浙江省温州市龙湾区2019年中考数学一模试卷(含解析)

合集下载

2019年浙江省温州市三县(市)中考数学一模试卷(解析版)

2019年浙江省温州市三县(市)中考数学一模试卷(解析版)

2019年浙江省温州市三县(市)中考数学一模试卷一、选择题(本大题共10小题,共40.0分)1.给出四个数0,,1,-2,其中最大的数是()A. 0B.C. 1D.2.有一个正方形原料,挖去一个小正方体,得到如图所示的零件,则这个零件的主视图是()A.B.C.D.3.一个不透明的盒子里有3个红球、5个白球,他们除颜色外其他都一样,先从盒子中随机取出一个球,则取出的球是白球的概率是()A. B. C. D.4.计算2a3•3a3的结果是()A. B. C. D.5.不等式3(x-2)≥x+4的解集是()A. B. C. D.6.如图,C,D是⊙O上位于直径AB异侧的两点,若∠ACD=20°,则∠BAD的度数是()A.B.C.D.7.随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升.某书店分别用2000元和3000元两次购进该小说,第二次数量比第一次多50套,则两次进价相同.该书店第一次购进x套,根据题意,列方程正确的是()A. B. C. D.8.已知反比例函数y=-,点A(a-b,2),B(a-c,3)在这个函数图象上,下列对于a,b,c的大小判断正确的是()A. B. C. D.9.如图,直线y=-x+2分别交x轴、y轴于点A,B,点D在BA的延长线上,OD的垂直平分线交线段AB于点C.若△OBC和△OAD的周长相等,则OD的长是()A. 2B.C.D. 410.在数学拓展课《折叠矩形纸片》上,小林折叠矩形纸片ABCD进行如下操作:①把△ABF翻折,点B落在CD边上的点E处,折痕AF交BC边于点F;②把△ADH翻折,点D落在AE边长的点G处,折痕AH交CD边于点H.若AD=6,AB=10,则的值是()A.B.C.D.二、填空题(本大题共6小题,共30.0分)11.因式分解:2a2+4a=______.12.函数y=的自变量x的取值范围是______.13.若一组数据4,a,7,8,3的平均是5,则这组数据的中位数是______.14.如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是______.(结果保留π)15.图1是一款优雅且稳定的抛物线型落地灯,防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.86米,点最高点C距灯柱的水平距离为1.6米,灯柱AB及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE为______米.16.如图,在Rt△ABC中,∠ACB=90°,sin∠BAC=,点D在AB的延长线上,BD=BC,AE平分∠BAC交CD于点E.若AE=5,则点A到直线CD的距离AH为______,BD的长为______.三、计算题(本大题共1小题,共10.0分)17.(1)计算:(-2)2+-(2)0.(2)化简:(a+2)(a-2)-a(a-4).四、解答题(本大题共7小题,共70.0分)18. 已知:如图,在▱ABCD 中,DE 平分∠ADB ,交AB 于E ,BF 平分∠CBD ,交CD 于F .(1)求证:△ADE ≌△CBF ;(2)当AD 与BD 满足什么关系时,四边形DEBF 是矩形?请说明理由.19. 某报社为了解温州市民对大范围雾霾天气的成因、影响以及应对措施的看法,做了一次抽样调查,调查结果共分为四个等级:A .非常了解;B .比较了解C .基本了解D .不了解.根据调查统计结果,回执了不完整的三种统计图表.请结合统计图表,回答下列问题: (1)本次参与调查的市民共有______人,m =______,n =______. (2)统计图中扇形D 的圆心角是______度.(3)某校准备开展关于雾霾的知识竞赛,九(3)班郑老师欲从2名男生和一名女生中任选2人参加比赛,求恰好选中“1男1女”的概率(要求列表或画树状图).n%20. 在直角坐标系中,我们把横、纵坐标都为整数的点称为整点.如图,已知整点A (2,2),B (4,1),请在所给网格区域(含边界)上找到整点P .(1)画一个等腰三角形PAB ,使点P 的纵坐标比点A 的横坐标大1. (2)若△PAB 是直角三角形,则这样的点P 共有______个.21. 如图,点E 在△ABC 的边AB 上,过点B ,C ,E 的圆O 切AC 于点C ,直径CD 交BE 于点F ,连接BD ,DE .已知∠A =∠CDE ,AC =2 ,BD =1.(1)求圆O 的直径;(2)过点F 作FG ⊥CD 交BC 于点G ,求FG 的长.22. 如图,抛物线y =-x 2+4x -1与y 轴交于点C ,CD ∥x 轴交抛物线于另一点D ,AB ∥x 轴交抛物线于点A ,B ,点A 在点B 的左侧,且两点均在第一象限,BH ⊥CD 于点H .设点A 的横坐标为m . (1)当m =1时,求AB 的长;(2)若AH = (CH -DH ),求m 的值.23.现有一块矩形地皮,计划共分九个区域.区域甲、乙是两个矩形主体建筑,区域丙为梯形停车场,区域①~④是四块三角形绿化区,△AEL和△CIJ为综合办公区(如图所示).∠HEL=∠ELI=90°,MN∥BC,AD=220米,AL=40米,AE=IC=30米.(1)求HI的长;(2)若BG=KD,求主体建筑甲和乙的面积和;(3)设LK=3x,绿化区②的面积为S平方米.若要求绿化区②与④的面积之差不少于1200平方米,求S关于x的函数表达式,并求出S的最小值.24.如图,AB是半圆O的直径,半径OC⊥AB,OB=4,D是OB的中点,点E是弧BC上的动点,连接AE,DE.(1)当点E是弧BC的中点时,求△ADE的面积;(2)若tan∠AED=,求AE的长;(3)点F是半径OC上一动点,设点E到直线OC的距离为m,①当△DEF是等腰直角三角形时,求m的值;②延长DF交半圆弧于点G,若弧AG=弧EG,AG∥DE,直接写出DE的长______.