热释电大全
热释电效应原理简述

热释电效应原理简述热释电红外传感器通过目标与背景的温差来探测目标,其工作原理是利用热释电效应,即在钛酸钡一类晶体的上、下表面设置电极,在上表面覆以黑色膜,若有红外线间歇地照射,其表面温度上升△T,其晶体内部的原子排列将产生变化,引起自发极化电荷,在上下电极之间产生电压△U。
常用的热释电红外线光敏元件的材料有陶瓷氧化物和压电晶体,如钛酸钡、钽酸锂、硫酸三甘肽及钛铅酸铅等。
实质上热释电传感器是对温度敏感的传感器。
它由陶瓷氧化物或压电晶体元件组成,在元件两个表面做成电极。
在环境温度有ΔT的变化时,由于有热释电效应,在两个电极上会产生电荷ΔQ,即在两电极之间产生一微弱的电压ΔV。
由于它的输出阻抗极高,在传感器中有一个场效应管进行阻抗变换。
热释电效应所产生的电荷ΔQ会被空气中的离子所结合而消失,即当环境温度稳定不变时,ΔT=0,则传感器无输出。
当人体进入检测区,因人体温度与环境温度有差别,产生ΔT,则有ΔT输出;若人体进入检测区后不动,则温度没有变化,传感器也没有输出了。
所以这种传感器也称为人体运动传感器。
由实验证明,传感器不加光学透镜(也称菲涅尔透镜),其检测距离小于2m,而加上光学透镜后,其检测距离可增加到10m左右。
热释电红外感应传感器内部电路及工作原理热释电红外传感器内部由光学滤镜、场效应管、红外感应源(热释电元件)、偏置电阻、EMI电容等元器件组成,其内部电路如图1所示。
光学滤镜的主要作用是只允许波长在10μm左右的红外线(人体发出的红外线波长)通过,而将灯光、太阳光及其他辐射滤掉,以抑制外界的干扰。
红外感应源通常由两个串联或者并联的热释电元件组成,这两个热释电元件的电极相反,环境背景辐射对两个热释电元件几乎具有相同的作用,使其产生的热释电效应相互抵消,输出信号接近为零。
一旦有人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元件接收,由于角度不同,两片热释电元件接收到的热量不同,热释电能量也不同,不能完全抵消,经处理电路处理后输出控制信号。
热释电铁电篇

°C ° C ± 5° C 90° C ± 9° C → 4 mm 0 → mm2 − → 3m m3m 120
(立方) 顺电相
居里温度
(四方) 铁电相
(正交) 铁电相
(三方) 铁电相
罗息盐晶体:
顺电相 上铁电居里温度,24°C 铁电相
11
2.3.3 铁电性
铁电性
电介质晶体中,电偶极子由于它们的相互作用而产生自发平行排列的现象。这 种过程类似于铁磁性中所看到的磁偶极子的自发排列,因而得名铁电性。 原子构型是温度的函数,材料的极化状态将随温度的变化而 变化,这种性质称为热电性(Pyroelectrocity) ,热电性是所 有呈现自发极化的晶体的共性。 铁电体具有自发极化,且自发极化有两个或多个可能的取向, 在电场作用下,其取向可以改变,铁电体具有的这种性质叫 铁电性(Ferroelectricity),存在自发极化并不是铁电体的充 分条件。
与磁畴类似,铁电体是由铁电畴组成的。 晶体中铁电相的自发极化总是会分裂成一 系列极化方向不同的小区域,其自发极化 在外部空间建立的电场互相抵消,因而, 整个单晶对外不呈现电场。
相邻 畴极 化方 向相 差 180º 相邻 畴极 化方 向相 差 90º
24
2.3.3 铁电性
晶体的铁电性
铁电畴
铁电畴:铁电体从顺电相转变为铁电 相时具有自发极化,自发极化一致的 区域称为铁电畴铁 畴壁(Domain Wall):铁电畴之间的界 面称为畴壁。 为使体系的能量最低,各电畴的极化 方向通常“首尾相连”。
