陀螺仪原理
飞机陀螺仪原理

飞机陀螺仪原理
飞机陀螺仪是一种用于测量和保持飞机姿态的重要仪器。
其原理基于刚体力学和陀螺效应。
陀螺效应是指当旋转体受到外力作用时,会产生垂直于转动轴的力的现象。
飞机陀螺仪利用这一效应来测量和维持飞机的方向和角度。
飞机陀螺仪通常由陀螺仪旋转部分和感应部分组成。
旋转部分是一个高速旋转的陀螺,其转动轴与飞机的纵轴平行。
感应部分则通过与陀螺相连的机械装置将陀螺的旋转转化为指示仪上的角度。
当飞机发生姿态变化时,陀螺会受到力的影响而产生陀螺效应。
这会使得陀螺的旋转轴发生偏离,进而改变感应部分的位置。
感应部分则会将这个位置的变化转化为指示仪上的角度变化,从而显示飞机的姿态。
飞机陀螺仪的工作原理是基于惯性导航的概念。
陀螺仪不受外部力的影响,只受到飞机的姿态变化所产生的力的作用。
因此,它具有较高的精度和可靠性。
总的来说,飞机陀螺仪的原理是利用陀螺效应来测量和维持飞机的姿态。
通过感应部分将陀螺旋转的角度转化为指示仪上的角度变化,飞行员可以准确地了解飞机的姿态情况,从而做出相应的操作。
陀螺仪平衡原理

陀螺仪平衡原理陀螺仪是一种常见的惯性导航仪器,它通过测量和维持旋转的稳定性来实现导航和定位。
陀螺仪的平衡原理是其正常工作的基础,下面我们来详细介绍一下陀螺仪平衡原理。
首先,陀螺仪平衡原理的核心是要保持陀螺仪转子的旋转稳定。
陀螺仪转子通常是高速旋转的,而且要在运动中保持稳定,这就需要对转子进行平衡处理。
通常采用动平衡和静平衡的方法来实现陀螺仪的平衡。
动平衡是指在陀螺仪转子旋转时,通过在转子上加质量块或者调整质量分布的方式,使得转子在高速旋转时不产生不平衡力矩,从而保持稳定。
动平衡的关键是找到不平衡的位置,并在这些位置上进行平衡处理,通常需要借助专业的动平衡设备和技术来实现。
静平衡则是指在陀螺仪转子停止旋转时,通过调整转子的重心位置,使得转子在停止状态下不产生不平衡力矩。
静平衡通常通过在转子上加质量块或者调整质量分布的方式来实现,关键是找到转子的重心位置,并进行相应的平衡处理。
除了动平衡和静平衡外,还有一些其他的平衡方法,比如动静平衡结合、软平衡等,这些方法都是为了保持陀螺仪转子的稳定性,从而确保陀螺仪的正常工作。
在实际应用中,陀螺仪的平衡原理不仅仅局限于转子的平衡,还包括整个陀螺仪系统的平衡。
比如陀螺仪的支撑结构、外壳等部件都需要进行平衡处理,以确保整个陀螺仪系统的稳定性。
总的来说,陀螺仪平衡原理是保持陀螺仪转子和整个系统稳定的基础,通过动平衡、静平衡等方法来实现。
只有保持良好的平衡状态,陀螺仪才能正常工作,发挥其导航和定位的作用。
因此,在设计、制造和使用陀螺仪时,都需要严格遵循平衡原理,确保陀螺仪的稳定性和可靠性。
半球谐振陀螺仪原理

半球谐振陀螺仪原理导言:半球谐振陀螺仪是一种利用陀螺效应测量方向和角速度的设备。
它在导航、惯性导航系统、航空航天等领域具有重要的应用。
本文将介绍半球谐振陀螺仪的原理和工作机制。
一、陀螺效应的基本概念陀螺效应是指陀螺体在外力作用下发生的方向和角速度变化。
当陀螺体受到外力作用时,它会产生一个力矩,使其保持原来的方向和角速度。
这一现象被称为陀螺效应。
二、半球谐振陀螺仪的结构半球谐振陀螺仪由一个半球形陀螺体和悬挂装置组成。