答案和解析1.【答案】B【解析】解:∵,∴最大的数是,故选:B.根据实数的大小比较,即可解答.本题考查了实数的大小比较,解决本题的关键是熟记实数的大小比较.2.【答案】A【解析】解:该几何体的主视图如下:故选:A.根据从正面看得到的图形是主视图.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.【答案】C【解析】解:∵盒子里有3个红球、5个白球,共8个球,∴从盒子中随机取出一个球,取出的球是白球的概率是,故选:C.让白球的个数除以球的总个数即为所求的概率.此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.【答案】C 【解析】解:原式=6a6.故选:C.根据单项式乘单项式的运算法则进行运算即可.本题考查了单项式乘单项式的知识,属于基础题.5.【答案】A【解析】解:3(x-2)≥x+43x-6≥x+4,3x-x≥4+6,2x≥10,x≥5,故选:A.去括号、移项,合并同类项,系数化成1即可.本题考查了解一元一次不等式.注意:解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化成1.6.【答案】D【解析】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ACD=20°,∴∠DCB=70°,由圆周角定理得,∠BAD=∠DCB=70°,故选:D.根据圆周角定理得到∠ACB=90°,求出∠DCB=70°,根据圆周角定理解答.本题考查的是圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,直径所对的圆周角是直角是解题的关键.7.【答案】C【解析】解:该书店第一次购进x套,则第二次购进(x+50)套,依题意得:=.故选:C.该书店第一次购进x套,则第二次购进(x+50)套,根据两次进价相同列出方程.考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.8.【答案】B【解析】解:∵点A(a-b,2),B(a-c,3)在函数y=-的图象上,∴2(a-b)=-2,3(a-c)=-2,∴a-b=-1<0,a-c=-<0,∴a<b,a<c,∵-b+c=-<0,∴c<b,∴a<c<b.故选:B.利用反比例函数图象上点的坐标特征得到2(a-b)=-2,3(a-c)=-2,则a-b=-1<0,a-c=-<0,再消去a得到-b+c=-<0,然后比较a、b、c的大小关系.本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.【答案】B【解析】解:∵直线y=-x+2分别交x轴、y轴于点A,B,∴OA=OB=2.在Rt△BOA中,利用勾股定理求得BA=.又△OBC周长=2+BC+OC,△OAD周长=2+OD+AD,由△OBC和△OAD的周长相等,可得BC+OC=OD+AD.∵OD的垂直平分线交线段AB于点C,∴OC=CD,则OC=CA+AD.∴BC+CA+AD=OD+AD,整理得BC+CA=OD,即BA=OD.∴OD=.故选:B.根据直线解析式可得OA和OB长度,利用勾股定理可得AB长度,再根据线段垂直平分线的性质以及两个三角形周长线段,可得OD=AB.本题主要考查了一次函数图象上点坐标特征、线段垂直平分线的性质、以及勾股定理.10.【答案】D【解析】解:∵四边形ABCD是矩形,∴∠C=∠D=90°,AB=CD=10,AD=BC=6,由翻折可知:AB=AE=10,AD=AG=6,BF=EF,DH=HG,∴EG=10-6=4,在Rt△ADE中,DE===8,∴EC=10-8=2,设BF=EF=x,在Rt△EFC中:x2=22+(6-x)2,∴x=,设DH=GH=y,在Rt△EGH中,y2+42=(8-y)2,∴y=3,∴EH=5,∴==,故选:D.依据折叠的性质以及勾股定理可得DE==8,即可得到EC=10-8=2,设BF=EF=x,在Rt△EFC中:x2=22+(6-x)2,求得x=,设DH=GH=y,在Rt△EGH中,y2+42=(8-y)2,求得y=3,即可得到的值.本题考查矩形的性质,翻折变换等知识,解题时常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.11.【答案】2a(a+2)【解析】解:原式=2a(a+2).观察发现,系数的最大公约数是2,相同字母的最低次幂是a.故公因式是2a.本题考查了提公因式法分解因式,掌握找公因式的正确方法是关键,提取公因式后,剩下的注意根据幂运算的法则进行.12.【答案】x≥-3【解析】解:根据题意得:x+3≥0, 解得:x≥-3. 故答案为x≥-3.根据二次根式有意义的条件,被开方数大于或等于0,可以求出x 的范围.本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负. 13.【答案】4【解析】解:由题意可知,(4+a+7+8+3)÷5=5, a=3,这组数据从小到大排列3,3,4,7,8, 所以,中位数是4.故答案是:4.先根据平均数的定义求出x 的值,然后根据中位数的定义求解. 考查平均数与中位数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数. 14.【答案】【解析】解:过点O 作OD ⊥BC 于点D,交于点E ,连接OC ,则点E 是的中点,由折叠的性质可得点O 为的中点,∴S 弓形BO =S 弓形CO ,在Rt △BOD 中,OD=DE=R=2,OB=R=4, ∴∠OBD=30°, ∴∠AOC=60°, ∴S 阴影=S 扇形AOC ==.故答案为:.过点O 作OD ⊥BC 于点D,交于点E ,则可判断点O 是的中点,由折叠的性质可得OD=OE=R=2,在Rt △OBD 中求出∠OBD=30°,继而得出∠AOC ,求出扇形AOC 的面积即可得出阴影部分的面积.本题考查了扇形面积的计算,解答本题的关键是作出辅助线,判断点O 是的中点,将阴影部分的面积转化为扇形的面积.15.