图象上,则点C 的坐标为______________.17.二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b-2c|,Q=|2a-b|-|3b+2c|,则P,Q的大小关系是__________.18.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t=________.三、解答题(共66分)19.(6分)已知:二次函数y=-2x2+(3k+2)x-3k.(1)若二次函数的图象过点A(3,0),求此二次函数图象的对称轴;(2)若二次函数的图象与x轴只有一个交点,求此时k的值.20.(8分)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点(-1,8)并与x 轴交于A,B两点,且点B坐标为(3,0).(1)求抛物线的表达式;(2)若抛物线与y轴交于点C,顶点为点P,求△CPB的面积.21.(8分)如图,二次函数y=(x-2)2+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上的点A(1,0)及点B.(1)求二次函数与一次函数的表达式;(2)根据图象,写出满足kx+b≥(x-2)2+m的x的取值范围.22.(8分)已知P(-3,m)和Q(1,m)是抛物线y =2x 2+bx +1上的两点. (1)求b 的值;(2)若A(-2,y 1),B(5,y 2)是抛物线y =2x 2+bx +1上的两点,试比较y 1与y 2的大小关系;(3)将抛物线y =2x 2+bx +1的图象向上平移k(k 是正整数)个单位长度,使平移后的图象与x 轴无交点,求k 的最小值.23.(10分)如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的平面直角坐标系,最左边的抛物线可以用y =ax 2+bx(a≠0)表示.已知抛物线上B ,C 两点到地面的距离均为34 m ,到墙边OA 的距离分别为12 m ,32m .(1)求最左边拋物线的函数表达式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m ,则最多可以连续绘制几个这样的拋物线型图案?24.(12分)天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x 天生产的粽子数量为y 只,y 与x 满足如下关系:y =⎩⎪⎨⎪⎧32x (0≤x≤5),20x +60(5<x≤19).(1)李红第几天生产的粽子数量为260只?(2)如图,设第x 天生产的每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画,若李红第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本)25.(14分)如图,在平面直角坐标系中,点A ,B ,C 分别为坐标轴上的三个点,且OA =1,OB =3,OC =4.(1)求经过A ,B ,C 三点的抛物线的表达式.(2)在平面直角坐标系xOy 中是否存在一点P ,使得以点A ,B ,C ,P 为顶点的四边形为菱形?若存在,请求出点P 的坐标;若不存在,请说明理由.(3)若点M 为该抛物线上一动点,在(2)的条件下,请求出当|PM -AM|的最大值时点M 的坐标,并直接写出|PM -AM|的最大值.第二章检测题1.D 2.B 3.D 4.D 5.B 6.D 7.C 8.A 9.B10.B 11.-4 12.-1<x<3 13.m >1 14.y 1>y 2>y 3 15.0 16.(1+7,3)或(2,-3) 17.P >Q 18.1.6 19.(1)将点A(3,0)代入y =-2x 2+(3k +2)x -3k 中,得-2×32+(3k +2)×3-3k =0,解得k =2.∴y=-2x 2+8x -6,对称轴为直线x =2 (2)由题意,得Δ=(3k +2)2-4×(-2)×(-3k)=0,整理,得9k 2-12k +4=0,(3k -2)2=0,∴k =23 20.(1)∵抛物线y =x 2+bx +c 经过点(-1,8)与点B(3,0),∴⎩⎪⎨⎪⎧1-b +c =8,9+3b +c =0,解得⎩⎪⎨⎪⎧b =-4,c =3,∴抛物线的表达式为y =x 2-4x +3(2)∵y=x 2-4x +3=(x -2)2-1,∴P(2,-1),C(0,3).