两角和与差化积公式

两角和与差化积公式
两角和与差化积公式

和差化积、积化和差、万能公式

正、余弦和差化积公式 指高中数学三角函数部分的一组恒等式 sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】 以上四组公式可以由积化和差公式推导得到 证明过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 因为 sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 设α+β=θ,α-β=φ 那么 α=(θ+φ)/2, β=(θ-φ)/2 把α,β的值代入,即得 sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2] 编辑本段正切的和差化积 tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明) cotα±cotβ=sin(β±α)/(sinα·sinβ) tanα+cotβ=cos(α-β)/(cosα·sinβ) tanα-cotβ=-cos(α+β)/(cosα·sinβ) 证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ) =sin(α±β)/(cosα·cosβ)=右边 ∴等式成立 编辑本段注意事项 在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次口诀 正加正,正在前,余加余,余并肩 正减正,余在前,余减余,负正弦 反之亦然

两角和与差的正弦公式的有趣证明

两角和与差的正弦公式的有趣证明 江苏省泰州市朱庄中学曹开清 225300 一、勾股定理的一个证明与两角和的正弦公式 如图1(a),在一个边长为a+b的大正方形中,放置了4个两直角边长分别为a、b,斜边长为c的直角三角形,显然图中小正方形的面积等于c2.现在我们将图1(a)中的 4 个直角三角形移位,拼成图1(b),显然图1(b)中两个较小的正方形的面积之和等于a2+b2.因为图1(a)与图1(b)中空白部分的面积相等,所以有a2+b2=c2,亦即证明了勾股定理. 我觉得这是勾股定理众多证明方法之中,最简单的一个证明了.不仅如此,它其实还有着另外一个用途,并不是每一个人都能发现的.现在将上面两个图“压扁”,成为图2: 如图2(a),原来的正方形变成了一个平行四边形,它的面积是mnsin(α+β),其中m 、n 分别是相邻两个直角三角形斜边的长度.如图2(b),原来的两个正方形变成了两个矩形,其

面积之和是msin α·ncos β+mcos α·nsin β.与上面一样,图2(a)与图2(b)中空白部分的面积相等,所以有mnsin(α+β)=msin α·ncos β+mcos α·nsin β,化简得sin(α+β)=sin αcos β+sin αcos β,这就是三角学中最重要的两角和的正弦公式.在这里,勾股定理和两角和的正弦公式竟来自相同的证明方法! 二、无意中导出两角差的正弦公式 邻居有个小孩,一次拿了他的作业本来问我.题目是这样的:如图,AD ⊥BD ,∠ACD =α,∠ABD =β,BC =a ,则AD =___________. 他的答案是)sin(sin sin βαβ α-?a ,但他的老师给他打了个“×”.我问他是怎么做的?他马上写了起来: 在ΔABC 中,BC =a ,∠ABC =β,∠BAC =α―β,根据正弦定理,得 )sin(sin βαβ-=a AC , 即)sin(sin βαβ-=a AC . 在RtΔACD 中,) sin(sin sin sin βαβαα-=?=a AC AD . 我说对啊!他却说老师的正确答案是:αβcot cot -= a AD .解题过程如下: 在RtΔABD 中,βcot ?=AD BD ;在RtΔACD 中,αcot ?=AD CD , 所以a CD BD AD =-=-)cot (cot αβ, 即α βcot cot -=a AD .

积化和差与和差化积公式

积化和差与和差化积公式 田云江 [基本要求] 能推导积化和差与和差化积公式,但不要求记忆,能熟练地综合运用两类公式解决有关问题。 [知识要点] 1、积化和差公式: sinαsinβ=-[cos(α+β)-cos(α-β)] cosαcosβ=[cos(α+β)+cos(α-β)] sinαcosβ=[sin(α+β)+sin(α-β)] cosαsinβ=[sin(α+β)-sin(α-β)] 积化和差公式是由正弦或余弦的和角公式与差角公式通过加减运算推导而得。其中后两个公式可合并为一个: sinαcosβ=[sin(α+β)+sin(α-β)] 2、和差化积公式 sinθ+sinφ=2sin cos sinθ-sinφ=2cos sin cosθ+cosφ=2cos cos