【答案】2.88【解析】解:设y=a (x-1.6)2+2.5.由AB 得高为1.5米∴把x=0,y=1.5代入上式得,1.5=a (0-1.6)2+2.5.解得,a=-.∴y=-(x-1.6)2+2.5.又∵DE 的高为1.86米 ∴当y=1.86时,则-(x-1.6)2+2.5=1.86解得,x=2.88或x=0.32(舍去) 故答案为:2.88.根据题意可以把AB 所在的直线当作y 轴,AE 所在的直线当作x 轴建立直角坐标系,由防滑螺母C 为抛物线支架的最高点,灯罩D 距离地面1.86米,点最高点C 距灯柱的水平距离为1.6米,可以知道抛物线的顶点坐标C (1.6,2.5),直接设出顶点式y=a (x-1.6)2+2.5,然后用待定系数法将(0,1.5)代入解析式解得a 值,再次将D 点到地面的高当作纵坐标代入解析式即可求出AE 的长,将不符合实际的取值舍去即可.本题考查了将二次函数的实际应用转化为二次函数图象的抽象能力以及用待定系数法求函数解析式与点的坐标的能力.16.【答案】5 2【解析】解:如图,作BM⊥CD于M.∵BC=BD,∴∠D=∠BCD,∵AH⊥DH,∴∠H=∠ACB=90°,∴∠ACH+∠HAC=90°,∠ACH+∠BCD=90°,∴∠HAC=∠BCD=∠D,∵AE平分∠CAB,∴∠EAC=∠EAD,∵∠HAE=∠HAC+∠EAC,∠AEH=∠D+∠EAD,∴∠HAE=∠AEH,∴HA=HE,∵AE=5,∴AH=HE=5,∵sin∠BAC==,设BC=BD=2k,AB=3k,则AC=k,∵∠H=∠H,∠HAC=∠D,∴△HAC∽△HDA,∴AH2=HC•HD,∵∠BCM=∠HAC,∠H=∠BMC=90°,∴△AHC∽△CMB,∴=,∴=,∴CM=2,∵BC=BD,BM⊥CD,∴CM=DM=2,∴CD=4,∴25=HC•(HC+4),∴HC=或-5(舍弃),∴AC==,∴k=,∴k=,∴BD=CB=2k=2,故答案为5,2.证明HA=HE,理由等腰直角三角形的性质即可求出AH,由sin∠BAC==,设BC=BD=2k,AB=3k,则AC=k,证明△HAC∽△HDA,可得AH2=HC•HD,由△AHC∽△CMB,可得=,推出=,推出CM=2,CD=4,可得25=HC•(HC+4),求出CH即可解决问题.本题考查解直角三角形,角平分线的定义,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.17.【答案】解:(1)原式=4+2-1=3+2.(2)原式=a2-4-a2+4a=4a-4.【解析】(1)先计算负整数指数幂,二次根式的化简,零指数幂,然后计算加减法.(2)利用平方差公式和单项式乘多项式法则解答.考查了平方差公式,实数的运算,单项式乘多项式等知识点,属于基础题.18.【答案】证明:(1)∵▱ABCD,∴AD=BC,∠A=∠C,AD∥BC,∴∠ADB=∠CBD,∵DE平分∠ADB,BF平分∠CBD,∴∠ADE=∠CBF,在△ADE与△CBF中,∴△ADE≌△CBF(ASA),(2)当AD=BD时,∵DE平分∠ADB,∴DE⊥BE,∴∠DEB=90°,∵△ADE≌△CBF,∴DE=BF,∵∠EDB=∠DBF,∴DE∥BF,∴四边形DEBF是平行四边形,∵∠DEB=90°,∴平行四边形DEBF是矩形.【解析】(1)根据平行四边形的性质得出AD=BC,∠A=∠C,AD∥BC,进而得出∠ADE=∠CBF,利用全等三角形的判定证明即可;(2)利用矩形的判定解答即可.本题考查了平行四边形的性质和判定,全等三角形的判定的应用,主要考查学生的推理能力,注意:平行四边形的对边平行,对角相等..19.【答案】400 15 35 126【解析】解:(1)本次参与调查的市民共有:20÷5%=400(人),m%=×100%=15%,则m=15,n%=1-5%-45%-15%=35%,则n=35;故答案为:400,15,35;(2)扇形统计图中D部分扇形所对应的圆心角是360°×35%=126°.故答案为:126;(3)根据题意画图如下:共有6种等可能的结果数,其中恰好选中1男1女的结果数为4种,所以恰好选中1男1女的概率是=.(1)利用本次参与调查的市民人数=A等级的人数÷对应的百分比;用比较了解的人数除以总人数,求出m的值,再用整体1减去其它对雾霾的了解程度的百分比,从而求出n的值.(2)利用扇形统计图中D部分扇形所对应的圆心角=360°×D类的百分比.(3)画树状图展示所有6种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.【答案】5【解析】解:(1)如图1所示,点P与点P′即为所求.(2)如图2所示,这样的点P有5个,故答案为:5.(1)由点P的纵坐标比点A的横坐标大1知点P的纵坐标为3,再根据整点的概念与等腰三角形的定义作图即可得;(2)根据直角三角形的概念,结合整点概念作图可得.本题主要考查作图-应用与设计作图,解题的关键是掌握等腰三角形的概念、直角三角形的判定与性质.21.【答案】解:(1)∵CD是⊙O的直径,∴∠CBD=90°,∵∠A=∠CDE,∠CDE=∠CBA,∴∠CAB=∠CBA,∴BC=AC=2,∵BD=1,∴⊙O的直径CD=;(2))如图,∵过点B,C,E的圆O切AC于点C,直径CD交BE于点F,∴AC⊥CD,∵FG⊥CD,∴FG∥AC,∴∠GFB=∠CAB=∠CBA,∴FG=GB=x,∵sin∠BCD=,∴,即CG=3FG=3x,∵BC=2,∴x+3x=2,∴FG=x=.【解析】(1)因为CD是⊙O的直径,所以∠CBD=90°,因为∠A=∠CDE=∠CBA,可得BC=AC=2,因为BD=1,在Rt△CBD中,用勾股定理即可得出⊙O的直径;(2)由题意,可得FG∥AC,所以∠GFB=∠CAB=∠CBA,即FG=GB=x,根据sin∠BCD=,得CG=3FG=3x,由BC=2可列方程:x+3x=2,解得x的值即可得出FG的长.本题考查圆的切线的性质,圆周角定理,锐角三角函数的定义,等腰三角形的判定和性质,解题的关键是掌握圆的切线的性质.22.