蛋白质工程的应用及发展
蛋白质工程技术在生产中的应用

蛋白质工程技术在生产中的应用蛋白质工程技术是一种快速发展的生物技术,它不仅可以解决传统蛋白质生产过程中所存在的诸多问题,提升了工业化生产的效率和质量,更重要的是,它在医药、食品、环境、工业等领域的广泛应用,为人类带来了诸多福利。
本文将介绍蛋白质工程技术在生产中的应用。
一、蛋白质工程技术简介蛋白质工程技术是一种基于遗传工程、蛋白质化学和结构生物学的生物技术,在这个技术领域中,生物学家和化学家通过对蛋白质分子结构和功能的深入研究,发现了很多改变蛋白质分子结构和性质的方法,并运用这些方法对基因进行修改,从而实现对蛋白质产量、纯度、活性、稳定性、抗原性等方面的调控和提升。
二、蛋白质工程技术在医药领域的应用1、生产重组蛋白目前,生产重组蛋白是蛋白质工程技术在医药领域的主要应用之一。
复杂的蛋白质在传统的人工合成方法中难以得到大量的高质量的纯品,而重组DNA技术可以通过改变基因序列从而使得蛋白质在微生物生产的过程中得以大量表达。
在此基础上,通过蛋白纯化技术,可以得到高纯度、高效性的重组蛋白。
目前,重组蛋白已被广泛用于疫苗和药物的生产,如造血因子、生长激素、转化因子等,为治疗多种疾病提供了新的选择。
2、制备抗体类生物制品除了生产重组蛋白外,蛋白质工程技术还可用于开发抗体类生物制品,如单克隆抗体(mAb)等。
mAb是一种重要的抗体治疗药物,通过对基因进行修饰,可以使其在体内产生高效、特异性强的抗体,并对多种癌症、自身免疫性疾病等病症的治疗有着重要的作用。
3、开发新型蛋白质药物蛋白质药物是一类新颖而有效的药物,通过蛋白质工程技术,可以开发出更多种类的蛋白质药物,具有高效、靶向、可调节等优点。
以激动剂为例,这种具有高效、短效、剂量可控等特点的药物,在治疗高胰岛素同型性低血糖症、肿瘤、肺炎等方面有着广泛的应用前景。
三、蛋白质工程技术在食品领域的应用1、生产乳清蛋白粉乳清蛋白是一种高蛋白质、低脂肪、低糖的营养食品,具有免疫调节、抗氧化、增强肌肉力量等多种功效。
蛋白质工程技术的应用与展望

蛋白质工程技术的应用与展望申请人注:本文将从蛋白质工程技术的发展历程、主要应用及前景三个方面来探讨该技术的意义以及未来走向。
蛋白质工程技术的应用与展望蛋白质工程技术是指利用基因工程、分子生物学等手段对蛋白质进行设计、改造或制造的技术。
伴随着生物技术的快速发展,蛋白质工程技术在科研、临床、工业和农业等领域得到广泛应用。
本文将从蛋白质工程技术的发展历程、主要应用及前景三个方面来探讨该技术的意义以及未来走向。
一、蛋白质工程技术的发展历程蛋白质工程技术的前身可以追溯到20世纪初的血清学和免疫学。
20世纪50年代末60年代初,人们发现酶分子的构象可以影响其催化性质,为蛋白质工程技术奠定了基础。
1975年,科学家富尔克首次通过重组DNA技术合成人工基因,并将其成功导入大肠杆菌中进行表达和产生胰岛素前体。
20世纪80年代,人们开始研究基因工程制造抗体和蛋白质半合成等技术。
而到了21世纪,蛋白质工程技术得到飞速发展,被广泛应用于生命科学和临床药物开发等领域。
二、蛋白质工程技术的主要应用1. 生命科学领域蛋白质工程技术可以通过调节蛋白质的结构、组装或物理化学特性等方面,来研究蛋白质生物学过程以及其功能。
在生物技术研究和合成生物学领域,蛋白质工程技术被广泛应用于构建分子工厂、代谢工程、人工酶的设计以及高通量筛选等方面。
2. 药品制造领域蛋白质工程技术是目前最重要的药物开发技术之一,特别是生物制药领域。
通过基因重组技术,可以合成大量的重组蛋白和单克隆抗体,从而生产出更加安全、高效、纯净的生物制品。
此外,通过蛋白质工程技术,还可以有效改善药品的药代和药效学特性,推进药品的临床前研究和开发。