陀螺体在悬挂装置的支撑下能够自由旋转。
当陀螺体受到外力作用时,它会发生方向和角速度的变化。
三、半球谐振陀螺仪的工作原理半球谐振陀螺仪利用陀螺效应来测量方向和角速度。
当陀螺体受到外力作用时,它会产生一个力矩,使其保持原来的方向和角速度。
通过测量力矩的大小和方向,可以确定外力的方向和角速度。
四、半球谐振陀螺仪的应用半球谐振陀螺仪在导航、惯性导航系统、航空航天等领域具有重要的应用。
它可以用来测量飞行器的方向和角速度,从而实现精确的导航和控制。
五、半球谐振陀螺仪的优势和局限性半球谐振陀螺仪具有体积小、重量轻、测量精度高等优点。
然而,它也存在一些局限性,例如对温度和振动敏感,需要进行定期校准和维护。
六、结论半球谐振陀螺仪是一种利用陀螺效应测量方向和角速度的设备。
它在导航、惯性导航系统、航空航天等领域具有重要的应用。
通过测量陀螺体受到的力矩,可以确定外力的方向和角速度。
尽管半球谐振陀螺仪具有一些局限性,但它仍然是一种非常有用的测量装置。
参考文献:。
电子陀螺仪原理

电子陀螺仪原理
电子陀螺仪是一种通过感应器和电子控制系统工作的设备,用于测量和检测物体的角度变化和转动。
它是基于陀螺原理设计的,陀螺现象是物体在旋转时会保持自身的方向不变的特性。
电子陀螺仪利用这一原理来测量和跟踪物体的转动。
电子陀螺仪主要由以下几个部分组成:
1. 陀螺仪传感器:陀螺仪传感器是电子陀螺仪的核心部分,通常采用微机电系统(MEMS)技术制造。
传感器内部包含一个微小的陀螺仪装置,通过测量装置的角速度来检测物体的转动。
2. 控制电路:控制电路负责接收和处理传感器传输的信号。
它会将传感器测得的角速度数据转换为电信号,并进行放大和滤波处理,以保证信号的准确性和稳定性。
3. 算法和软件:陀螺仪算法和软件对控制电路采集到的数据进行处理和分析。
它们使用数学模型和算法来计算物体的姿态和转动角度,并将这些信息提供给用户或其他系统使用。
当物体发生转动时,陀螺仪传感器会感应到角速度的变化。
传感器内部的陀螺仪装置会受到转动的力矩,产生一个预先设定的固定轴向的力矩,抵消外部力矩的作用。
这样,陀螺仪装置就能保持自身的方向不变,从而实现对物体转动的测量和检测。
电子陀螺仪具有很高的灵敏度和精度,能够实时地测量物体的
角速度和角度变化。
它广泛应用于导航系统、飞行器的姿态控制、无人机、机器人等领域,并在实际应用中发挥重要作用。
陀螺仪的原理与维修

陀螺仪的原理与维修
陀螺仪的原理是基于角动量守恒定律。
当物体绕某个轴旋转时,它的角动量是守恒的,即角动量的大小和方向在没有外力作用下保持不变。
陀螺仪利用这个原理测量物体的角速度和方向。
陀螺仪由一个旋转的转子和一个固定的外壳组成。
转子上有一个轴固定在外壳中,使其只能绕一个轴旋转。
当陀螺仪被旋转时,转子的角动量与旋转速度成正比。
通过测量转子的角动量,可以确定陀螺仪的旋转速度。
陀螺仪的维修主要包括以下几个方面:
1. 清洁:陀螺仪内部有许多精密的零件和传感器,如果受到灰尘或其它杂质的影响,会降低陀螺仪的精确度和灵敏度。
因此,定期对陀螺仪进行清洁是必要的。
2. 校准:陀螺仪在使用过程中可能会出现偏差,需要进行校准。
校准过程通常需要使用一些特定的设备或软件,按照指定的步骤进行操作。