【答案】解:(1)∵m=1,∴A的横坐标为1,代入y=-x2+4x-1得,y=2,∴A(1,2),把y=2代入y=-x2+4x-1得,2=-x2+4x-1,解得x1=1,x2=3,∴B(3,2),∴AB=3-1=2.(2)∵AB∥x轴交抛物线于点A,B,∴A、B两点关于对称轴对称,∴CH-DH=AB,∵AH=(CH-DH),∴AH=AB,∴=,∴∠BAH=45°,∴AB=BH,由A在抛物线上,则设A(m,-m2+4m-1),则B(-m2+5m,-m2+4m-1).∴对称轴h=-=∴整理得,m2-6m+4=0解得,m=3+或m=3-又∵A点在对称轴左边∴m<2∴m=3-【解析】(1)因为A在抛物线上,则把m=1代入二次函数解析式y=-x2+4x-1解得y=2,令-x2+4x-1=2解得的两个根分别是A、B两点的横坐标.由于B点在A点右边,用B点横坐标减去A点横坐标所得的数值就是AB线段的长度.(2)根据题意以及抛物线的对称性分析可得AB=CH-DH,若AH=(CH-DH),实际上AH=AB,此时△ABH应为等腰直角三角形,∠B为直角,AB=BH,用待定系数法设点A的坐标为(m,-m2+4m-1),再利用等腰三角形边比数量关系设出B点坐标,由于A、B两点关于对称轴直线x=2对称,建立方程求解即可得m的值.本题考查了数形结合的思想以及用待定系数法设点的坐标并建立方程求解的能力.23.【答案】解:(1)过H作HP⊥LI于点P,如图1所示,则四边形EHPL为矩形,HP=EL=,∵∠A=∠B=∠EHP=90°,∴∠PHI+∠BHE=∠BHE+∠BEH=∠BEH+∠AEL=∠AEL+∠ALE=90°,∴∠ALE=∠PHI,∴cos∠PHI=cos∠ALE=,∴HI=,答:HI的长度为米;(2)设BG=KD=x米,则GH=220-x--30=-x,LK=220-40-x=180-x,FM=x,由互余角性质,易证∠KLN=∠AEL=∠EMF=∠MHG,∴tan∠KLN=tan∠EMF=tan∠MHG=tan∠AEL=,∴KN=LK•tan∠KLN=240-x,EF=MF•tan∠EMF=x,MG=GH•tan∠MHG=170-x,∵MN∥BC∥AD,∴AF=KN,即30+x=240-x,解得,x=,∴主体建筑甲和乙的面积和为:BG•GM+DK•KN=×(170-×)+×(240-×)=15750,答:主体建筑甲和乙的面积和15750平方米;(3)∵LK=3x,∴KN=LK•tan∠KLN=3x×=4x,NJ=KD=220-40-3x=180-3x,∴BG=FM=220-NJ-MN=220-180+3x-=3x-,∴GH=220-BG-HI-IC=220-3x+--30=150-3x,∴GM=GH•tan∠GHM=200-4x,∵绿化区②与④的面积之差不少于1200平方米,∴NJ•GM-GH•GM≥1200,即(180-3x)(200-4x)-(150-3x)(200-4x)≥1200,解得,x≤30,∵S=NJ•GM=(180-3x)(200-4x)=(x-55)2-25,∴当x<55时,S随x的增大而减小,∴当x=30时,S有最小值为:S=(30-55)2-25=600.【解析】(1)过H作HP⊥LI于点P,得四边形EHPL为矩形,得HP=EL=50米,再证∠PHI=∠ALE,由cos∠ALE便可求得HI;(2)设BG=KD=x米,用x表示KL、GH,进而通过三角函数用x表示KN、MG、EF,再由AE+EF=KN,列出x的方程,求出x的值便可;(3)由三角函数用x表示KN,进而表示FM、GH、MG,再已知条件“绿化区②与④的面积之差不少于1200平方米”列出不等式,求出x的取值范围,进而由三角形面积公式表示出S与x的函数关系式,最后由函数性质求出最小值.本题是矩形的综合题,主要考查了矩形的性质,解直角三角形的性质,二次函数的性质,不等式的性质,矩形的面积,三角形的面积,第一小题关键是构建直角三角形,运用三角函数代换解决问题;第二小题关键是由AF=KN得出x的方程,用方程的思想解决问题;第三小题建立二次函数,用二次函数的性质求最小值.难度较大.24.【答案】【解析】解:(1)如图,作EH⊥AB,连接OE,EB设DH=a,则HB=2-a,OH=2+a∵点E是弧BC中点∴∠COE=∠EOH=45°∴EH=OH=2+a在Rt△AEB中,EH2=AH•BH(2+a)2=(6+a)(2-a)解得a=∴a=S△ADE =(2)如图,作DF⊥AE,垂足为F,连接BE设EF=2x,DF=3x∵DF∥BE∴=∴==3∴AF=6x在Rt△AFD中,AF2+DF2=AD2(6x)2+(3x)2=(6)2解得x=AE=8x=(3)①当点D为等腰直角三角形直角顶点时,如图设DH=a可证△ODF≌△EDH∴OD=EH=2在Rt△ABE中,EH2=AH2•BH2(2)2=(6+a)2•(2-a)2解得a=±m=当点E为等腰直角三角形直角顶点时,如图可证△EFG≌△EDH设DH=a,则GE=a,EH=CG=2+a在Rt△ABE中,EH2=AH2•BH2(2+a)2=(6+a)2+(2-a)2解得a=∴m=当点F为等腰直角三角形直角顶点时,如图可证△EFM≌△ODF设OF=a,则ME=a,MF=OD=2∴EH=a+2在Rt△ABE中,EH2=AH•BH(a+2)2=(4+a)•(4-a)解得a=±m=②可证△BDE为等腰三角形BD=BE=2∵△AOF~△ABE∴OF=1在Rt△OFA中,由勾股定理可得AF=GF=3勾股定理可得AG=∵△AOG~△DEB∴=∴DE=(1)因为点E是弧BC的中点,连接OE,BE,利用45°构造直角三角形,利用△AEB的射影定理结论建立方程即可.(2)条件中有三角函数,所以作DF⊥AE构造直角三角形,接着出现平行相似,利用AD与AB之比,表示AF,用△AFD建立勾股关系方程.(3)①分别以D、E、F为直角端点分类讨论,用K型全等和射影定理结论建立方程求解.②需要导角证明△BDE为等腰三角形,用勾股定理求出AG,用△AOG~△DEB求出DE本题考查了圆的基本模型,射影定理的结论应用,K型全等模型,等腰直角三角形分类讨论以及平行相似,考查方式灵活,是一道很好的压轴题.第11页,共11页。