过点P 作PH⊥y 轴于点H ,过点B 作BM∥y 轴交直线PH 于点M ,过点C 作CN⊥y 轴交直线BM 于点N ,如图所示,S△CPB=S矩形CHMN-S △CHP -S △PMB -S △CNB =3×4-12×2×4-12×1×1-12×3×3=3,即△CPB 的面积为3 21.(1)将点A(1,0)代入y =(x -2)2+m 中得(1-2)2+m =0,解得m =-1,所以二次函数的表达式为y =(x -2)2-1.当x =0时,y =4-1=3,所以点C 坐标为(0,3),由于点C 和点B 关于对称轴对称,而抛物线的对称轴为直线x =2,所以点B 坐标为(4,3),将A(1,0),B(4,3)代入y =kx +b 中,得⎩⎪⎨⎪⎧k +b =0,4k +b =3,解得⎩⎪⎨⎪⎧k =1,b =-1.所以一次函数的表达式为y =x -1 (2)当kx +b≥(x-2)2+m 时,1≤x ≤4 22.(1)∵点P ,Q 是二次函数y =2x2+bx +1图象上的两点,∴此抛物线的对称轴是直线x =-1.∵二次函数的表达式为y =2x 2+bx +1,∴-b4=-1,解得b =4 (2)y 1<y 2(3)平移后抛物线的表达式为y =2x 2+4x +1+k.要使平移后的图象与x 轴无交点,则有b 2-4ac =16-8(1+k)<0,解得k >1.∵k 是正整数,∴k 的最小值为2 23.(1)根据题意,得B(12,34),C(32,34),把点B ,点C 代入y =ax 2+bx ,得⎩⎪⎨⎪⎧34=14a +12b ,34=94a +32b ,解得⎩⎪⎨⎪⎧a =-1,b =2,∴最左边抛物线的函数表达式为y =-x 2+2x ,∴图案最高点到地面的距离为-224×(-1)=1 (2)令y =0,即-x 2+2x =0,解得x 1=0,x 2=2,10÷2=5,∴最多可以连续绘制5个这样的抛物线型图案 24.(1)设李红第x 天生产的粽子数量为260只,根据题意,得20x +60=260,解得x =10,答:李红第10天生产的粽子数量为260只 (2)根据图象,得当0≤x≤9时,p =2;当9<x≤19时,设表达式为p =kx +b ,把(9,2),(19,3)代入得⎩⎪⎨⎪⎧9k +b =2,19k +b =3,解得⎩⎪⎨⎪⎧k =110,b =1110,所以p =110x +1110.①当0≤x≤5时,w =(4-2)·32x=64x ,x =5时,此时w 有最大值为320元;②当5<x≤9时,w =(4-2)·(20x +60)=40x +120,x =9时,此时w 有最大值为480元;③当9<x ≤19时,w =[4-(110x+1110)]·(20x+60)=-2x 2+52x +174=-2(x -13)2+512,即x =13时,此时w 有最大值为512元.综上所述,第13天的利润最大,最大利润是512元 25.(1)设抛物线的表达式为y =ax 2+bx +c ,∵A(1,0),B(0,3),C(-4,0),∴⎩⎪⎨⎪⎧a +b +c =0,c =3,16a -4b +c =0,解得⎩⎪⎨⎪⎧a =-34,b =-94,c =3,∴经过A ,B ,C 三点的抛物线的表达式为y =-34x 2-94x +3(2)存在.理由如下:如图所示,∵OB =3,OC =4,OA =1,∴BC =AC =5,当BP 平行且等于AC 时,四边形ACBP 为菱形,∴BP =AC =5,且点P 到x 轴的距离等于OB ,∴点P 的坐标为(5,3),当点P 在第二、三象限时,以点A ,B ,C ,P 为顶点的四边形只能是平行四边形,不是菱形,则当点P 的坐标为(5,3)时,以点A ,B ,C ,P 为顶点的四边形为菱形 (3)设直线PA 的表达式为y =kx +b (k≠0),∵A(1,0),P(5,3),∴⎩⎪⎨⎪⎧5k +b =3,k +b =0,解得⎩⎪⎨⎪⎧k =34,b =-34,∴直线PA 的表达式为y =34x -34,当点M 与点P ,A 不在同一直线上时,根据三角形的三边关系|PM -AM|<PA ,当点M 与点P ,A 在同一直线上时,|PM -AM|=PA ,∴当点M 与点P ,A 在同一直线上时,|PM -AM|的值最大,即点M 为直线PA 与抛物线的交点,解方程组⎩⎪⎨⎪⎧y =34x -34,y =-34x 2-94x +3,得⎩⎪⎨⎪⎧x 1=1,y 1=0或⎩⎪⎨⎪⎧x 2=-5,y 2=-92,∴点M 的坐标为(1,0)或(-5,-92)时,|PM -AM|的值最大,此时|PM -AM|的最大值为5。