cosθ-cosφ=-2sin sin 和差化积公式是积化和差公式的逆用形式,要注意的是: ①其中前两个公式可合并为一个:sinθ+sinφ=2sin cos ②积化和差公式的推导用了“解方程组”的思想,和差化积公式的推导用了“换元”思想。 ③只有系数绝对值相同的同名函数的和与差,才能直接运用公式化成积的形式,如果一个正弦与一个余弦的和或差,则要先用诱导公式化成同名函数后再运用公式化积。 ④合一变形也是一种和差化积。 ⑤三角函数的和差化积,可以理解为代数中的因式分解,因此,因式分解在代数中起什么作用,和差化积公式在三角中就起什么作用。 3、积化和差与积差化积是一种孪生兄弟,不可分离,在解题过程中,要切实注意两者的交替使用。如在一般情况下,遇有正、余弦函数的平方,要先考虑降幂公式,然后应用和差化积、积化和差公式交替使用进行化简或计算。和积互化公式其基本功能在于:当和、积互化时,角度要重新组合,因此有可能产生特殊角;结构将变化,因此有可能产生互消项或互约因式,从而利于化简求值。正因为如此“和、积互化”是三角恒等变形的一种基本手段。 [例题选讲] 1、求下列各式的值 ①cos40°+cos60°+cos80°+cos160° ②cos23°-cos67°+2sin4°+cos26° ③csc40°+ctg80° ④cos271°+cos71°cos49°+cos249° 解:①cos40°+cos60°+cos80°+cos160° =+cos80°+2cos100°cos60° =+cos80°-cos80°=

两角和与差的余弦公式证明

两角和与差的余弦公式的五种推导方法之对比 沈阳市教育研究院王恩宾 两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式 基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往 往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同 的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、 解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法 设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β. 过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β 的正弦、余弦的线段来表示OM. 过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂 足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB +CP=OA cosα+AP sinα=cosβcosα+sinβsinα. 综上所述,. 说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推 导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推 广问题. 方法二:应用三角形全等、两点间的距离公式推导差角公式的方法

设P1(x1,y1),P2(x2,y2),则有|P1P2 |= . 在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、. ∵,且, ∴,∴, ∴ , ∴, ∴,. 说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点, 建立起等式关系,通过将等式的化简、变形就可以得到符合要求 的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.

积化和差与和差化积公式(教师版)

积化和差与和差化积公式(教师版)

积化和差与和差化积公式、和角、倍半角公式复习课 一、基本公式复习 1、两角和与差公式及规律 sin()sin cos cos sin .cos()cos cos sin sin .tan tan tan(). 1tan tan αβαβαβαβαβαβαβ αβαβ ±=±±=±±= m m 2二倍角公式及规律 3、积化和差与和差化积公式 1 sin cos [sin()sin()].2αβαβαβ=++- 1 cos sin [sin()sin()].2αβαβαβ=+-- 1 cos cos [cos()cos()].2αβαβαβ=++- 1 sin sin [cos()cos()].2 αβαβαβ=-+-- sin sin 2sin cos .22 αβαβ αβ+-+= 222221cos cos .222cos .1cos 21cos sin .222sin .1cos 2 tan .21cos αα αααααααα+?=????-???±==?????-??=?+? 2 sin 2sin 2cos ,sin .1sin (sin cos ).2cos 2cos 22 ααααααααα?==±=± sin 22sin cos .ααα= 2222cos 2cos sin 2cos 112sin .ααααα=-=-=- 22tan tan 2.1tan ααα =- cos cos 2cos cos .22αβαβαβ+-+= sin sin 2cos sin .22αβαβαβ+--= cos cos 2sin sin .22αβαβαβ+--=- 生动的口诀:(和差化积) 口诀 正加正,正在前,余加余,余并肩 正减正,余在前,余减余,负正弦 反之亦然