温州市2019届中考数学模拟检测试卷(一)(含答案)(1).docx

温州市2019届中考数学模拟检测试卷(一)(含答案)(1).docx

一.选择题(满分40分,每小题4分)10.如图,点A在反比例函数的图象上,轴于点点。

在x轴上,且C。

:。

3=2: 1. △ABC的面x16. (5 分)如图,在△ABC•中,AB=8, BC=10, BD、C2>分别平分ZABC, ZACB, ZBQC=135。

,过点。

作DE//AC交BC于点E,贝I] DE=.23.(12分)如图,已知抛物线- x2+bx+c与一直线相交于A (1, 0)、C ( - 2, 3)两点,与y轴交于点N,其顶点为D. (1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC±方的一个动点,求AAPC的面积的最大值及此时点P的坐标;(3)在对称轴上是否存在一点使的周长最小.若存在,请求出M点的坐标和周长的最小值;若不存在, 请说明理由.24.(14分)已知,AB是。

的直径,点C在上,点P是AB延长线上一点,连接CP.(1)如图1,若/PCB=/A.①求证:直线FC是。

的切线;②若CF=C4, OA=2,求CF的长;(2)如图2,若点M是弧AB的中点,CM交A3于点N, MN・MC=9,求的值.r图1 图210.: c.(T+b+c=0 解得:l-4-2b+c=3 设直线AC 的函数关系式为y=mx+n (m^O),将A (1, 0), C ( - 2, 3)代入y=mx+n,得:件 =0 ,解得:(呻T,...直线AC 的函数关系式为汽-x+1.I -2nrl-n=3 I n=l(2)过点P 作PE//y 轴交x 轴于点E,交直线AC 于点F,过点C 作CQ//y 轴交x 轴于点Q,如图1所示. 设点F 的坐标为(X, - x 2 - 2x+3) (-2VxVl),则点E 的坐标为(x, 0),点F 的坐标为(x, - x+1),:・PE= - x 2 - 2x+3, EF= - x+1,EF=PE - EF= - X 2 - 2x+3 - ( - x+1) = - x 2 - x+2...•点。

2019届浙江温州市龙湾区中考一模数学试卷【含答案及解析】

2019届浙江温州市龙湾区中考一模数学试卷【含答案及解析】

五、解答题
17. ( 1)计算: 20160+ +3 ×(﹣ ). (2)化简:( x+1)2﹣2( x﹣2).
18. 如图,在方格纸中, A, B,C 三点都在小方格的顶点上(每个小方格的边长为 (1)在图甲中画一个以 A, B, C为其中三个顶点的平行四边形,并求出它的周长. (2)在图乙中画一个经过 A,B,C 三点的圆,并求出圆的面积.
A.一直增大 B.一直减小 C.先增大后减小 D.先减小后增大
四、填空题
11. 分解因式: a2﹣ a= .
12. 方程 =
的解是