3. 工业应用领域蛋白质工程技术可以在工业化生产过程中被广泛使用。
举个例子,工程菌株利用蛋白质工程技术来转化生物质,或者通过改变酶的催化特性等方面来降低能源消耗并提高产物的产量和质量。
此外,蛋白质工程技术在食品工业中的应用也逐渐发展起来。
蛋白质工程及其在食品工业中的应用

蛋白质工程的重要性
解决食品短缺问题
开发新型食品添加剂
通过蛋白质工程,可以设计和生产出 具有高营养价值和良好口感的新型食 品,满足不断增长的人口需求。
蛋白质工程可用于开发新型食品添加 剂,如乳化剂、增稠剂和稳定剂等, 以改善食品加工和保藏性能。
提高食品品质
蛋白质工程有助于改善食品的营养成 分、口感、质地和稳定性,提高食品 品质和满足消费者需求。
蛋白质工程及其在食品工业 中的应用
目录
• 蛋白质工程概述 • 蛋白质工程的基本技术 • 蛋白质工程在食品工业中的应用 • 蛋白质工程面临的挑战与解决方
案 • 未来展望
01
蛋白质工程概述
定义与特性
定义
蛋白质工程是通过改变蛋白质的遗传 编码来设计和生产具有特定性质和功 能的蛋白质的技术。
特性
蛋白质工程具有高度定向性、可预测 性和可控制性,能够针对特定需求对 蛋白质进行改造和优化。
高效的设计和生产,为食品工业和其他领域的发展提供更多可能性。
02
蛋白质工程的基本技术
蛋白质的定向进化
总结词
通过模拟自然进化过程,对蛋白质进行体外定向进化,以获得具有特定性质和 功能的蛋白质。
详细描述
定向进化技术利用基因突变和选择机制,对蛋白质进行大规模的突变和筛选, 以找到具有优良性质的突变体。该技术可以应用于食品工业中,以改善食品的 口感、质地、稳定性等特性。
详细描述
蛋白质工程需要遵守各国政府制定的相关法 规和监管要求,以确保所生产的食品符合法 律标准。同时,蛋白质工程还需要与政府和 监管机构保持密切沟通,及时了解法规和监 管要求的变化,以便及时调整生产策略。
05
未来展望
提高蛋白质工程的效率和精准度
论述新型蛋白质的开发与利用及其应用前景。

论述新型蛋白质的开发与利用及其应用前景。
近年来,随着生物技术的飞速发展,新型蛋白质的开发与利用成为了生物学研究的热点之一。
新型蛋白质具有广泛的应用前景,不仅可以用于药物研发和治疗,还可以应用于农业、环境保护和材料科学等领域,为人类的生活和健康带来巨大的影响。
一、新型蛋白质的开发与利用1. 基因工程技术的发展为新型蛋白质的开发提供了重要的手段。
通过对基因的改造、合成和表达,可以创造出具有特定功能的新型蛋白质。
例如,在药物研发领域,科学家可以通过基因工程技术制备出具有特定药效的蛋白质,用于治疗疾病。
2. 蛋白质工程技术的进步为新型蛋白质的利用提供了可能。
通过对蛋白质的结构和功能进行改造,可以使其具有更好的稳定性、活性和选择性,从而提高其在各个领域的应用效果。
例如,利用蛋白质工程技术可以研发出更安全、更有效的生物药物,为疾病的治疗带来新的希望。
二、新型蛋白质的应用前景1. 在药物研发领域,新型蛋白质具有广阔的应用前景。
传统的小分子药物往往存在副作用大、疗效不佳等问题,而新型蛋白质药物具有更高的靶向性和选择性,可以减少副作用,提高疗效。
同时,新型蛋白质药物还可以应用于个性化医疗,根据患者的基因信息制定个体化的治疗方案,提高治疗效果。
2. 在农业领域,新型蛋白质可以用于改良作物的性状和品质。
通过转基因技术,可以向作物中导入具有抗虫、抗病、耐盐碱等特性的新型蛋白质,提高作物的产量和抗逆性,从而增加粮食供应和改善农业生产。
3. 在环境保护领域,新型蛋白质可以被应用于生物修复和废水处理。
一些微生物产生的酶类蛋白质具有降解有机污染物和重金属离子的能力,可以被用于土壤修复和水体净化,帮助解决环境污染问题。
4. 在材料科学领域,新型蛋白质可以用于制备生物材料和仿生材料。