当在低于居里点的温度范围内,一条晶轴 (c轴) 伸长而其他晶轴缩短, 晶体变成四方晶格 (如图所示)。在这种情况下,由于发生极化,Ti4+离 子将沿着晶体单元的晶轴方向分布。 由于晶体结构的不对称而造成极化现象,在不施加外电场或压力的常温 情况下,这种极化现象就存在。这种类型的极化称为自发性极化现象。
热释电

12
脚2低电平,VT1截止,K断开
9
例:人体遥感灯光/门铃
10
11
参考文献: 1. 陈尔绍编,《传感器实用装置制作集锦》,人民 邮电出版社,2000年4月北京2版
2. “热释电红外自动测温系统研究”,《传感器世 界》,2001年2期
用HN911L热释电红外探测模块设计一个
自动门开启电路,当有人靠近时,门自动
LS-064
80 3300 —— 2.2~15 0.7 -30~70 -40~80 2×1 TO-5
LH1958
80 3500 8~14 3~15 1.0 -40~70 -40~80 2×1 TO-5
5
三、热释电红外探测模块
讨论:适合于移动人体的探测? _____ +++++ 体 _晶 __ __ +++++ _____ +++++ 体 _晶 __ __ +++++
传感器、 测量电路
人体静止
晶体
___ +++ 晶 _ _体 _ +++
对外不呈电性
人体移动
对外呈电性
自由电荷释放和补充:充放电现象
6
管脚
1 2 3 4、 5
功
能
输出(无信号:低电平,有信号:高电平) 输出(无信号:高电平,有信号:低电平) 电源(+5V) 增益调节 地
HN911型
6
7
名 称
电源电压 传感响应度 传感水平视角 传感垂直视角 放大器增益(dB) 放大器频宽(Hz) 输出延时(s) 静态电流(uA) 工作温度(℃) 保存温度(℃) 监控距离(m)
4-2 热释电材料与器件

4.2.3 热释电材料制备方法 TGS热释电单晶一般是通过降低温度法生长晶体,
对TGS饱和溶液进行缓慢降温,降低溶解度产生过饱和 以长出大尺寸优质单晶。LT单晶与铌酸锶钡单晶都是用 提拉法从熔体中生长的。热释电陶瓷的制备方法与压电 陶瓷的制备方法基本一致,都经过配料-混合磨细-预烧二次细磨-造粒-成型-排塑-烧结成形-外形加工-被电极-高 压极化-性能测试的流程。热释电薄膜的制备方法有溅射 法、脉冲激光沉积法、溶胶-凝胶法、流延法等。
热释电温度/红外辐射传感器其结构如图所示,一般由以 下部件构成:一个菲涅尔透镜,用来聚焦红外线,减少环境 中的红外辐射的干扰,并且将检测区域分为可见区和盲区, 当物体移动时,能产生变化的电信号;
热释电红外传感器结构与器件示意图
一个多层膜干涉滤光片,滤掉可见光和无线电波,只 让红外线经过菲涅尔透镜和滤光片照到热释电材料上;
在室温下工作的非制冷红外焦平面阵列(UFPA)是 红外热像仪的核心器件,UFPA由一个个铁电场效应晶体 管探测器构成,其中的铁电薄膜的极化受红外辐射而变化 时,漏极电流也随之发生变化。热释电探测器的性能参数 是影响整机性能的关键因素,包括响应率、噪声、噪声 等效功率、噪声等效温差、探测率、最小可分辨温度和 热响应时间等。UPFA基的红外热像仪已经广泛应用于工 业监测探测、战场侦察监视探测与瞄准、红外搜索与跟踪、 消防与环境监测、医疗诊断、海上救援、遥感等领域。
4.2.4 热释电材料器件 例1 温度/红外辐射传感器
任何物体只要温度高于0K,就会向外辐射红外线,温 度越高,红外辐射越强,而且能够显著地被物体吸收转变 成热量。当热释电温度/红外辐射传感器检测范围物体内有 温度变化时,就会使传感器内的热释电材料温度发生变化, 在两个电极表面产生电荷和电压,检测电压大小,就能获 知物体的温度变化量。热释电传感器拥有价格低廉,性能 稳定,可远距离/非接触探测的优点,在防盗报警、火灾警 报、非接触式开关、红外探测等领域广泛应用。