3. 部件更换:如果陀螺仪的某些部件损坏或失效,可能需要进行更换。
更换部件需要搞清楚陀螺仪的结构和工作原理,并且掌握相应的技术操作方法。
4. 故障排除:当陀螺仪无法正常工作或出现故障时,需要进行故障排除。
排除故障的过程需要对陀螺仪进行仔细的检查和分析,找出问题所在,并采取相应的
措施修复。
需要注意的是,陀螺仪是一种精密的仪器,维修过程需要小心操作,以免进一步损坏或破坏其工作原理。
对于一般用户而言,最好将维修工作交给专业的技术人员进行。
陀螺仪的技术原理

陀螺仪的技术原理
陀螺仪是一种测量物体角速度的装置,通过测量物体围绕自身某个轴的角速度来判断物体相对于参考系的转动状态。
陀螺仪的技术原理基于陀螺效应。
当一个陀螺在一定角速度下绕着其自身的轴旋转时,轴会保持在原来的方向。
这是因为陀螺的自转产生了一个陀螺力矩,使得陀螺的自转轴倾斜,并使陀螺的自转轴始终保持与某个固定的方向相同。
利用这种陀螺效应,可以实现陀螺仪的测量原理。
陀螺仪内部有一个或多个旋转的陀螺,在运动时会产生陀螺力矩,从而使得陀螺的自转轴始终保持不变。
通过测量陀螺的自转轴相对于某个固定方向的角度变化,就能够测量出物体的角速度和转动状态。
现代陀螺仪主要分为机械式、光学式、电子式等几种类型。
机械式陀螺仪是利用机械滚动轴承使陀螺转动起来,光学式陀螺仪则是利用光学信号测量陀螺的角速度,电子式陀螺仪则是利用电子技术实现测量。
总的来说,陀螺仪的技术原理是基于陀螺效应,通过测量陀螺的自转轴相对于某个参考方向的角度变化,来测量物体的角速度和转动状态。
陀螺仪的工作原理及应用

陀螺仪的工作原理及应用1. 什么是陀螺仪?陀螺仪是一种测量和维持方向的装置。
它基于陀螺效应,通过测量旋转物体的角速度来确定方向。
陀螺仪通常由一个旋转的转子、感应器和电子处理器组成。
2. 陀螺仪的工作原理陀螺仪的工作原理基于陀螺效应。
陀螺效应是指当一个旋转物体受到作用力时,其轴会发生偏离,进而产生力矩来抵消外力。
陀螺仪利用这个原理来测量和维持方向。
具体而言,陀螺仪中的转子通过旋转产生角动量,并保持旋转轴不受外界力矩影响。
当陀螺仪发生旋转时,由于陀螺效应的作用,转子的旋转轴会发生偏移。
感应器会测量这个偏移量,并将其转化为电信号。
电子处理器会接收这些信号,并计算出陀螺仪的角速度和方向。
3. 陀螺仪的应用陀螺仪广泛应用于许多领域,包括但不限于以下几个方面:3.1 航空航天领域在航空航天领域,陀螺仪用于导航和姿态控制。
陀螺仪可以测量飞行器绕各个轴旋转的角速度和方向,并帮助飞行器保持稳定和正确的姿态。
3.2 汽车行业在汽车行业,陀螺仪可以用于车辆的导航和行为控制系统。
例如,陀螺仪可以测量车辆的转向角速度和方向,从而帮助车辆实时掌握方向信息,并提供更准确的导航和驾驶辅助功能。
3.3 智能手机和平板电脑陀螺仪还广泛应用于智能手机和平板电脑中。
这些设备中的陀螺仪可以感知设备的姿态和运动,并根据这些信息进行屏幕旋转、游戏姿态控制和虚拟现实等功能。
3.4 机器人技术在机器人技术中,陀螺仪被用作导航和姿态控制的重要组成部分。
陀螺仪可以帮助机器人定位、姿态控制和避障等关键任务。
3.5 其他领域此外,陀螺仪还被应用于激光测量、医疗设备、船舶导航等多个领域。