2023年中考九年级数学高频考点拔高训练--反比例函数与动态几何
2023年中考九年级数学高频考点拔高训练--反比例函数与动态几何1.如图,点 A , B 在 x 轴上,以 AB 为边的正方形 ABCD 在 x 轴上方,点 C 的坐标为 (1,4) ,反比例函数 y =kx(k ≠0) 的图象经过 CD 的中点 E , F 是 AD 上的一个动点,将 △DEF 沿 EF 所在直线折叠得到 △GEF .(1)求反比例函数 y =kx(k ≠0) 的表达式;(2)若点 G 落在 y 轴上,求线段 OG 的长及点 F 的坐标.2.如图,反比例函数y =mx 的图象与一次函数y =kx +b 的图象交于A ,B 两点,点A 的坐标为(2,6),点B 的坐标为(n ,1).(1)求反比例函数和一次函数的解析式;(2)结合图象,直接写出不等式mx <kx +b 的解集;(3)点E 为y 轴上一个动点,若S △AEB =5,试求点E 的坐标.3.在矩形AOBC 中,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.A 点坐标为(0,3),B 点坐标为(4,0),F 是BC 上的一个动点(不与B 、C 重合),过F 点的反比例函数y =kx (x >0)的图象与AC 边交于点E ,连接OE ,OF ,作直线EF .(1)若CF =2,求反比例函数解新式; (2)在(1)的条件下求出△EOF 的面积; (3)在点F 的运动过程中,试说明EC FC是定值.4.如图,在平面直角坐标系中,一次函数 y 1=−x +2 与反比例函数 y 2=k x(x <0) 相交于点B ,与 x 轴相交于点 A ,点 B 的横坐标为-2.(1)求 k 的值;(2)直接写出当 x <0 且 y 1<y 2 时, x 的取值范围;(3)设点 M 是直线AB 上的一点,过点 M 作 MN// x 轴,交反比例函数 y 2=k x (x <0) 的图象于点 N .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点 M 的坐标.5.如图,在平面直角坐标系 xOy 中,一次函数 y =x +1 的图象与反比例函数 y =k x(k ≠0)的图象交于一、三象限内的 A 、B 两点,直线 AB 与 x 轴交于点 C ,点 B 的坐标为 (− 2,n) .(1)求反比例函数的解析式;(2)求△AOB的面积;(3)在x轴上是否存在一点P,使△AOP是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.6.如图,已知直线OA与反比例函数y=mx(m≠0)的图像在第一象限交于点A.若OA=4,直线OA与x轴的夹角为60°.(1)求点A的坐标;(2)求反比例函数的解析式;(3)若点P是坐标轴上的一点,当△AOP是直角三角形时,直接写出点P的坐标.7.如图,在Rt△AOB中,△ABO=90°,OB=4,AB=8,且反比例函数y=k x在第一象限内的图象分别交OA,AB于点C和点D,连结OD,△BOD的面积是4.(1)求反比例函数解析式;(2)将△AOB沿x轴向左运动,运动速度是每秒钟3个单位长度,求△AOB与反比例函数图象没有交点时,运动时间t的取值范围.8.如图,在平面直角坐标系中,点A(2,m)在正比例函数y=32x(x>0)的图象上,反比例函数y=kx(x>0)的图象经过点A,点P是x轴正半轴上一动点,过点P作x轴的垂线,与正比例函数y=32x(x>0)的图象交于点C,点B是线段CP与反比例函数的交点,连接AP、AB.(1)求该反比例函数的表达式;(2)观察图象,请直接写出当x>0时,32x≤kx的解集;(3)若S△ABP=1,求B点坐标;(4)点Q是A点右侧双曲线上一动点,是否存在△APQ为以P为直角顶点的等腰直角三角形?若存在,求出点Q坐标;若不存在,请说明理由.9.已知一次函数y1=kx+n(n<0)和反比例函数y2=mx(m>0,x>0).(1)如图1,若n=−5,且函数y1,y2的图象都经过点A(3,4)①求m,k的值;②直接写出当y1>y2时x的范围;(2)如图2,过点P(1,0)作y轴的平行线l与函数y2为的图象相交于点B,与反比例函数y3= nx(x>0)的图象相交于点C,①若k=3.