热释电效应的原理与进展

利用热释电效应的原理,开发出可用于生物医学领域的传 感器、成像技术和治疗设备等。
01
环境监测领域
利用热释电效应检测环境中的温度变化, 开发探测领域
在航天探测领域,可以利用热释电效 应检测宇宙中的红外辐射,为航天器 的制导、导航和通信提供支持。
THANKS FOR WATCHING
能量转换器件
热释电能量转换器件利用热释电效应将热能转换为电能,是 一种高效、环保的能源利用方式。
热释电能量转换器件具有能量转换效率高、结构简单、易于 维护等优点,可应用于太阳能发电、余热回收等领域。
03 热释电效应的研究进展
高性能热释电材料的研究
新型热释电材料的探索
科研人员不断探索新型热释电材料,如钛酸 钡、锆钛酸铅等,以提高热释电性能。
热释电制冷
02
利用热释电材料将电能转换为机械能,实现快速制冷效果,可
用于电子设备散热、食品保鲜等领域。
热释电在新能源领域的其他应用
03
如热释电在太阳能利用、地热发电等领域的应用研究,探索其
在新能源领域更广泛的应用前景。
04 热释电效应面临的挑战与 展望
热释电材料性能的进一步提升
探索新型热释电材料
热释电效应的原理与进展
目 录
• 热释电效应的原理 • 热释电效应的应用 • 热释电效应的研究进展 • 热释电效应面临的挑战与展望
01 热释电效应的原理
热释电效应的定义
热释电效应是指某些材料在温度变化 时,由于晶体结构或晶格常数的变化 ,会在材料内部产生电荷的现象。
这种电荷通常被称为热释电电流或热 电电流,其大小与温度变化速率和材 料本身的性质有关。
优化器件结构设计
通过改进和优化热释电能量转换器件的结构设计,提高其能量转 换效率和稳定性。
热释电材料

热释电材料
热释电材料,又称热敏电阻材料,是一种可以将热能转换为电能的新
型材料。
这类材料具有体积小,重量轻,电阻可调等优点,可用于温度检
测和温度控制。
热释电材料一般由半导体或绝缘体材料制成,其特性是温度升高时,
其电阻会随之增大,从而改变电路的工作状态,从而产生温度信号。
目前
常见的热释电材料有硅质热释电材料、聚苯乙烯材料、多元聚合物热释电
材料、硫化橡胶、碳酸钙热释电材料等。
硅质热释电材料是目前应用最广泛的热释电材料,其特点是湿性强、
温度灵敏度高、温度稳定性好,但热稳定性差、电阻变化率低。
多元聚合物热释电材料,其热释电效应是由其含水量决定的,其电阻
敏感度高,劣质的多元聚合物热释电材料劣质程度很高,会因湿气的变化
而产生电阻变化,会影响温度信号的可靠性。
碳酸钙热释电材料是一种热敏电阻新型材料,与传统热敏电阻材料相比,它具有更好的热稳定性。
如果湿度过大,它的热敏效应会降低,因此
也不能用于低温环境。
热释电材料得到了广泛应用,可用于各种温度检测和温度控制系统中。
随着新型材料的出现,热释电材料将会发挥更大的作用,为社会的发展贡
献力量。
热释电原理

热释电原理热释电现象是指当物体中存在温度梯度时,会发生电荷分布的现象。
这种电势差被称为热释电电势差。
热释电效应是一种源于非平衡热力学理论的自然现象。
在很多实际应用中,热释电现象被用来实现物体温度测量、红外探测、长距离无线通讯和防盗技术等。
本文将介绍热释电原理及其在实际应用科技领域中的应用。
我们先来了解一下热释电效应发生的基本原理。
从微观角度上讲,这种效应产生的根源,是由于电荷的热扰动及其在材料中电子散射行为引起的。