积化和差、和差化积记忆口诀及相关练习题

整理为word格式

1.下列等式错误的是( ) A.sin(A+B)+sin(A-B)=2sin A cos B 整理为word格式

B.sin(A+B)-sin(A-B)=2cos A sin B C.cos(A+B)+cos(A-B)=2cos A cos B D.cos(A+B)-cos(A-B)=2sin A cos B 2.sin15°sin75°=( ) A.1 8 B. 1 4 C. 1 2 D.1 3.sin105°+sin15°等于( ) A. 3 2 B. 2 2 C. 6 2 D. 6 4 4.sin37.5°cos7.5°=________. 5.sin70°cos20°-sin10°sin50°的值为( ) A.3 4 B. 3 2 C. 1 2 D. 3 4 整理为word格式

整理为word 格式 6.cos72°-cos36°的值为( ) A .3-2 3 B.12 C .-1 2 D .3+23 7.在△ABC 中,若sin A sin B =cos 2 C 2 ,则△ABC 是( ) A .等边三角形 B .等腰三角形 C .不等边三角形 D .直角三角形 8.函数y =sin ? ? ???x -π6cos x 的最大值为( ) A.12 B.14 C .1 D.2 2 9.若cos(α+β)cos(α-β)=1 3,则cos 2α-sin 2β等于( ) A .-23 B .-13 C.13 D.23 10.函数y =sin ? ? ???x +π3-sin x (x ∈[0,π2])的值域是( )

两角和与差的正弦公式教案(高教版拓展模块)

1.1.2 两角和与差的正弦公式 一、教学目标 ⒈掌握两角和与差的正弦公式的推导过程; ⒉培养学生利用公式求值、化简的分析、转化、推理能力; ⒊发展学生的正、逆向思维能力,构建良好的思维品质。 二、教学重、难点 1. 教学重点:两角和与差的正弦公式的应用; 2. 教学难点:公式的的推导及逆用 三、教学设想: (一)复习式导入: 大家首先回顾一下两角和与差的余弦公式: ()cos cos cos sin sin αβαβαβ+=-; ()cos cos cos sin sin αβαβαβ-=+. 这是两角和与差的余弦公式,下面大家思考一下两角和与差的正弦公式是怎样的呢? (二)探讨过程: 我们根据两角差的余弦公式可以得到: cos()cos cos sin sin sin 222π π π αααα-=+= 提示:我们可以利用上式实现正弦、余弦的互化,这对我们解决今天的问题有帮助吗? 让学生动手完成两角和与差正弦公式的推导. ()()sin cos cos cos cos sin sin 2222ππππαβαβαβαβαβ??????????+=-+=-+=-+- ? ? ??????????????? sin cos cos sin αβαβ=+. ()()()()sin sin sin cos cos sin sin cos cos sin αβαβαβαβαβαβ -=+-=-+-=-???? 由此得到两角和与差的正弦公式: ()sin sin cos cos sin αβαβαβ+=+ ()sin sin cos cos sin αβαβαβ-=- 让学生观察并记忆两角和与差正弦公式,并思考与两角和与差的余弦公式的联系与区别。 (三)例题讲解 例1、利用和、差角正弦公式求sin 75,sin15的值. 解:分析:把75,15构造成两个特殊角的和、差. 12sin 75sin(3045)sin 30cos 45cos30sin 452=+=+=?+=

积化和差和和差化积公式记忆窍门

积化和差 sina*cosb=(sin(a+b)+sin(a-b))/2 cosa*sinb=(sin(a+b)-sin(a-b))/2 cosa*cosb=(cos(a+b)+cos(a-b))/2 sina*sinb=-(cos(a+b)-cos(a-b))/2 和差化积 sinx+siny=2sin((x+y)/2)*cos((x-y)/2) sinx-siny=2cos((x+y)/2)*sin((x-y)/2) cosx+cosy=2cos((x+y)/2)*cos((x-y)/2) cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2) 我们背公式时往往要么不是死记硬背,要么便是不停的推导增强熟练度来记忆,其实我们可以通过公式的逻辑结构来记忆,这个公式其实对于高中生用得更多一些,不久前做了一道满综合的题目是无意中想起了当时总结的记忆法,只要大家按我说的方法来记忆,保证20秒内牢记这些公式,下面我来说说记忆的方法: 对于积化合差公式来说,首要的原则是,等号左边的若异名,等号右边全是sin,等号左边同名,等号右边全是cos,其次,右边中间的和与差取决于左边第二项,若是cos,则是+,若是sin,则是-,最后记得sin*sin时要添上一个负号。 对于和差化积公式来说,第一,若等号左边全是sin,则右边异名,若等号左边全是cos,则等号右边同名,第二,等号左边中间的正负号决定了右边第二项,若是正,则是cos,若是负,则是sin,然后可以根据第一条原则写出完整的右边式子,最后记得cos-cos要添一个负号。 希望对大家有所帮助,小弟班门弄斧了。。。。。