直线l与函数y2的图象相交点D.当点B、C、D中的一点到另外两点的距离相等时,求m−n的值:②过点B作x轴的平行线与函数y1的图象相交于点E.当m−n的值取不大于1的任意实数时,点B、C间的距离与点B、E间的距离之和d始终是一个定值.求此时k的值及定值d10.如图,一次函数y1=k1x+4与反比例函数y2=k2x的图象交于点A(2,m)和B(−6,−2),与y轴交于点C.(1)k1=,k2=;(2)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:SΔODE=4:1时,求点P的坐标.(3)点M是坐标轴上的一个动点,点N是平面内的任意一点,当四边形ABMN是矩形时,求出点M的坐标.11.已知:如图1,点A(4,n)是反比例函数y=8x(x>0)图象上的一点.(1)求n的值和直线OA的解析式;(2)如图2,将反比例函数y=8x(x>0)的图象绕原点O逆时针旋转45°后,与y轴交于点M,求线段OM的长度;(3)如图3,将直线OA绕原点O逆时针旋转45°,与反比例函数y=8x(x>0)的图象交于点B,求点B的坐标.12.如图,矩形ABCD的两边AB,BC的长分别为3,8,C,D在y轴上,E是AD的中点,反比例函数y=k x(k≠0)的图象经过点E,与BC交于点F,且CF−BE=1.(1)求反比例函数的解析式;(2)在y轴上找一点P,使得S△CEP=23S矩形ABCD,求此时点P的坐标.13.如图,直线y=﹣x+2与反比例函数y=k x(k≠0)的图象交于A(a,3),B(3,b)两点,过点A作AC△x轴于点C,过点B作BD△x轴于点D.(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.14.如图1,在平面直角坐标系xOy中,函数y=mx(m为常数,m>1,x>0)的图象经过点P(m,1)和Q(1,m),直线PQ与x轴,y轴分别交于C,D两点.(1)求∠OCD的度数;(2)如图2,连接OQ、OP,当∠DOQ=∠OCD−∠POC时,求此时m的值:(3)如图3,点A,点B分别在x轴和y轴正半轴上的动点.再以OA、OB为邻边作矩形OAMB.若点M恰好在函数y=mx(m为常数,m>1,x>0)的图象上,且四边形BAPQ为平行四边形,求此时OA、OB的长度.15.已知点A(3,2)、点B(m,n)在反比例函数y=k x(x>0)图象上,点C是x轴上的一个动点.(1)求k的值;(2)若m=1,C(﹣1,0),试判断△ABC的形状,并说明理由;(3)若点C在x轴正半轴上,当△ABC为等腰直角三角形时,求出点C的坐标.16.如图,一次函数y=kx+b的图象与反比例函数y= mx的图象交于点A(1,4)、B(4,n)。
反比例函数三角形拔高训练
方法建议: 转化思想解决,把所求三角形转化为基本三角形
1. 如图,点A在反比例函数y=的图象上,AM⊥y轴
于点M,P是x轴上一动点,当△APM的面积是4
时,k的值是( )
2. 如图所示,过y轴正半轴上的任意一点P,作x轴
的平行线,分别与反比例函数的图象
交于点A和点B,若点C是x轴上任意一点,连接
AC、BC,则△ABC的面积为 .
方法建议: 设坐标,用相似解决
3.已知反比例函数在第一象限的图象如图所示,点A
在其图象上,点B为x轴正半轴上一点,连接AO、AB,
且AO=AB,则S△AOB= .
4. 如图,若双曲线y=与边长为5的等边△AOB的边OA、
AB分别相交于C、D两点,且OC=3BD.则实数k的
值为 .
5.已知点A在反比例函数y=的图象上,点B与点A关于
原地对称,BC∥y轴,与反比例函数y=﹣的图象交
于点C,连接AC,则△ABC的面积为 .
6.如图,在以O为原点的直角坐标系中,矩形OABC的
两边OC、OA分别在x轴、y轴的正半轴上,反比例函数
(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,
且△ODE的面积是12,则k=
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
反比例函数
1. 某反比例函数的图象经过点(-2,3),则此函数图象也经过点 ( )
A.(2,-3) B.(-3,-3) C.(2,3) D.(-4,6)
2. 函数yaxa与ayx(a≠0)在同一直角坐标系中的图象可能是( )