如果物体中存在温度差异,其中光电活性材料就会发生外部电场的修正行为,也就是产生所谓的热释电电势差。
这种电势差与温度的梯度成正比。
热释电效应的产生还与材料中的电子特性有很大的关系。
在低温下,材料的导电性非常小,甚至可以达到绝缘状态,因此称为绝缘体。
当材料被加热时,由于电子在材料中移动速度的增加及其能隙的缩小,材料就会逐渐变成一种导体,并产生电子热荷运动。
在这种情况下,热释电效应就会出现。
与其他物理现象不同的是,热释电电势是不依赖于材料形状及其大小的,也与传统的热电效应有所不同。
在热电效应中,温度梯度对电势的影响仅限于材料的两端,而在热释电效应中,电势的变化却可以遍及整个材料的各个部分。
热释电现象所形成的电势差,可以被用来测量材料表面或周围环境的温度差异。
在现代科技中,人们采用热释电相机进行红外成像是一种很常见的方法。
这种相机利用热释电效应在材料表面形成的电势差来显示物体的红外图像,从而实现可见光不可见的热像识别。
这种技术在很多领域中广泛应用,如科研、环保、军事、交通等领域。
在防盗技术领域,热释电原理也被广泛应用。
在一些保密场所或者公共场所,安装了热感应器可以实现自动检测,警示系统以及视频监控等功能。
当存在人或者其他动态物体时,产生的热释电信号可以被热感应器检测到,并转化成电信号,再由相应的处理器和警示器进行指示和警告。
热释电效应是一种基于非平衡态热力学理论的自然现象,它具有广泛的应用及研究价值,并被广泛应用于红外成像技术、长距离无线通信、防盗技术等诸多领域。
一级热释电电流和二级热释电电流 -回复

一级热释电电流和二级热释电电流-回复什么是热释电效应?热释电效应是指某些材料在温度变化时产生电压的现象。
这种效应是由于温度变化引起材料中电荷分布不均匀而产生的。
根据热释电效应的原理和机制,研究人员分别发现了一级热释电电流和二级热释电电流。
一级热释电电流是指在温度快速变化时产生的电流。
当温度迅速升高或降低时,材料中的电荷会由于热运动而重新分布,进而产生电流。
这种电流的产生速度非常快,通常在纳秒或亚纳秒的范围内。
二级热释电电流是指在温度缓慢变化时产生的电流。
当材料的温度变化较为缓慢时,热释电效应也会相应地发生变化。
由于温度的缓慢变化,材料中的电荷重新分布的速度较慢,电荷聚集和扩散的过程比较明显,因此产生的电流也相对较慢。
一级热释电电流和二级热释电电流的产生机制略有不同。
一级热释电电流主要是由于温度变化导致电荷的热扩散效应,即温度变化引起电荷的非平衡。
二级热释电电流则主要是由于温度导致电荷的重新分布和扩散过程,即电荷由于热运动在材料中的重新分布。
对于一级热释电电流而言,材料的特性是至关重要的。
一些具有高比例系数和快速起伏响应的材料,如单晶体和压电材料,通常比其他材料产生更高强度的一级热释电电流。
而对于二级热释电电流而言,材料的特性以及温度变化的速率和幅度都起着重要作用。
通常情况下,温度变化较快且幅度较大的材料会产生更高强度的二级热释电电流。
热释电效应在科学研究和技术应用中具有广泛的应用前景。
通过利用热释电效应,可以开发出各种热电传感器、热电转换器和热电发电装置,用于测量温度、产生电能等。
同时,一级热释电电流和二级热释电电流也是研究红外探测器、光学和电子器件等领域的重要手段。
总而言之,热释电效应是指在温度变化过程中产生的电压现象。
一级热释电电流是在温度快速变化时产生的电流,而二级热释电电流是在温度缓慢变化时产生的电流。
这两种类型的电流产生机制略有不同,受到材料特性和温度变化速率的影响。