4. 陀螺仪的发展趋势随着技术的不断创新和发展,陀螺仪也在不断改进和进化。
目前的陀螺仪已经越来越小型化、精确化和高性能化。
未来,预计陀螺仪将会更小、更精确、更可靠,并且应用范围将会进一步扩大。
结论陀螺仪作为一种测量和维持方向的装置,基于陀螺效应工作,可广泛应用于航空航天、汽车行业、智能手机和平板电脑、机器人技术等多个领域。
振动陀螺仪的原理

振动陀螺仪的原理振动陀螺仪是一种基于旋转惯性原理工作的仪器,用于测量和检测物体的旋转运动。
它的工作原理是利用陀螺仪的转动稳定性和陀螺效应。
下面是对振动陀螺仪原理的详细介绍。
1. 陀螺效应:陀螺效应是指陀螺具有保持稳定旋转轴方向的倾向。
当陀螺受到外界作用力时,其转动轴会发生倾斜,但由于陀螺的旋转惯性,会产生一个与外力方向垂直的力矩,使陀螺重新保持稳定。
2. 工作原理:振动陀螺仪通常由陀螺转子、传感器和信号处理器等部分组成。
陀螺转子由一个通过支撑轴固定的旋转陀螺组成,通过电动机或马达驱动转子旋转。
转子在转动过程中,会受到外界物体旋转的影响,产生陀螺效应。
3. 转动稳定性:振动陀螺仪的工作基于陀螺转子的转动稳定性。
转子旋转时,保持相对刚性的旋转轴,受到外界力矩的影响会产生预cession和nutation两种运动。
预cession是转子旋转轴绕一个垂直于外部力矩的轴缓慢转动,其周期与外部力矩的大小和方向有关。
而nutation是转子轴线绕自身轴线产生的周期性变化。
4. 示性运动:振动陀螺仪中的传感器用于检测陀螺转子的示性运动,从而测量外界力矩对转子的影响。
传感器通常包括压电陶瓷、电容式传感器或光学的方式。
这些传感器可以感知转子的变形或运动,将其转化为相应的电信号,并传递给信号处理器进行处理。
5. 信号处理:信号处理器通常由模数转换器、滤波器、放大器和微处理器等组成。
模数转换器将模拟信号转换为数字信号,滤波器用于去除噪音和干扰,放大器用于放大信号强度,微处理器用于处理和分析信号,并可以输出陀螺仪的测量结果。
6. 应用领域:振动陀螺仪广泛应用于惯性导航、无人机、航天航空、车辆导航、工程测量和地质勘探等领域。
在这些领域中,振动陀螺仪可以提供精确的方向、位置和角速度等信息,用于实时监测和控制。
总结起来,振动陀螺仪的原理是基于陀螺效应和转动稳定性的。
它通过测量和检测陀螺转子的示意运动,实现对物体旋转运动的测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1)自由陀螺仪主轴不能指北的原因地球自转角速度的垂直分量w2使自由陀螺仪主轴相对子午面的视运动。
2)变自由陀螺仪为陀螺罗经的方法:控制力矩(controlling moment)(用My表示):为了克服由于地球自转角速度的垂直分量w2使自由陀螺仪主轴相对子午面的视运动,向陀螺仪施加的外力矩;控制力矩必须作用于陀螺仪的水平轴。
3)陀螺罗经获得控制力矩的方式按力矩的产生原理不同:直接产生法和间接产生法;按力矩的性质不同:重力控制力矩和电磁控制力矩;按力矩的产生方式不同:三大系列罗经的三种主要方式。
(1)安许茨系列罗经获得控制力矩的方式:将陀螺球重心下移的直接控制法获得控制力矩。