一些具有特殊结构和功能的蛋白质可以被用来构建纳米材料、超级材料和智能材料,具有广泛的应用前景。
例如,利用蛋白质的自组装性质可以制备出具有特定结构和功能的纳米颗粒,用于药物传递和组织工程等领域。
蛋白质工程的应用与前景

蛋白质工程的应用与前景随着科技的不断进步,蛋白质工程已经成为生命科学领域中的一项热门研究方向。
蛋白质是生命体中最基础、最重要的化学分子,它们承担着生物化学反应和细胞通讯等关键功能。
通过蛋白质工程技术,人们能够精确地控制和定制蛋白质的结构和功能,以满足不同的应用需求。
本文将从蛋白质工程的定义、应用和前景等方面进行阐述。
一、蛋白质工程的定义蛋白质工程是指通过重组 DNA 技术,对蛋白质的基因进行改造和优化,从而制造出特定结构和功能的蛋白质。
该技术主要通过以下几种手段实现:1.基因克隆:将目标蛋白质的基因从原生体或合成 DNA 中扩增、纯化并进行人工重组处理,得到新蛋白质。
2.点突变:通过人为干预点突变、插入或缺失等方式改变蛋白质的氨基酸序列,以调节其结构和功能。
3.融合蛋白:将目标蛋白质与其他蛋白质或片段融合,从而制造出新结构和功能的蛋白质。
蛋白质工程技术的优势在于能够制造出特定结构和功能的蛋白质,满足不同的应用需求。
例如,在医药领域中,研究人员使用该技术制造出带有特定抗体的蛋白质,用于诊断疾病和治疗患者。
在农业领域中,研究人员利用该技术将外源基因成功地转化到农作物基因上,使得农作物具有更强的抗病性、耐旱性和产量等特点。
二、蛋白质工程的应用1.医药领域在医药领域中,蛋白质工程已经成为研究人员制造药物的重要手段。
研究人员利用该技术制造出带有特定抗体的蛋白质,用于诊断疾病和治疗患者。
例如,利用蛋白质工程技术制造出的人造胰岛素,不仅能够有效治疗糖尿病,而且还可以减少副作用,提高药物的安全性和稳定性。
2.农业领域在农业领域中,蛋白质工程也有广泛的应用。
研究人员利用该技术将外源基因成功地转化到农作物基因上,使得农作物具有更强的抗病性、耐旱性和产量等特点。
例如,基于该技术,研究人员制造出具有高产量、种子不掉粒、非转基因等特点的水稻新品种,从而为生态农业的发展提供了新的思路和方法。
3.工业领域在工业领域中,蛋白质工程也具有广泛的应用。
蛋白质工程技术的研究与应用

蛋白质工程技术的研究与应用近年来,随着科技的不断发展和进步,人们对于生命科学的研究和应用越来越深入,其中一个重要的方向就是蛋白质工程技术。
蛋白质作为生命体的基本组成部分,它的研究和应用一直是生命科学领域的重要课题,而蛋白质工程技术的出现,则为人们提供了更多的可能性和发展空间。
一、蛋白质工程技术的研究和发展蛋白质工程技术是指对蛋白质分子进行人工改造和设计,使其具有更符合人类需求的性质、结构和功能的技术。
这种技术主要通过对蛋白质分子的基因序列、空间构象、化学结构等方面进行调整和改变,从而获得具备特定功能或性质的新型蛋白质。
蛋白质工程技术的研究和发展已经成为了当今生命科学领域的热点之一。
目前,蛋白质工程技术主要包括以下几种类型:1. 蛋白质表达与纯化技术。
这是蛋白质工程技术中最基础的一种类型,它主要是通过对蛋白质基因进行重组和表达,在细胞内大量生产目标蛋白质,并对其进行提纯和纯化,从而获得高品质的蛋白质样品。
2. 蛋白质结构与构象解析技术。
这种技术主要是通过利用X射线晶体学、核磁共振等技术手段对蛋白质样品的结构和构象进行精细分析和解析,从而了解其在三维空间中的构成和结构特点。
3. 蛋白质设计与改造技术。
这种技术主要是通过对蛋白质基因和分子结构进行人工设计和改造,从而获得具有一定特殊功能或属性的新型蛋白质。
二、蛋白质工程技术的应用蛋白质工程技术的应用领域非常广泛,涵盖了生物制药、生物能源、生物催化、食品、保健品等多个领域。