研究这些电流的产生机制有助于深入理解热释电效应,并推动相关领域的科学研究和技术应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.2 热释电红外传感器热释电红外(PIR)传感器,亦称为热红外传感器,是一种能检测人体发射的红外线的新型高灵敏度红外探测元件。
它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。
将输出的电压信号加以放大,便可驱动各种控制电路,如作电源开关控制、防盗防火报警等。
目前市场上常见的热释电人体红外线传感器主要有上海赛拉公司的SD02、PH5324,德国Perkinelmer 公司的LHi954、LHi958,美国Hamastsu公司的P2288,日本Nippon Ceramic公司的SCA02-1、RS02D等。
虽然它们的型号不一样,但其结构、外型和特性参数大致相同,大部分可以彼此互换使用。
热释电红外线传感器由探测元、滤光窗和场效应管阻抗变换器等三大部分组成,如图3-29所示。
对不同的传感器来说,探测元的制造材料有所不同。
如SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3 制成。
将这些材料做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容。
因为这两个小电容是做在同一硅晶片上的,因此形成的等效小电容能自身产生极化,在电容的两端产生极性相反的正、负电荷。
传感器中两个电容是极性相反串联的。
图3-29 双探测元热释电红外传感器当传感器没有检测到人体辐射出的红外线信号时,在电容两端产生极性相反、电量相等的正、负电荷,所以,正负电荷相互抵消,回路中无电流,传感器无输出。
当人体静止在传感器的检测区域内时,照射到两个电容上的红外线光能能量相等,且达到平衡,极性相反、能量相等的光电流在回路中相互抵消,传感器仍然没有信号输出。
当人体在传感器的检测区域内移动时,照射到两个电容上的红外线能量不相等,光电流在回路中不能相互抵消,传感器有信号输出。
综上所述,传感器只对移动或运动的人体和体温近似人体的物体起作用。
滤光窗是由一块薄玻璃片镀上多层滤光层薄膜而成的,能够有效地滤除7.0~14um波长以外的红外线。
人体的正常体温为36~37.5℃,即309~310.5K,其辐射的最强的红外线的波长为λm=2989/(309~310.5)=9.67~9.64um,中心波长为9.65um,正好落在滤光窗的响应波长的中心。
所以,滤光窗能有效地让人体辐射的红外线通过,而最大限度地阻止阳光、灯光等可见光中的红外线的通过,以免引起干扰。
热释电红外传感器在结构上引入场效应管的目的在于完成阻抗变换。
由于探测元输出的是电荷信号,不能直接使用,因而需要将其转换为电压形式。
场效应管输入阻抗高达104MΩ,接成共漏极形式来完成阻抗变换。
使用时D端接电源正极,G端接电源负极,S端为信号输出。
对于移动速度非常缓慢的物体,如阳光,两个电容上的红外线光能能量仍然可以看作是相等的,在回路中相互抵消;再加上传感器的响应频率很低(一般为0.1~10Hz),即传感器对红外光的波长的敏感范围很窄(一般为5~15um),因此,传感器对它们不敏感,因而无输出。
被动式红外报警器主要由光学系统、热释电红外传感器、信号滤波和放大、信号处理和报警电路等几部分组成,其结构框图如图3-30所示。
图中,菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。