控制设备(controlling device):陀螺罗经产生控制力矩的设备(器件)。
陀螺球(gyrosphere):安许茨系列罗经是将双转子陀螺仪固定和密封在金属球内。
陀螺球具有主轴(ox轴)、水平轴(oy轴)和垂直轴(oz轴)。
陀螺球的重心G不在其中心O,而是沿垂直轴下移几毫米。
t = t1时,陀螺球位于A1处,此时主轴水平指东,q = 0,重力mg作用线通过陀螺仪中心O,重力mg不产生力矩(虽有力但力臂为零)。
t = t2时,随着地球自转,当,陀螺球位于A2处,此时主轴上升了一个q角(q ≠ 0),重力mg作用线不通过陀螺球中心O(有力臂a),重力mg的分力mgsinq 产生沿水平轴oy向的重力控制力矩My:My = mgsinq •a≈ mg a •q= M•qM = mga 最大控制力矩.控制力矩的大小与罗经结构参数和主轴高度角q 有关.控制力矩My使主轴产生进动速度u2,它使主轴正端自动找北(向子午面进动)。
根据赖柴尔定理:动量矩H矢端的线速度矢量u与外力矩矢量M大小相等方向相同:u = M陀螺罗经控制力矩My使罗经主轴产生的进动速度:u2= My = M•q安许茨系列罗经称为下重式陀螺罗经,控制力矩为重力力矩,属于机械摆式罗经。
(2)斯伯利系列罗经获得控制力矩的方式:在陀螺仪主轴两端,加装液体连通器(liquid communicating vessel)的直接控制法获得控制力矩。
控制力矩的产生的方式:液体连通器:斯伯利系列罗经产生控制力矩的设备是在陀螺仪主轴两端加装液体容器,内充一定液体,液体可在两个容器之间流动。
当陀螺仪工作,t = t1时,陀螺仪位于A1处,此时主轴水平指东,q = 0,两个容器中的液体数量相等,液体重力mg作用线通过陀螺仪中心O,重力mg不产生力矩。
随着地球自转,当t = t2 时,陀螺仪位于A2处,此时主轴上升了一个q角( q ≠0),低端容器中液体比高端容器中液体多,多余液体的重力mg作用线不通过陀螺仪中心O,力臂不为零,mg的分力mgsinq 产生沿水平轴oy 向的重力控制力矩My:My = 2R2Srgsinq≈2R2Srg •q= M•qM = 2RSrg为最大控制力矩。
液体连通器产生的控制力矩的大小与罗经结构参数和陀螺仪主轴高度角q有关。
控制力矩My沿oy轴的方向将随q角的方向而定,使主轴进动的速度用 u2表示,它使陀螺仪主轴负端自动找北(向子午面进动):u2 = My= M•q斯伯利系列罗经,为液体连通器罗经,重力力矩,机械摆式罗经。
(3)阿玛-勃朗系列罗经获得控制力矩的方式:采用电磁摆(electromagnetic pendulum)和水平力矩 (horizontal momentat device)的间接控制法获得控制力矩。
控制力矩的产生方式:阿玛-勃朗系列罗经的控制设备由电磁摆和位于陀螺球水平轴上的力矩器组成。
当陀螺球工作,t = t1时,若设陀螺球主轴水平指东,q = 0,电磁摆不输出摆信号,陀螺球水平轴的力矩器不工作,不向陀螺球施加控制力矩。
随着地球自转,当t = t2时,陀螺球主轴上升了一个角度(q ≠0),电磁摆输出摆信号,经水平放大器放大后,送给陀螺球水平轴上的力矩器,力矩器工作,向陀螺球水平轴施加电磁控制力矩My:My= Ky •qKy,罗经电控系数,由罗经结构参数决定,如摆信号放大倍数,力矩器的参数等。