两角和与差的正切公式

第4课时两角和与差的正切公式 【教学目标】 1、掌握用同角三角函数关系式推导岀两角和与差的正切公式 2、会用两角和与差的正切公式求非特殊角的正切值 3、应用两角和与差的正切公式进行计算、化简、证明 【教学重点与难点】 重点:两角和与差的正切公式的推导;两角和、差公式的灵活应用 难点:两角和与差的正切公式的逆向使用;实际问题抽象为数学问题,恰当寻找解题思维的起点.【教学过程】 导入 我们已经学习了正弦公式,余弦公式,本节课我们一起学习正切公式.这样对于一些非特殊角的正切,我们也能计算,如tan75 . 在推导正切公式之前,能否用已学知识来计算tan75的值. 问题引入 两角和、差的正弦公式: sin( ) ______________________ ,sin( ) _____________________ 两角和、差的余弦公式: cos( ) __________________ ,cos( ) ___________________ 构建新知 推导过程 分子分母同时除以cos cos ,得 两角和、差的正切公式: tan tan tan() 1 tan tan 用代替,就可得到 tan tan tan() 1 tan tan

例题分析

例1 求值 (1) tan 750 ; ( 2) tan 17 0 1 tan 17 tan 43 0 0tan 43° 1 tan 75 0 1 tan 75 0 (1) tan 750 tan (45 30 ) (2) tan17 0 (3) tan 43 0 tan17 0 tan 430 tan (17 43 tan 75 0 1 tan 75 0 tan 45 tan 75 1 tan 45 tan 75 tan (45 75 ) 例2 已知tan( ) -,tan 3 ,求 5 7 解 tan tan ( ) 随堂训练 1 ?填空: 0 1 3 (1) tan 105 1 「 5 tan tan 12 12 tan tan 12 12 1 tan 15° 1 tan 150 tan 30 (4) tan150 1 tan15 0 1门 tan 15 1 1 tan15 2.已知tan 3, tan( )3 , 求tan 2 5 特殊角的三角函数值 (3) 3 解 tan tan ( )

三角函数和差化积与积化和差公式

和差化积和积化和差公式 1、正弦、余弦的和差化积 2 cos 2sin 2sin sin βαβ αβα-?+=+ 2sin 2cos 2sin sin βαβαβα-?+=- 2cos 2cos 2cos cos β αβ αβα-?+=+ 2sin 2sin 2cos cos β αβ αβα-?+-=- 【注意右式前的负号】 证明过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 设 α+β=θ,α-β=φ 那么2φθα+= ,2 φθβ-= 把α,β的值代入,即得 sin θ+sin φ=2sin ?+2φθcos 2 φθ- 2、正切和差化积 tan α±tan β=β αβαcos cos )sin(?± cot α±cot β= βαβαsin sin )sin(?± tan α+cot β=β αβαsin cos )cos(?- tan α-cot β=β αβαsin cos )cos(?+- 证明:左边=tan α±tan β= ββααcos sin cos sin ± =β αβαβαcos cos sin cos cos sin ??±? = βαβαcos cos )sin(?±=右边

在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次 3、积化和差公式 ))((][2cos cos sin sin βαβαβα+--=?(注意:此时差的余弦在和的余弦前面) 或写作: ))((][2cos cos sin sin βαβαβα--+-=?(注意:此时公式前有负号) ()()[]2cos cos cos cos βαβαβα++-=? ()()[]2sin sin cos sin βαβαβα-++=? ()()[]2 sin sin sin cos βαβαβα--+=? 证明 积化和差恒等式可以通过展开角的和差恒等式的右手端来证明。 即只需要把等式右边用两角和差公式拆开就能证明: ()βαβαs i n s i n 221s i n s i n ?-?- =? ()()[]2 sin sin cos cos sin sin cos cos βαβαβαβα+---= ()()[]βαβα--+-=cos cos 21 其他的3个式子也是相同的证明方法。 结果除以2 这一点最简单的记忆方法是通过三角函数的值域判断。sin 和cos 的值域都是[-1,1],其和差的值域应该是[-2,2],而积的值域确是[-1,1],因此除以2是必须的。 也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如: cos(α-β)-cos(α+β) =1/2[(cos α·cos β+sin α·sin β)-(cos α·cos β-sin α·sin β)] =2sin α·sin β 故最后需要除以2。