下面简单介绍一下其中几个比较重要的应用领域。
1. 生物制药领域。
蛋白质工程技术在生物制药领域的应用非常广泛,可以用于生产各种治疗性蛋白质、抗体、酶等生物制剂,从而为临床治疗提供更好的选择和有效的帮助。
2. 生物能源领域。
蛋白质工程技术可以用于生产能量生产生物质,如生物柴油、生物气和生物酒精等,从而代替传统的化石能源,降低对环境的污染和损害。
3. 食品和保健品领域。
蛋白质工程技术可以用于生产具有特殊功能的新型蛋白质,如特殊食品原料、保健品成分等。
高三知识点生物蛋白质工程

高三知识点生物蛋白质工程生物蛋白质工程是现代生物技术领域的一个重要分支,它的出现对于改善人类生活质量、促进医药发展具有重要的意义。
本文将探讨高三生物知识中的蛋白质工程,深入了解其原理、应用和未来发展。
一、蛋白质工程的概念和原理蛋白质工程是通过改变蛋白质的结构和功能,利用现代生物技术手段,创造具备特定功能和特性的新型蛋白质,或者改进现有蛋白质的性质和表达方式。
其原理主要通过研究蛋白质的结构和功能关联,以及蛋白质的基因序列来实现。
二、蛋白质工程的应用1. 药物研发:蛋白质工程在药物研发中发挥了重要的作用。
通过改造蛋白质的结构和功能,可以提高药物的有效性和生物利用度,降低副作用和毒性,进一步提高药物的安全性和疗效。
2. 农业领域:蛋白质工程可以用于农业生产中,通过改变植物的基因表达,使其在抗病虫害、抗逆境等方面具有更好的性能,从而提高作物的产量和质量。
3. 工业应用:蛋白质工程在工业领域中也得到了广泛应用。
例如,通过改造微生物菌株的基因,制造出能够高效产生酶的工业微生物,用于生产生物降解剂、生物染料等工业原料。
4. 环境保护:蛋白质工程可以应用于环境保护领域。
例如,通过改良植物和微生物的基因,使其具有更强的污染物降解能力,从而实现土壤和水体的修复和净化。
三、蛋白质工程的挑战与前景尽管蛋白质工程在各个领域中具有广泛的应用前景,但仍然面临一些挑战。
首先是基因编辑技术的不完善,目前的技术存在着剪切效率低、难以定点编辑等问题;其次是目前对于蛋白质结构与功能的理解还不够深入,限制了蛋白质设计和修饰的效果;此外,生物安全问题也是蛋白质工程发展中需要重视的问题。
然而,蛋白质工程仍然被广泛认为是生物技术的热点领域,它的发展前景十分广阔。
随着技术不断进步,蛋白质工程有望为医学、农业、环境保护等领域的问题提供更好的解决方案。
例如,疫苗的研发、治疗性蛋白质的生产和应用,都将得到更大的突破和进展。
结语蛋白质工程是一门融合了生物学、化学、医学等多学科知识的科学技术。
蛋白质工程的发展与应用

蛋白质工程的发展与应用
蛋白质工程是由美国科学家棕熊·苏利文于1993年发表的论文中提出的一种分子技术和工程学,它通过对蛋白质构型和功能的了解来设计结构和功能完美结合的新蛋白(产品),解决人类面临的科学、技术和工程问题。
随着蛋白质研究的深入探索,蛋白质工程的研究也得到了快速发展,它不仅研究了蛋白质的构象、组成原理、功能性能、生物合成及调控等,而且还涉及从基因、蛋白质的构象与功能方面研究和分析,并最终在生物医学中应用和发展蛋白质工程技术。
蛋白质工程技术在生物医学领域能够广泛应用,其代表性应用有抗体生物制品、抗原表位工程、抗生素研究、疗法疫苗、基因治疗等。
抗体生物制品,是指利用蛋白质的技术来设计、表达和分析抗体,从而实现特异性检测;抗原表位工程,是指利用蛋白质技术结合抗原分子,从而实现高效、特异性检测;抗生素研究,是利用蛋白质技术来开发出更加安全、有效的抗生素,其中结合细菌膜蛋白包括:膜蛋白A,膜蛋白B,和膜蛋白M;疗法疫苗,是指采用细胞治疗或病毒载体来提供肿瘤抗原抗性;而基因治疗技术则通过蛋白质工程的手段来开发出基因缺陷的基因表达。