控制力矩的大小,与罗经的结构参数和陀螺球主轴的高度角q有关。
罗经的结构参数可以改变,这是此种罗经的一大优点。
控制力矩My 沿oy轴的方向将随q的方向而定,它使陀螺球主轴正端自动找北(向子午面进动),主轴进动的速度:u2 = My= Ky•q阿玛-勃朗系列罗经是通过电磁摆和力矩器获得的电磁控制力矩,电控罗经。
4)陀螺罗经主轴的等幅摆动通过对自由陀螺仪施加控制力矩制成的陀螺罗经,罗经主轴只具有自动找北的能力而不能稳定指北,其自动找北的运动轨迹是呈扁平的椭圆轨迹。
这一椭圆运动轨迹的中心位于子午面内,椭圆的两长半轴相等,两短半轴也相等,因此椭圆运动轨迹是等幅椭圆。
罗经主轴作等幅椭圆运动(自由摆动)一周所需要的时间,称为陀螺罗经的自由摆动周期(period of free-oscillation)T0。
自由摆动周期T0的大小:T0 =2πHMwecosj式中ωe cosj为地球自转角速度ωe的水平分量。
陀螺罗经的自由摆动周期与罗经的结构参数(H、M)和纬度有关。
T0等于84.4min时,称为陀螺罗经的理想自由摆动周期,这时若船舶机动航行,船上的陀螺罗经将不产生第一类冲击误差。
理想自由摆动周期所对应的纬度称为陀螺罗经的设计纬度(chosen latitude)(j0),设计纬度是设计罗经时所选取的一特殊纬度。
例如安许茨4型罗经的设计纬度为60°。
4.使陀螺罗经稳定指北1)使陀螺罗经稳定指北的措施阻尼力矩(damping moment):为了使陀螺罗经稳定指北而对陀螺仪施加的力矩。
阻尼设备(damper))(阻尼器):陀螺罗经产生阻尼力矩的设备(器件)阻尼方式(damping mode):陀螺罗经将阻尼力矩施加在陀螺仪(球)的哪一轴上陀螺罗经的阻尼方式:水平轴阻尼方式(damping mode ofhorizotal axis)和垂直轴阻尼方式(damping dode of vertical axis)。
2)陀螺罗经获得阻尼力矩的方法按产生阻尼力矩的原理不同,分为直接阻尼法和间接阻尼法;按阻尼力矩的性质不同,分为重力阻尼力矩和电磁阻尼力矩;按三大系列罗经使用的阻尼设备不同,分为以下三种方式:(1)安许茨系列罗经获得阻尼力矩的方式采用液体阻尼器(liquid damping vessel)的直接阻尼法产生阻尼力矩的。
阻尼力矩的产生方式:液体阻尼器由固定在陀螺球主轴两端的两个相互连通的液体容器组成,内充一定数量的高粘度硅油。
连通两个容器的导管很细,使容器内液体流动滞后于主轴俯仰约四分之一个自由摆动周期(T04 )。
当罗经主轴自动找北时,主轴的俯仰使两个容器中的液体数量不相等,多余液体的重力在陀螺球水平轴产生阻尼力矩,属于水平轴阻尼方式。
阻尼力矩的大小用下式表示:MyD = C•c式中C称为最大阻尼力矩,由罗经结构参数决定。
c 称为多余液体角,阻尼力矩的最大效应导前于控制力矩的最大效应90°,也就是说阻尼力矩使罗经主轴始终向子午面方向进动,进动速度用u3表示:u3 = MyD= C•c在阻尼力矩的作用下,罗经主轴的方位角a和高度角q不断减小,最终使方位角a为零,罗经主轴稳定指北。
这种采用液体阻尼器获得阻尼力矩的罗经又称为液体阻尼器罗经。