两角和与差公式的应用

两角和与差公式的应用 【导航练习】 1.已知A 、B 均锐角,且满足tan A ·tan B=tan A +tan B +1 ,则cos (A +B )= . 2. sin x =2 2是tan x =1成立的 ( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 3.在(0,2π)内,使0<sin x +cos x <1成立的x 的取值范畴是 ( ) A .(0,π2 ) B .(π4 ,3π4 ) C .(π2 ,3π4 )∪(7π4 ,2π) D .(3π4 ,π)∪(3π2 ,7π4 ) 4.已知α+β=π4 +2k π (k ∈Z ),求证:(1+tan α)(1+tan β)= 2 5.已知cos x +cos y = 12 ,sin x -sin y = 14 ,求cos (x +y )的值. 【巩固练习】 1.已知θ是锐角,那么下列各值中,sin θ+cos θ能取到的值是 ( ) A .43 B .34 C .53 D .12 2.已知tan x = - 2 ,π

5.求 42 sin 18cos 318sin 的值。 6. 化简:sin (x +17°)cos (x -28°)+cos (x +17°)sin (28°-x ) 7.求证:在△ABC 中,sin A cos B cos C +sin B cos C cos A +sin C cos B cos A = sin A sin B sin C 8. 在△ABC 中,tan B +tan C + 3 tan B tan C = 3 ,又 3 tan A + 3 tan B +1 = tan A tan B ,试 判定△ABC 的形状。 9.已知π2 <β<α<3π4 ,cos (α-β)= 1213 ,sin (α+β)= - 35 ,求sin2α的值。 10.已知tan α、tan β是关于x 的方程mx 2+(2m -3)x +m -2 = 0的两个根,求tan (α +β)的取值范畴。 11. 在△ABC 中,若tan A , tan B , tan C 成等差数列,且tan A +tan B +tan C = 3 3 。求证A 、 B 、 C 也成等差数列。

三角函数公式和积化和差公式汇总

三角函数公式积化和差公式汇总 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin( 2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin( 2π -a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA = a a cos sin 万能公式 sina= 2 )2 (tan 12tan 2a a +

积化和差与和差化积同步练习(教师版)

3.3 三角函数的积化和差与和差化积 同步练习 1.下列等式错误的是( ) A .sin(A + B )+sin(A -B )=2sin A cos B B .sin(A +B )-sin(A -B )=2cos A sin B C .cos(A +B )+cos(A -B )=2cos A cos B D .cos(A +B )-cos(A -B )=2sin A cos B 解析:选D.由两角和与差的正、余弦公式展开左边可知A 、B 、C 正确. 2.sin15°sin75°=( ) A.18 B.14 C.12 D .1 解析:选B.sin15°sin75°= -1 2[cos(15°+75°)-cos(15°-75°)] =-1 2(cos90°-cos60°) =-12(0-12)=14. 3.sin105°+sin15°等于( ) A.32 B.22 C.62 D.64

解析:选 C.sin105°+sin15°=2sin 105°+15°2cos 105°-15° 2 =2sin60°cos45°=6 2. 4.sin37.5°cos7.5°=________. 解析:sin37.5°cos7.5°=1 2[sin(37.5°+7.5°)+sin(37.5°-7.5°)] =1 2(sin45°+sin30°) =12? ???? 22 +12=2+14. 答案:2+1 4 一、选择题 1.sin70°cos20°-sin10°sin50°的值为( ) A.34 B.32 C.12 D.34 解析:选A.sin70°cos20°-sin10°sin50° =12(sin90°+sin50°)+12(cos60°-cos40°) =12+12sin50°+14-12cos40°=34. 2.cos72°-cos36°的值为( ) A .3-2 3 B.1 2