同样,蛋白质工程还在农业和食品行业中有着丰富的应用。
农业行业主要利用蛋白质表达技术来改良作物的抗逆性和种子质量等。
此外,在食品行业中也使用蛋白质来降低食品的分离时间、改善食品的结构和口感、保证食品营养效果、延长食品保质期等。
因此,蛋白质工程不仅可以应用于生物医学领域,而且还可以把它应用到农业和食品等行业中,进一步丰富人们的健康、美容、环保等领域。
总之,蛋白质工程是畅通了现代生物医学和农业食品工业研发的通道,它的发展将有力推动现代科技的发展,从而为人类带来更多的科学应用利益。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质工程的研究进展和展望农业与生物工程学院07级3班向文宝摘要:蛋白质工程是生物工程中五大工程之一,本文对蛋白质工程作了简要概述,介绍了蛋白质工程的特点,并从蛋白质结构分析结构、功能的设计和预测、蛋白的创造和改造等方面对蛋白质工程研究内容进行详细论述,并以实例作了蛋白工程的应用。
关键词:蛋白质工程特点;研究内容;实际应用;展望蛋白质是生命的体现者,离开了蛋白质,生命将不复存在。
可是,生物体内存在的天然蛋白质,有的往往不尽人意,需要进行改造。
由于蛋白质是由许多氨基酸按一定顺序连接而成的,每一种蛋白质有自己独特的氨基酸顺序,所以改变其中关键的氨基酸就能改变蛋白质的性质。
而氨基酸是由三联体密码决定的,只要改变构成遗传密码的一个或两个碱基就能达到改造蛋白质的目的。
蛋白质工程的一个重要途径就是根据人们的需要,对负责编码某种蛋白质的基因重新进行设计,使合成的蛋白质变得更符合人类的需要。
这种通过造成一个或几个碱基定点突变,以达到修饰蛋白质分子结构目的的技术,称为基因定点突变技术。
蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科的基础之上,融合了蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。
其内容主要有两个方面:根据需要合成具有特定氨基酸序列和空间结构的蛋白质;确定蛋白质化学组成、空间结构与生物功能之间的关系。
在此基础之上,实现从氨基酸序列预测蛋白质的空间结构和生物功能,设计合成具有特定生物功能的全新的蛋白质,这也是蛋白质工程最根本的目标之一。
目前,蛋白质工程尚未有统一的定义。
一般认为蛋白质工程就是通过基因重组技术改变或设计合成具有特定生物功能的蛋白质。
实际上蛋白质工程包括蛋白质的分离纯化,蛋白质结构和功能的分析、设计和预测,通过基因重组或其它手段改造或创造蛋白质。
从广义上来说,蛋白质工程是通过物理、化学、生物和基因重组等技术改造蛋白质或设计合成具有特定功能的新蛋白质。
1概念按人们意志改变蛋白质的结构和功能或创造新的蛋白质的过程。
包括在体外改造已有的蛋白质,化学合成新的蛋白质,通过基因工程手段改造已有的或创建新的编码蛋白质的基因去合成蛋白质等。
为获得的新蛋白具备有意义的新性质或新功能,常对已知的其他蛋白质进行模式分析或采取分子进化等手段。
2 蛋白质工程基本途径从预期的蛋白质功能出发→设计预期的蛋白质结构→推测应有的氨基酸序列→找到相对应的脱氧核苷酸(基因)3 蛋白质工程研究内容3.1蛋白质结构分析蛋白质工程的核心内容之一就是收集大量的蛋白质分子结构的信息,以便建立结构与功能之间关系的数据库,为蛋白质结构与功能之间关系的理论研究奠定基础。
三维空间结构的测定是验证蛋白质设计的假设即证明是新结构改变了原有生物功能的必需手段。
晶体学的技术在确定蛋白质结构方面有了很大发展,但是最明显的不足是需要分离出足够量的纯蛋白质(几毫克~几十毫克),制备出单晶体,然后再进行繁杂的数据收集、计算和分析。
另外,蛋白质的晶体状态与自然状态也不尽相同,在分析的时候要考虑到这个问题。