(2)斯伯利系列罗经获得阻尼力矩的方式采用在陀螺球(仪)正西侧安放阻尼重物(damping weight)的直接阻尼法产生阻尼力矩。
阻尼力矩的产生方式:当罗经主轴自动找北时,主轴具有高度角q,阻尼重物的重力mg在陀螺球垂直轴产生重力阻尼力矩MZD,属于垂直轴阻尼方式。
阻尼力矩MZD的大小由下式表示:MZD = MD•qMZD,最大阻尼力矩,由罗经结构参数决定。
阻尼重物产生的阻尼力矩使罗经主轴向水平面方向进动,进动速度用u3表示,使主轴的高度角q不断减小,由于主轴的运动是连续运动,因此在主轴高度角q不断减小的同时,主轴的方位角a也随之减小,最终使主轴偏离子午面一个很小的方位角a稳定指北,u3的大小可由下式表示:u3= MzD= MD•q这种由阻尼重物获得阻尼力矩的罗经又称为重物阻尼罗经。
(3)阿玛-勃朗系列罗经获得阻尼力矩的方式采用电磁摆(electromagnetic pendulum)和垂直力矩器(vertical momental device)的间接阻尼法产生阻尼力矩。
阻尼力矩的产生方式:阻尼设备由电磁摆和位于陀螺球垂直轴上的垂直力矩器组成。
当罗经主轴自动找北时,主轴有高度角q,电磁摆输出摆信号,一部分摆信号经垂直放大器放大后,送到垂直力矩器,垂直力矩器工作,向陀螺球垂直轴施加电磁阻尼力矩MZD,属于垂直轴阻尼方式。
阻尼力矩MZD 大小:MZD = KZ•q式中KZ称为阻尼力矩系数,由罗经结构参数决定电磁摆和垂直力矩器产生的阻尼力矩,使罗经主轴向水平面进动,阻尼力矩使主轴进动的速度用u3表示,在使主轴高度角q减小的同时也按比例减了主轴的方位角a,最终使主轴偏离子午面一个很小的方位角a稳定指北,u3的大小:u3 = MZD= KZ•q3)陀螺罗经的启动过程陀螺罗经在控制力矩作用下能够自动找北,在此基础上,在阻尼力矩作用下,经过一定的时间就能够稳定指北。
陀螺罗经的适用纬度一般为80°以下,否则罗经指向精度降低或不能正常指向。
(1)阻尼曲线启动时间:陀螺罗经主轴在控制力矩和阻尼力矩的作用下,由指示任意方向到稳定指北所需要的时间。
阻尼运动:启动时间内,陀螺罗经主轴的运动,轨迹是一种逆时针收敛螺旋线。
阻尼曲线(damping curve):启动罗经时,由于船舶航向固定不动,记录器记录的航迹线就是罗经主轴的阻尼运动轨迹。
(2)阻尼周期(damping period ,TD)陀螺罗经主轴作阻尼运动一周所需要的时间:TD=4pH4HMwecosj-C2 陀螺罗经的阻尼周期的大小与罗经结构参数H、M(Ky)、C(MD或Kz)和纬度有关;阻尼周期的大小是决定陀螺罗经启动时间的因素之一。
(3)阻尼因数(damping factor,ƒ)陀螺罗经主轴作阻尼运动时,主轴偏离子午面以东(或以西)的方位角a最大值与相继偏离子午面以西(或以东)的方位角最大值之比:ƒ=a1a2 =a2a3 =……=anan+1陀螺罗经阻尼因数ƒ的大小由罗经结构参数决定,结构参数一定,其阻尼因数为定值。
各种陀螺罗经的阻尼因数ƒ可能不同,一般为2.5~4。
阻尼因数ƒ也是决定陀螺罗经启动时间的因素之一。
(4)启动时间启动陀螺罗经所需要的时间除了与阻尼周期TD和阻尼因数ƒ有关外,还与启动罗经时其主轴的初始方位角a0有关。