三角函数两角和与差,以及万能公式的推导

三角函数两角和与差, 以及万能公式的推导-CAL-FENGHAI.-(YICAI)-Company One1

向量法: 取直角坐标系,作单位圆 取一点A,连接OA,与X轴的夹角为A 取一点B,连接OB,与X轴的夹角为B OA与OB的夹角即为A-B A(cosA,sinA),B(cosB,sinB) OA=(cosA,sinA) OB=(cosB,sinB) OA*OB =|OA||OB|cos(A-B) =cosAcosB+sinAsinB |OA|=|OB|=1 cos(A-B)=cosAcosB+sinAsinB 在直角坐标系xoy中,作单位圆O,并作角α,β,-β,使角α的始边为Ox交⊙O于P1,终边交⊙O于P2;角β的始边为OP2,终边交⊙O于P3;角-β的始边为OP1,终边交⊙O于P4.依三角函数的定义,得P1、P2、P3、P4的坐标分别为P1(1,0),P2(cosα,sinα)、P3(cos(α+β),sin(α+β)),P4(cos(-β),sin(-β)).连接P1P3,P2P4. 则∣P1P3∣=∣P2P4∣.依两点间距离公式,得 ∣P1P3|2=〔cos(α+β)-1〕2+〔sin(α+β)-0〕2, ∣P2P4|2=〔cos(-β)-cosα〕2+〔sin(-β)-sinα〕2 ∴〔cos(α+β)-1〕2+sin2(α+β)=〔cos(-β)-cosα〕2+〔sin(-β)-sinα〕2 展开整理,得2-2cos(α+β)=2-2(cosαcosβ-sinαsinβ) ∴cos(α+β)=cosαcosβ-sinαsinβ ……Cα+β.该公式对任意角α,β均成立 在公式Cα+β中,用-β替代β. cos(α-β)=cos〔α+(-β)〕=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ. ∴cos(α-β)=cosαcosβ+sinαsinβ ……Cα-β.该公式对任意角α,β均成立.

两角和与差的正弦余弦公式

《两角和与差的正弦、余弦函数》教学设计 商州区中学秦明伟 一、学情分析 本课时面对的学生是高一年级的学生,数学表达能力和逻辑推理能力正处于高度发展的时期,学生对探索未知世界有主动意识,对新知识充满探求的渴望。在学习本节课之前,学生已经学习了任意角三角函数的概念、平面向量的坐标表示以及向量数量积的坐标表示,这为他们探究两角和与差的正弦、余弦公式建立了良好的知识基础。 二、教学内容分析 本节内容是北师大版教材必修4第三章《三角恒等变换》第二节,推导得到两角差的余弦公式是本章所涉及的所有公式的源头。 由于向量工具的引入,教材选择了两角差的余弦公式作为基础,这样处理使得公式的得出成为一个纯粹的代数运算,大大地降低了思考的难度,也更易于学生接受。 从知识产生的角度来看,在学习了《三角函数》及《平面向量》后再学习由这些知识推导出的新知识也更符合知识产生的规律,符合人们认知的规律。从知识的应用价值来看,重视数学知识的应用,是新教材的显著特点,课本中丰富的生活实例为学生用数学的眼光看待生活、体验生活即数学理念,体验用数学知识解决实际问题,有助于增强学生的数学应用意识。 基于上述分析,本节课的教学重点是引导学生通过合作、交流,探索两角差的余弦公式,进而推导得到其余的和差公式,为后续简单的恒等变换的学习打好基础。

三、教学三维目标 1、知识目标 通过两角差的余弦公式的探究,让学生探索、发现并推导其他和(差)角公式,了解它们之间的内在联系,并通过强化题目的训练,加深对公式的理解,在初步理解公式的结构及其功能的基础上记忆公式,并用之解决简单的数学问题。 2、能力目标 通过利用向量推导两角和与差的正弦、余弦公式及公式的具体运用,使学生深刻体会联系变化的观点,让学生自觉的利用联系的观点来分析问题,提高学生分析问题、解决问题的能力及学生逻辑推理能力和合作学习能力。 3、情感目标 使学生经历数学知识的发现、创造的过程,体验成功探索新知的乐趣,获得对数学应用价值的认识,激发学生提出问题的意识以及努力分析问题、解决问题的激情。 四、教学重点、难点 重点:探索得到两角差的余弦公式,理解两角和与差的正弦、余弦公式的推导。 难点:探索过程的组织和适当引导,并能灵活运用公式。 五、教学过程 导入新课