13. 小敏家下个月的开支预算如图所示,如果用于教育的支出是
支预算总额为
元.
a 元,则她家下个月的开
14. 如图, A,B,C 三点都在⊙O 上,点 D 是 AB延长线上一点,∠ 度.
第 15 题【答案】 第 16 题【答案】
第 17 题【答案】 第 18 题【答案】
第 19 题【答案】
第 20 题【答案】
第 21 题【答案】
第 22 题【答案】 第 23 题【答案】
9. 如图, O是坐标原点,菱形 OABC的顶点 A 的坐标为(﹣ 3, 4),顶点 C在 x 轴的负半 轴上,函数 y= (x <0)的图象经过顶点 B,则 k 的值为( )
A.﹣ 12 B .﹣ 27 C .﹣ 32 D.﹣ 36
10. 如图,已知 E, F,G,H 分别为正方形 ABCD各边上的动点,且始终保持 AE=BF=CG=D,H 点 M, N, P, Q分别是 EH、EF、 FG、HG的中点.当 AE 从小于 BE 的变化过程中,若正方形 ABCD的周长始终ห้องสมุดไป่ตู้持不变,则四边形 MNPQ的面积变化情况是( )

浙江温州市龙湾区中考一模数学考试卷(解析版)(初三)中考模拟.doc

浙江温州市龙湾区中考一模数学考试卷(解析版)(初三)中考模拟.doc

浙江温州市龙湾区中考一模数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】给出四个数0,﹣1,,1,其中最大的数是()A.0 B.﹣1 C. D.1【答案】C.【解析】试题分析:∵﹣1<0<1<,∴最大的数是,故选:C.【考点】实数大小比较.【题文】如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A. B. C. D.【答案】A.【解析】试题分析:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选A.【考点】简单组合体的三视图.【题文】计算(3a2)2的正确结果是()A.9a5 B.6a5 C.6a4 D.9a4【答案】D.【解析】试题分析:(3a2)2=32×(a2)2=9a4,故选:D.【考点】幂的乘方与积的乘方.评卷人得分【题文】使分式无意义的x的值是()A.x=﹣ B.x= C.x≠﹣ D.x≠【答案】B.【解析】试题分析:根据题意2x﹣1=0,解得x=.故选:B.【考点】分式有意义的条件.【题文】不等式1﹣x≤0的解在数轴上表示正确的是()A.B.C.D.【答案】D【解析】试题分析:不等式1﹣x≤0,解得:x≥1,表示在数轴上,如图所示:故选D【考点】在数轴上表示不等式的解集.【题文】若关于x的方程x2﹣2x﹣k=0有两个相等的实数根,则k的值为()A.﹣1 B.0 C.﹣3 D.﹣【答案】C.【解析】试题分析:根据题意得:△=(2)2﹣4×1×(﹣k)=0,即12+4k=0,解得:k=﹣3,故选:C.【考点】根的判别式.【题文】若关于x的方程x2﹣2x﹣k=0有两个相等的实数根,则k的值为()A.﹣1 B.0 C.﹣3 D.﹣【答案】C.【解析】试题分析:根据题意得:△=(﹣2)2﹣4×1×(﹣k)=0,即12+4k=0,解得:k=﹣3,故选:C.【考点】根的判别式.【题文】如下图,已知△ABC(AB<BC),用尺规在BC上确定一点P,使PA+PB=BC。