当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而加强其能量幅度。
热释电红外传感器是报警器设计中的核心器件,它可以把人体的红外信号转换为电信号以供信号处理部分使用;信号处理主要是把传感器输出的微弱电信号进行放大、滤波、延迟、比较,为报警功能的实现打下基础。
图3-30 报警器的结构框图图3-31是将待测目标、菲涅尔透镜、热释电红外传感器相结合使用时的工作原理示意图。
人体辐射的红外线中心波长为9~10um,而探测元件的波长灵敏度在0.2~20um范围内几乎稳定不变。
在传感器顶端开设了一个装有滤光镜片的窗口,这个滤光片可通过光的波长范围为7~10um,正好适合于人体红外辐射的探测,而对其它波长的红外线由滤光片予以吸收,这样便形成了一种专门用作探测人体辐射的红外线传感器。
图3-31 人体通过传感器产生的信号BISS0001是一款高性能的传感信号处理集成电路。
静态电流极小,配以热释电红外传感器和少量外围元器件即可构成被动式的热释电红外传感器,广泛用于安防、自控等领域能。
BISS0001是由运算放大器、电压比较器、状态控制器、延迟时间定时器以及封锁时间定时器等构成的数模混合专用集成电路,内部电路如图3-32所示。
使用时,根据实际需要,利用运放OP1组成传感信号预处理电路,将信号放大。
然后耦合给运放OP2,再进行第二级放大,同时将直流电位抬高为V M(≈0.5VDD)后,将输出信号V2送到由比较器COP1和COP2组成的双向鉴幅器,检出有效触发信号Vs。
由于V H≈0.7VDD、V L≈0.3VDD,所以,当VDD=5V 时,可有效抑制±1V的噪声干扰,提高系统的可靠性。
COP3是一个条件比较器。
当输入电压Vc>V R时,COP3输出为高电平,进入延时周期。
当A端接“0”电平时,在Tx时间内任何V2的变化都被忽略,直至Tx时间结束,即所谓不可重复触发工作方式。
当Tx时间结束时,Vo下跳回低电平,同时启动封锁时间定时器而进入封锁周期Ti。
在Ti时间内,任何V2的变化都不能使Vo跳变为有效状态(高电平),可有效抑制负载切换过程中产生的各种干扰。
图3-32 BISS0001内部电路图BISS0001的典型应用电路如图3-33所示。
运算放大器OP1将热释电红外传感器的输出信号作第一级放大,然后由C3耦合给运算放大器OP2进行第二级放大,再经由电压比较器COP1和COP2构成的双向鉴幅器处理后,检出有效触发信号Vs去启动延迟时间定时器,输出信号Vo经晶体管T1放大驱动继电器去接通负载。
R3为光敏电阻,用来检测环境照度。
当作为照明控制时,若环境较明亮,R3的电阻值会降低,使9脚的输入保持为低电平,从而封锁触发信号Vs。
SW1是工作方式选择开关,当SW1与1端连通时,芯片处于可重复触发工作方式;当SW1与2端连通时,芯片则处于不可重复触发工作方式。
输出延迟时间Tx由外部的R9和C7的大小调整,值为Tx≈24576xR9C7;触发封锁时间Ti由外部的R10和C6的大小调整,值为Ti≈24xR10C6。
图3-33 BISS0001典型应用电路热释电效应原理简述热释电红外传感器通过目标与背景的温差来探测目标,其工作原理是利用热释电效应,即在钛酸钡一类晶体的上、下表面设置电极,在上表面覆以黑色膜,若有红外线间歇地照射,其表面温度上升△T,其晶体内部的原子排列将产生变化,引起自发极化电荷,在上下电极之间产生电压△U。
常用的热释电红外线光敏元件的材料有陶瓷氧化物和压电晶体,如钛酸钡、钽酸锂、硫酸三甘肽及钛铅酸铅等。
实质上热释电传感器是对温度敏感的传感器。
它由陶瓷氧化物或压电晶体元件组成,在元件两个表面做成电极。