A. B. C. D.
3. 下列函数中,y随x增大而增大的是 ( )
A.xy3 B. 5xy C. 12yx D. )0(212xxy
4. 某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V
( m3 ) 的反比例函数,其图象如图1所示.当气球内的气压大于120 kPa时,气球将爆炸.为
了安全起见,气球的体积应 ( )
A.不小于54m3 B.小于54m3 C.不小于45m3 D.小于45m3
5. 已知点(-1,1y),(2,2y),(3,3y)在反比例函数xky12的图像上. 下列结论中
正确的是 ( )
A. y3<y1<y2 B. y2<y3<y1 C. y1<y2<y3 D. y3<y2<y1
6.如图,点A是反比例函数y=-x6(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、
C在x轴上,点D在y轴上,则ABCD的面积为( )
A.1 B.3 C.6 D.12
7. 如图,已知双曲线(0)kykx经过直角三角形OAB斜边OA的中点D,且与直角边AB相交
于点C.若点A的坐标为(6,4),则△AOC的面积为 ( )
A.12 B.9 C.6 D.4
8. 如图,点A在双曲线4yx上,点B在双曲线kyx(k≠0)上,AB∥x轴,分别过点A、B
向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为( )
A.12 B.10 C.8 D.6
x
O y x y O
y x O y
x
O
2
D
BAyxO
C
9.如图,一次函数y1=x+1的图象与反比例函数22yx的图象交于A、B两点,过点作AC⊥x轴于
点C,过点B作BD⊥x轴于点D,
连接AO、BO,下列说法正确的是( )
A.点A和点B关于原点对称
B.当x<1时,y1>y2
C.S△AOC=S△BOD
D.当x>0时,y1、y2都随x的增大而增大
10. 如图,点A、B是双曲线3yx上的点,分别经过A、B两点向x轴、y轴作垂线段,若
1S阴影,则12SS
.
11. 直线43yx与双曲线kyx(0x)交于点A.将直线43yx向右平移92个单位后,与
双曲线kyx(0x)交于点B,与x轴交于点C,若2BCAO,则k .
12. 边长为4的正方形ABCD的对称中心是坐标原点O,AB∥x轴BC∥y轴, 反比例函数xy2与
x
y2
的图象均与正方形ABCD的边相交, 则图中的阴影部分的面积是 。
13.已知反比例函数xmy)23(1,当m 时,其图象的两个分支在第
一、三象限内;当m 时,其图象在每个象限内y随x的增大而增大;
14.已知121,yyyy与2x成正比例,2y与x+3成反比例,当x=0时,y=2;当x=3时,y=0,求y与x的
函数关系式,并指出自变量的取值范围.
15. 如图,已知直线12yx与双曲线(0)kykx交于A,B两点,且点A的横坐标为4.
(1)求k的值;(2)若双曲线(0)kykx上一点C的纵坐标为8,求△AOC的面积;
x
y
A
B
O
1
S
2
S
10题
O
x
y
A
B
C
y
x
第4题
O
3
(3)过原点O的另一条直线l交双曲线(0)kykx于P,Q两点(P点在第一象限),若由
点A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.
16.已知:一次函数y=3x-2的图象与某反比例函数的图象的一个公共点的横坐标为1.
(1)求该反比例函数的解析式;
(2)将一次函数y=3x-2的 图 象 向 上 平 移4个单位,求平移后的图象与反比例函数图
象的交点坐标;
(3)请直接写出一个同时满足如下条件的函数解析式:
①函数的图象能由一次函数y=3x-2的图象绕点(0,-2)旋转一定角度得到;
②函数的图象与反比例函数的图象没有公共点.
17.已知反比例函数y=xk1图象的两个分支分别位于第一、第三象限.
(1)求k的取值范围;
(2)若一次函数y=2x+k的图象与该反比例函数的图象有一个交点的纵坐标是
4.
①求当x=-6时 反 比 例 函 数 y的值;
②当0<x<21时,求此时一次函数y的取值范围.
4
18.点P(1,a)在反比例函数xky的图象上,它关于y轴的对称点在一次函数42xy的图象
上,求此反比例函数的解析式。
19.某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20米和11米的矩形大厅内修
建一个60平方米的矩形健身房ABCD. 该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为
平面示意图),已知装修旧墙壁的费用为20元/平方米,新建(含装修)墙壁的费用为80元/平方
米. 设健身房的高为3米,一面旧墙壁AB的长为x米,修建健身房的总投入为y元.
(1)求y与x的函数关系式;
(2)为了合理利用大厅,要求自变量x必须满足8≤x≤12. 当投入资金为4800元时,问利用旧墙
壁的总长度为多少米?
A B
C D
11米
20米