浙江省温州市2019-2020学年中考数学一模试卷含解析

浙江省温州市2019-2020学年中考数学一模试卷含解析

浙江省温州市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( )A .221x =B .1(1)212x x -=C .21212x = D .(1)21x x -= 2.第四届济南国际旅游节期间,全市共接待游客686000人次.将686000用科学记数法表示为( ) A .686×104 B .68.6×105 C .6.86×106 D .6.86×1053.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为( )A .9πB .10πC .11πD .12π4.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定5.如图,在Rt △ABC 中,∠ACB=90°,AC=23,以点C 为圆心,CB 的长为半径画弧,与AB 边交于点D ,将»BD 绕点D 旋转180°后点B 与点A 恰好重合,则图中阴影部分的面积为( )A .2233π-B .2233πC .233πD 233π 6.在下列网格中,小正方形的边长为1,点A 、B 、O 都在格点上,则A ∠的正弦值是()n n n nA .55B .510C .255D .127.在△ABC 中,AB=AC=13,BC=24,则tanB 等于( )A .513B .512C .1213D .1258.以坐标原点为圆心,以2个单位为半径画⊙O ,下面的点中,在⊙O 上的是( )A .(1,1)B .(2,2)C .(1,3)D .(1,2)9.在函数y =1x x -中,自变量x 的取值范围是( ) A .x≥1 B .x≤1且x≠0 C .x≥0且x≠1 D .x≠0且x≠110.根据《天津市北大港湿地自然保护总体规划(2017﹣2025)》,2018年将建立养殖业退出补偿机制,生态补水78000000m 1.将78000000用科学记数法表示应为( )A .780×105B .78×106C .7.8×107D .0.78×10811.如图,直线m ∥n ,直角三角板ABC 的顶点A 在直线m 上,则∠α的余角等于( )A .19°B .38°C .42°D .52°12.在下列条件中,能够判定一个四边形是平行四边形的是( )A .一组对边平行,另一组对边相等B .一组对边相等,一组对角相等C .一组对边平行,一条对角线平分另一条对角线D .一组对边相等,一条对角线平分另一条对角线二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x 的一元二次方程220--=x x k 有两个相等的实数根,则k =________.14.如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______.15.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.16.若2x+y=2,则4x+1+2y的值是_______.17.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是___.18.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=6,AD=8,则四边形ABOM 的周长为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.20.(6分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.21.(6分)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托,折回索子却量竿,却比竿子短一托”其大意为:现有一根竿和一根绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.求绳索长和竿长.22.(8分)文艺复兴时期,意大利艺术大师达.芬奇研究过用圆弧围成的部分图形的面积问题.已知正方形的边长是2,就能求出图中阴影部分的面积.证明:S矩形ABCD=S1+S2+S3=2,S4=,S5=,S6=+,S阴影=S1+S6=S1+S2+S3=.23.(8分)武汉市某中学的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷词查的结果分为“非常了解“、“比较了解”、“只听说过”,“不了解”四个等级,划分等级后的数据整理如下表:等级非常了解比较了解只听说过不了解频数40 120 36 4频率0.2 m 0.18 0.02(1)本次问卷调查取样的样本容量为,表中的m值为;(2)在扇形图中完善数据,写出等级及其百分比;根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数;(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?24.(10分)如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.求y与x之间的函数关系式;直接写出当x>0时,不等式34x+b>kx的解集;若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.25.(10分)某同学报名参加学校秋季运动会,有以下5 个项目可供选择:径赛项目:100m、200m、1000m (分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).(1)该同学从5 个项目中任选一个,恰好是田赛项目的概率P 为;(2)该同学从5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;(3)该同学从5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.26.(12分)如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).(1)求这个抛物线的解析式;(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM 相似?若存在,求出点P的坐标;若不存在,请说明理由.27.(12分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B.【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:1(1)21 2x x-=,故选B.考点:由实际问题抽象出一元二次方程.2.D【解析】根据科学记数法的表示形式(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数)可得:686000=6.86×105,故选:D.3.B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B.【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.4.C【解析】【分析】根据数轴上点的位置判断出a﹣4与a﹣11的正负,原式利用二次根式性质及绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:5<a<10,∴a﹣4>0,a﹣11<0,则原式=|a﹣4|﹣|a﹣11|=a﹣4+a﹣11=2a﹣15,故选:C.【点睛】此题考查了二次根式的性质与化简,以及实数与数轴,熟练掌握运算法则是解本题的关键.5.B【解析】【分析】阴影部分的面积=三角形的面积-扇形的面积,根据面积公式计算即可.【详解】解:由旋转可知AD=BD,∵∠ACB=90°∴CD=BD,∵CB=CD,∴△BCD是等边三角形,∴∠BCD=∠CBD=60°,∴BC=33AC=2, ∴阴影部分的面积=23×2÷2−2602360π⨯=23−23π. 故选:B.【点睛】本题考查了旋转的性质与扇形面积的计算,解题的关键是熟练的掌握旋转的性质与扇形面积的计算. 6.A【解析】【分析】由题意根据勾股定理求出OA ,进而根据正弦的定义进行分析解答即可.【详解】解:由题意得,2OC =,4AC =,由勾股定理得,2225AO AC OC =+=,5OC sinA OA ∴==. 故选:A .【点睛】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.7.B【解析】如图,等腰△ABC 中,AB=AC=13,BC=24,过A 作AD ⊥BC 于D ,则BD=12,在Rt △ABD 中,AB=13,BD=12,则,5 =,故tanB=512 ADBD=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.8.B【解析】【分析】根据点到圆心的距离和半径的数量关系即可判定点与圆的位置关系.【详解】A选项,(1,1)<2,因此点在圆内,B选项) 到坐标原点的距离为2=2,因此点在圆上,C选项(1,3) >2,因此点在圆外D选项(1) 因此点在圆内,故选B.