核磁共振技术可以分析液态下的肽链结构,这种方法绕过了结晶、X-射线衍射成像分析等难点,直接分析自然状态下的蛋白质的结构。
现代核磁共振技术已经从一维发展到三维,在计算机的辅助下,可以有效地分析并直接模拟出蛋白质的空间结构、蛋白质与辅基和底物结合的情况以及酶催化的动态机理。
从某种意义上讲,核磁共振可以更有效地分析蛋白质的突变。
国外有许多研究机构正在致力于研究蛋白质与核酸、酶抑制剂与蛋白质的结合情况,以开发具有高度专一性的药用蛋白质。
3.2结构、功能的设计和预测根据对天然蛋白质结构与功能分析建立起来的数据库里的数据,可以预测一定氨基酸序列肽链空间结构和生物功能;反之也可以根据特定的生物功能,设计蛋白质的氨基酸序列和空间结构。
通过基因重组等实验可以直接考察分析结构与功能之间的关系;也可以通过分子动力学、分子热力学等,根据能量最低、同一位置不能同时存在两个原子等基本原则分析计算蛋白质分子的立体结构和生物功能。
虽然这方面的工作尚在起步阶段,但可预见将来能建立一套完整的理论来解释结构与功能之间的关系,用以设计、预测蛋白质的结构和功能。
创造和改造蛋白质的改造,从简单的物理、化学法到复杂的基因重组等等有多种方法。
物理、化学法:对蛋白质进行变性、复性处理,修饰蛋白质侧链官能团,分割肽链,改变表面电荷分布促进蛋白质形成一定的立体构像等等;生物化学法:使用蛋白酶选择性地分割蛋白质,利用转糖苷酶、酯酶、酰酶等去除或连接不同化学基团,利用转酰胺酶使蛋白质发生胶连等等。
以上方法只能对相同或相似的基团或化学键发生作用,缺乏特异性,不能针对特定的部位起作用。
采用基因重组技术或人工合成DNA,不但可以改造蛋白质而且可以实现从头合成全新的蛋白质。
蛋白质是由不同氨基酸按一定顺序通过肽键连接而成的肽构成的。
氨基酸序列就是蛋白质的一级结构,它决定着蛋白质的空间结构和生物功能。
而氨基酸序列是由合成蛋白质的基因的DNA序列决定的,改变DNA序列就可以改变蛋白质的氨基酸序列,实现蛋白质的可调控生物合成。
在确定基因序列或氨基酸序列与蛋白质功能之间关系之前,宜采用随机诱变,造成碱基对的缺失、插入或替代,这样就可以将研究目标限定在一定的区域内,从而大大减少基因分析的长度。
一旦目标DNA明确以后,就可以运用定位突变等技术来进行研究。
4蛋白质工程的实际应用4.1提高蛋白质的稳定性葡萄糖异构酶(GI)在工业上应用广泛,为提高其热稳定性,朱国萍等人在确定第138位甘氨酸(Gly138)为目标氨基酸后,用双引物法对GI基因进行体外定点诱变,以脯氨酸(Pro138)替代Gly138,含突变体的重组质粒在大肠杆菌中表达,结果突变型GI比野生型的热半衰期长一倍;最适反应温度提高10~12℃;酶比活相同。
据分析,Pro替代Gly138后,可能由于引入了一个吡咯环,该侧链刚好能够填充于Gly138附近的空洞,使蛋白质空间结构更具刚性,从而提高了酶的热稳定性。
4.2蛋白质活性的改变通常饭后30~60min,人血液中胰岛素的含量达到高峰,120~180min内恢复到基础水平。
而目前临床上使用的胰岛素制剂注射后120min后才出现高峰且持续180~240min,与人生理状况不符。
实验表明,胰岛素在高浓度(大于10-5mol/L)时以二聚体形式存在,低浓度时(小于10-9mol/L)时主要以单体形式存在。
设计速效胰岛素原则就是避免胰岛素形成聚合体。
类胰岛素生长因子-I(IGF-I)的结构和性质与胰岛素具有高度的同源性和三维结构的相似性,但IGF-I不形成二聚体。
IGF-I的B结构域(与胰岛素B链相对应)中B28-B29氨基酸序列与胰岛素B链的B28-B29相比,发生颠倒。
因此,将胰岛素B链改为B28Lys-B29Pro,获得单体速效胰岛素。