在环境温度有ΔT的变化时,由于有热释电效应,在两个电极上会产生电荷ΔQ,即在两电极之间产生一微弱的电压ΔV。
由于它的输出阻抗极高,在传感器中有一个场效应管进行阻抗变换。
热释电效应所产生的电荷ΔQ会被空气中的离子所结合而消失,即当环境温度稳定不变时,ΔT=0,则传感器无输出。
当人体进入检测区,因人体温度与环境温度有差别,产生ΔT,则有ΔT输出;若人体进入检测区后不动,则温度没有变化,传感器也没有输出了。
所以这种传感器也称为人体运动传感器。
由实验证明,传感器不加光学透镜(也称菲涅尔透镜),其检测距离小于2m,而加上光学透镜后,其检测距离可增加到10m左右。
热释电红外感应传感器内部电路及工作原理热释电红外传感器内部由光学滤镜、场效应管、红外感应源(热释电元件)、偏置电阻、EMI电容等元器件组成,其内部电路如图1所示。
光学滤镜的主要作用是只允许波长在10μm左右的红外线(人体发出的红外线波长)通过,而将灯光、太阳光及其他辐射滤掉,以抑制外界的干扰。
红外感应源通常由两个串联或者并联的热释电元件组成,这两个热释电元件的电极相反,环境背景辐射对两个热释电元件几乎具有相同的作用,使其产生的热释电效应相互抵消,输出信号接近为零。
一旦有人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元件接收,由于角度不同,两片热释电元件接收到的热量不同,热释电能量也不同,不能完全抵消,经处理电路处理后输出控制信号。
热释电效应同压电效应类似,是指由于温度的变化而引起晶体表面电荷的现象。
热释电红外传感器由陶瓷氧化物或压电晶体元件组成,在元件两个表面做成电极,在传感器监测范围内温度有△T的变化时,热释电效应会在两个电极上产生电荷△Q,即在两电极之间产生一微弱的电压△V。
由于它的输出阻抗极高,在传感器中有一个场效应管进行阻抗变换。
热释电效应所产生的电荷△Q会被空气中的离子所结合而消失,即当环境温度稳定不变时,△T=O,传感器无输出。
在自然界,任何高于绝对温度(-273℃)时物体都将产生红外光谱,不同温度的物体,其释放的红外能量的波长是不一样的,因此红外波长与温度的高低有关。
人体或者体积较大的动物都有恒定的体温,一般在37度,所以会发出特定波长10μm左右的红外线,当人体进入检测区,因人体温度与环境温度有差别,人体发射的10μm左右的红外线通过菲涅耳透镜滤光片增强后聚集到红外感应源(热释电元件)上,红外感应源在接收到人体红外辐射时就会失去电荷平衡,向外释放电荷,进而产生△T并将△T向外围电路输出,后续电路经检测处理后就能产生报警信号。
若人体进入检测区后不动,则温度没有变化,传感器也没有信号输出,所以这种传感器适合检测人体或者动物的活动情况。
热释电红外传感器常用型号目前常用的热释电红外传感器型号主要有P228、LHl958、LHI954、RE200B、KDS209、PIS209、LHI878、PD632等。
热释电红外传感器通常采用3引脚金属封装,各引脚分别为电源供电端(内部开关管D 极,DRAIN)、信号输出端(内部开关管S极,SOURCE)、接地端(GROUND)。
常见的热释电红外传感器外形如图2所示。
热释电红外传感器的主要参数:热释电红外传感器的主要工作参数有:工作电压:常用的热释电红外传感器工作电压范围为3~15V;工作波长:通常为7.5~14 μm;源极电压:通常为0.4~1.1V,R=47kΩ;输出信号电压:通常大于2.0V;检测距离:常用热释电红外传感器检测距离约为6~10m;水平角度:约为120°;工作温度范围:-10℃~+40℃。