积化和差与和差化积公式(教师版)

积化和差与和差化积公式、和角、倍半角公式复习课 一、基本公式复习 1、两角和与差公式及规律 sin()sin cos cos sin .cos()cos cos sin sin .tan tan tan(). 1tan tan αβαβαβαβαβαβαβ αβαβ ±=±±=±±= m m 2二倍角公式及规律 3、积化和差与和差化积公式 1 sin cos [sin()sin()].2αβαβαβ=++- 1 cos sin [sin()sin()].2αβαβαβ=+-- 1 cos cos [cos()cos()].2αβαβαβ=++- 1 sin sin [cos()cos()].2 αβαβαβ=-+-- sin sin 2sin cos .22 αβαβ αβ+-+= 222221cos cos .222cos .1cos 21cos sin .222sin .1cos 2 tan .21cos αα αααααααα+?=????-???±==?????-??=?+? 2 sin 2sin 2cos ,sin .1sin (sin cos ).2cos 2cos 22 ααααααααα?==±=± sin 22sin cos .ααα= 2222cos 2cos sin 2cos 112sin .ααααα=-=-=- 22tan tan 2.1tan ααα =- cos cos 2cos cos .22αβαβαβ+-+= sin sin 2cos sin .22αβαβαβ+--= cos cos 2sin sin .22αβαβαβ+--=-

高中数学两角和与差的三角函数公式知识点

两角和与差的三角函数公式 本节重点:熟练掌握并运用两角和与差的三角函数公式 课前引入: 3215tan ,4 2 615cos ,42 615sin -=?+=?-= ? (一).两角和差的余弦公式推导:首先在单位圆上任取两点A (cos ααsin ,)B(ββsin ,cos ) ) si n ,(c os ),si n ,(c os ββαα==∴OB OA )(,sin sin cos cos βαβαβα-?=?+=?∴OB OA OB OA Θ又=cos(βα-) βαβαβαsin sin cos cos cos +=-∴)(得出 用得替换ββ- βαβαβαsin sin cos cos cos -=+)(用诱导公式得 β αβαβαβαβαβαsin cos cos sin )sin(sin cos cos sin )sin(+=+-=- β αβ αβαβαβαβαtan tan 1tan tan )tan(,tan tan 1tan tan )tan(+-=--+= +∴ 二倍角公式: ①θθθcos sin 22sin = ②θθθθθ2222 sin 211cos 2sin cos 2cos -=-=-= ③θ θ θ2tan 1tan 22tan -= 例1、 求?15cos 练习1、求? ? -?70sin 20sin 10cos 2

课堂练习: 1.下列等式中一定成立的是( ) A .cos()cos cos αβαβ+=+ B .cos()cos cos αβαβ-=- C .sin( )sin 2π αα-= D .cos()sin 2 π αα-= 2.化简sin119sin181sin91sin 29???-???等于( ) A . 12 B .1 2 - C .- 3.若1cos 2α=- ,sin β=(,)2παπ∈,3(,2)2 π βπ∈, 则sin()αβ+的值是( ) A . 2 B .2 -.1- D .0 4.若,(0, )2 π αβ∈, cos()2 2β α-= ,1sin()22αβ-=-,则cos()2 αβ +的值等于( ) A .1 B .12- 或1 C .1 2 或1 D .2 5.已知α为第二象限的角,3 sin 5 a =,则tan 2α= . 6.已知1sin cos 2αβ-=,1 cos sin 3 αβ-=,则sin()αβ+= . 7.要使32cos 1 m x x m -=-有解,求实数m 的范围