该速效胰岛素已通过临床实验。
4.3治癌酶的改造癌症的基因治疗分二个方面:药物作用于癌细胞,特异性地抑制或杀死癌细胞;药物保护正常细胞免受化学药物的侵害,可以提高化学治疗的剂量。
疱症病毒(HSV)胸腺嘧啶激酶(TK)可以催化胸腺嘧啶和其他结构类似物如GANCICLOVIR和ACYCLOVIR无环鸟苷磷酸化。
GANCICLOVIR和ACYCLOVIR缺少3`端羟基,就可以终止DNA的合成,从而杀死癌细胞。
HSV -TK催化GANCICLOVIR和ACYCLOVIR的能力可以通过基因突变来提高。
从大量的随机突变中筛选出一种,在酶活性部位附近有6个氨基酸被替换,催化能力分别提高43和20倍。
O6-烷基-鸟嘌呤是DNA经烷基化剂(包括化疗用亚硝基药物)处理以后形成的主要诱变剂和细胞毒素,所以这些亚硝基药物的使用剂量受到限制。
O6-烷基-鸟嘌呤-DNA烷基转移酶O6-Alkylguanine-DNAalkyltransferase(AGT)能够将鸟嘌呤O6上的烷基去除掉,起到保护作用。
通过反向病毒转染,人类AGT在鼠骨髓细胞中表达并起到保护作用。
通过突变处理,得到一些正突变AGT基因且活性都比野生型的高,经检查发现一个突变基因中的第139位脯氨酸被丙氨酸替代。
4.5嵌合抗体和人缘化抗体免疫球蛋白呈Y型,由二条重链和二条轻链通过二硫键相互连接而构成。
每条链可分为可变区(N端)和恒定区(C端),抗原的吸附位点在可变区,细胞毒素或其他功能因子的吸附位点在恒定区。
每个可变区中有三个部分在氨基酸序列上是高度变化,在三维结构上是处在β折叠端头的松散结构(CDR),是抗原的结合位点,其余部分为CDR的支持结构。
不同种属的CDR结构是保守的,这样就可以通过蛋白质工程对抗体进行改造。
5蛋白质工程进展当前,蛋白质工程是发展较好、较快的分子工程。
这是因为在进行蛋白质分子设计后,已可应用高效的基因工程来进行蛋白的合成。
最早的蛋白工程是福什特(Forsht)等在1982—1985年间对酪氨酰—t—RNA合成酶的分子改造工作。
他根据XRD(X射线衍射)实测该酶与底物结合部位结构,用定位突变技术改变与底物结合的氨基酸残基,并用动力学方法测量所得变体酶的活性,深入探讨了酶与底物的作用机制。
佩里(Perry)1984年通过将溶菌酶中Ile(3)改成Cys(3),并进一步氧化生成 Cys(3)-Cys(97)二硫键,使酶热稳定性提高,显著改进了这种食品工业用酶的应用价值。
1987年福什特通过将枯草杆菌蛋白酶分子表面的Asp(99)和Glu(156)改成Lys,而导致了活性中心His(64)质子pKa从7下降到6,使酶在pH=6时的活力提高10倍。
工业用酶最佳pH的改变预示可带来巨大经济效益。
蛋白工程还可对酶的催化活性、底物专一性、抗氧化性、热变性、碱变性等加以改变。
由此可以看出蛋白工程的威力及其光辉前景。
上述各例是通过对关键氨基酸残基的置换与增删进行蛋白工程的一类方法。
另一类是以某个典型的折叠进行“从头设计”的方法。
1988年杜邦公司宣布,成功设计并合成了由四段反平行α—螺旋组成为73个氨基残基的成果。
这显示,按人们预期要求,通过从头设计以折叠成新蛋白的目标已是可望又可及了。
预测结构的模型法,在奠定分子生物学基础时起过重大作用。
蛋白的一级结构,包含着关于高级结构的信息这一点已日益明确。
结合模型法,通过分子工程来预测高级结构,已成为人们所瞩目的问题了。
6蛋白质工程前景蛋白质工程取得的进展向人们展示出诱人的前景。
例如,科学家通过对胰岛素的改造,已使其成为速效型药品。
如今,生物和材料科学家正积极探索将蛋白质工程应用于微电子方面。
用蛋白质工程方法制成的电子元件,具有体积小、耗电少和效率高的特点,因此有极为广阔的发展前景。