和差化积积化和差万能公式

正、余弦和差化积公式 指三角函数部分的一组恒等式 sin α+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sin α-sin β=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2] cos α-cos β=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】 以上四组公式可以由积化和差公式推导得到 证明过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程 因为 sin(α+β)=sin αcos β+cos αsin β, sin(α-β)=sin αcos β-cos αsin β, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sin αcos β, 设α+β=θ,α-β=φ 那么 α=(θ+φ)/2, β=(θ-φ)/2 把α,β的值代入,即得 sin θ+sin φ=2sin[(θ+φ)/2]cos[(θ-φ)/2] 正切的和差化积 tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明) cotα±cotβ=sin(β±α)/(sinα·sinβ) tanα+cotβ=cos(α-β)/(cosα·sinβ) tanα-cotβ=-cos(α+β)/(cosα·sinβ) 证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ) =sin(α±β)/(cosα·cosβ)=右边 ∴等式成立 注意事项 在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次口诀 正加正,正在前,余加余,余并肩 正减正,余在前,余减余,负正弦 反之亦然

积化和差 和差化积 倍角公式 半角公式

1.积化和差公式 证明方法:用和(差)角公式将右边展开即得公式. 积化和差公式记忆口诀 积化和差角加减,二分之一排前边 正余积化正弦和,余正积化正弦差 余弦积化余弦和,正弦积化负余差 2.和差化积公式 sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2] 【注意右式前的负号】 和差化积公式记忆口诀 和差化积2排前,半角加减放右边 正弦和化正余积,正弦差化余正积 余弦和化余弦积,余弦差化负正积。

以上四组公式可以由积化和差公式推导得到 证明过程 sin α+sin β=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程因为 sin(α+β)=sinαcosβ+cosαsinβ, sin(α-β)=sinαcosβ-cosαsinβ, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sinαcosβ, 设α+β=θ,α-β=φ 那么 α=(θ+φ)/2,β=(θ-φ)/2 把α,β的值代入,即得 sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2] 正切的和差化积 tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明) cotα±cotβ=sin(β±α)/(sinα·sinβ) tanα+cotβ=cos(α-β)/(cosα·sinβ) tanα-cotβ=-cos(α+β)/(cosα·sinβ)【注意右式前的负号】证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ =(sinα·cosβ±cosα·sinβ)/(cosα·cosβ) =sin(α±β)/(cosα·cosβ)=右边 ∴等式成立

两角和与差的公式

两角和与差的正弦、余弦、正切公式 1.两角和与差的余弦、正弦、正切公式 ) )β-α(C (βsin αsin +βcos αcos =)β-α(cos ))β+α(C (β_sin α_sin -β_cos α_cos =)β+α(cos ))β-α(S (β_sin α_cos -β_cos α_sin =)β-α(sin ) )β+α(S (β_sin α_cos +β_cos α_sin =)β+α(sin ) ) β-α(T (tanα-tanβ 1+tanαtanβ= )β-α(tan ) ) β+α(T (tanα+tanβ 1-tanαtanβ=)β+α(tan 2.二倍角公式 ; α_cos α_2sin =αsin 2 ; α22sin -1=1-α22cos =α2sin -α2cos =αcos 2 . 2tanα 1-tan2α =αtan2 3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如 可变形为 )β±α(T 如.逆用和变形用等、正用公式的 , )β_tan α_tan ?1)(β±α(tan =β±tan αtan 1. -tanα-tanβ tan(α-β) =tanα+tanβtan(α+β)-1=βtan αtan 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.(√) (2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.(×)

tanα+tanβ1-tanαtanβ = )β+α(tan 公式)3(可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都 成立.(×) (4)存在实数α,使tan2α=2tan α.(√) ) √(.3=αtan2则,)π,π 2 (∈α,αsin =-αsin2设)5( () 等于αtan2则,10 2 =α2cos +αsin ,R ∈α已知)浙江2013·(.1 43 .-D 34.-C 34B.43A. 答案C , 10 2 =α2cos +αsin ∵解析 . 5 2 =α24cos +αcos α4sin +α2sin ∴ 化简得:4sin2α=-3cos2α, C. 故选.3 4 =-sin2αcos2α=αtan2∴ () 等于αtan2则,1 2 =sinα+cosαsinα-cosα若 .2 43 D. 43.-C 34B.34.-A 答案B tanα+1 tanα-1 得, αcos ,等式左边分子、分母同除12=sinα+cosαsinα-cosα由解析

相关文档
最新文档