【点睛】本题主要考查点与圆的位置关系,解决本题的关键是要熟练掌握点与圆的位置关系.9.C【解析】【分析】根据分式和二次根式有意义的条件进行计算即可.【详解】由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范围是x≥2且x≠2.故选C.【点睛】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.10.C【解析】【分析】科学记数法记数时,主要是准确把握标准形式a×10n即可.【详解】解:78000000= 7.8×107.故选C.【点睛】科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.11.D【解析】试题分析:过C作CD∥直线m,∵m∥n,∴CD∥m∥n,∴∠DCA=∠FAC=52°,∠α=∠DCB,∵∠ACB=90°,∴∠α=90°﹣52°=38°,则∠a的余角是52°.故选D.考点:平行线的性质;余角和补角.12.C【解析】A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.-1.【解析】【分析】根据根的判别式计算即可.【详解】解:依题意得:∵关于x的一元二次方程220x x k有两个相等的实数根,--=b-=4-4⨯1⨯(-k)=4+4k=0∴n=24ac解得,k=-1.故答案为:-1.【点睛】本题考查了一元二次方程根的判别式,当n =24ac b ->0时,方程有两个不相等的实数根;当n =24ac b -=0时,方程有两个相等的实数根;当n =24ac b -<0时,方程无实数根.14.1【解析】析:本题需先根据已知条件列出关于m 的等式,即可求出m 的值.解答:解:∵x 的方程x 2-2x+m=0(m 为常数)有两个相等实数根∴△=b 2-4ac=(-2)2-4×1?m=04-4m=0m=1故答案为115.113407, 北京市近两年的专利授权量平均每年增加6458.5件.【解析】【分析】依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.【详解】 解:∵北京市近两年的专利授权量平均每年增加:106948940316458.52-=(件), ∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.【点睛】此题考查统计图的意义,解题的关键在于看懂图中数据.16.1【解析】分析:将原式化简成2(2x+y)+1,然后利用整体代入的思想进行求解得出答案.详解:原式=2(2x+y)+1=2×2+1=1. 点睛:本题主要考查的是整体思想求解,属于基础题型.找到整体是解题的关键.17.50°【解析】【分析】先根据三角形外角的性质求出∠BEF 的度数,再根据平行线的性质得到∠2的度数.【详解】如图所示:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故答案是:50°.【点睛】考查了平行线的性质,解题的关键是掌握、运用三角形外角的性质(三角形的一个外角等于与它不相邻的两个内角的和).18.1.【解析】【分析】根据矩形的性质,直角三角形斜边中线性质,三角形中位线性质求出BO、OM、AM即可解决问题.【详解】解:∵四边形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴2210AC AB BC=+=,∵AO=OC,∴152BO AC==,∵AO=OC,AM=MD=4,∴132OM CD==,∴四边形ABOM的周长为AB+OB+OM+AM=6+5+3+4=1.故答案为:1.【点睛】本题看成矩形的性质、三角形中位线定理、直角三角形斜边中线性质等知识,解题的关键是灵活应用中线知识解决问题,属于中考常考题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.112.1【解析】试题分析:(1)根据题意即可求得y与x的函数关系式为y=30﹣2x与自变量x的取值范围为6≤x<11;(2)设矩形苗圃园的面积为S,由S=xy,即可求得S与x的函数关系式,根据二次函数的最值问题,即可求得这个苗圃园的面积最大值.试题解析:解:(1)y=30﹣2x(6≤x<11).(2)设矩形苗圃园的面积为S,则S=xy=x(30﹣2x)=﹣2x2+30x,∴S=﹣2(x﹣7.1)2+112.1,由(1)知,6≤x<11,∴当x=7.1时,S最大值=112.1,即当矩形苗圃园垂直于墙的一边的长为7.1米时,这个苗圃园的面积最大,这个最大值为112.1.点睛:此题考查了二次函数的实际应用问题.解题的关键是根据题意构建二次函数模型,然后根据二次函数的性质求解即可.20.(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).【解析】【分析】(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,有比例式OC ODDC DP=,能求出DP的值,又因为DE=DC,所以过点P作PG⊥y轴于点G,利用平行线分线段成比例定理即可求出DG,PG的长度,根据点P在点D的左边和右边,得到符合条件的两个P点坐标;②当OC与DP是对应边时,有比例式OC ODDP DC=,易求出DP,仍过点P作PG⊥y轴于点G,利用比例式DG PG DPDF EF DE==求出DG,PG的长度,然后根据点P在点D的左边和右边,得到符合条件的两个P点坐标;这样,直线DE上根据对应边不同,点P所在位置不同,就得到了符合条件的4个P点坐标. 【详解】解:(1)∵抛物线y=x2+bx+c经过A(﹣1,0)、B(0,﹣3),∴10{3b cc-+==-,解得2{3bc=-=-,故抛物线的函数解析式为y=x 2﹣2x ﹣3;(2)令x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3,则点C 的坐标为(3,0),∵y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,∴点E 坐标为(1,﹣4),设点D 的坐标为(0,m ),作EF ⊥y 轴于点F (如下图),∵DC 2=OD 2+OC 2=m 2+32,DE 2=DF 2+EF 2=(m+4)2+12,∵DC=DE ,∴m 2+9=m 2+8m+16+1,解得m=﹣1,∴点D 的坐标为(0,﹣1);(3)∵点C (3,0),D (0,﹣1),E (1,﹣4),∴CO=DF=3,DO=EF=1,根据勾股定理,,在△COD 和△DFE 中,∵{90CO DFCOD DFE DO EF=∠=∠=︒=,∴△COD ≌△DFE (SAS ),∴∠EDF=∠DCO ,又∵∠DCO+∠CDO=90°,∴∠EDF+∠CDO=90°,∴∠CDE=180°﹣90°=90°,∴CD ⊥DE ,①当OC 与CD 是对应边时,∵△DOC ∽△PDC , ∴OC OD DC DP=1DP , 解得DP=3, 过点P 作PG ⊥y 轴于点G , 则DG PG DP DF EF DE ==,即31DG PG ==解得DG=1,PG=13,当点P在点D的左边时,OG=DG﹣DO=1﹣1=0,所以点P(﹣13,0),当点P在点D的右边时,OG=DO+DG=1+1=2,所以,点P(13,﹣2);②当OC与DP是对应边时,∵△DOC∽△CDP,∴OC ODDP DC=,即3DP=10,解得DP=310,过点P作PG⊥y轴于点G,则DG PG DPDF EF DE==,即3103110DG PG==,解得DG=9,PG=3,当点P在点D的左边时,OG=DG﹣OD=9﹣1=8,所以,点P的坐标是(﹣3,8),当点P在点D的右边时,OG=OD+DG=1+9=10,所以,点P的坐标是(3,﹣10),综上所述,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,满足条件的点P共有4个,其坐标分别为(﹣13,0)、(13,﹣2)、(﹣3,8)、(3,﹣10).考点:1.相似三角形的判定与性质;2.二次函数动点问题;3.一次函数与二次函数综合题. 21.绳索长为20尺,竿长为15尺.【解析】【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,对折索子来量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论.【详解】设绳索长、竿长分别为x 尺,y 尺, 依题意得:552x y x y =+⎧⎪⎨=-⎪⎩ 解得:20x =,15y =.答:绳索长为20尺,竿长为15尺.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 22.S 1,S 3,S 4,S 5,1【解析】【分析】利用图形的拼割,正方形的性质,寻找等面积的图形,即可解决问题.【详解】由题意:S 矩形ABCD =S 1+S 1+S 3=1,S 4=S 1,S 5=S 3,S 6=S 4+S 5,S 阴影面积=S 1+S 6=S 1+S 1+S 3=1.故答案为S 1,S 3,S 4,S 5,1.【点睛】考查正方形的性质、矩形的性质、扇形的面积等知识,解题的关键是灵活运用所学知识解决问题. 23. (1)200;0.6(2)非常了解20%,比较了解60%; 72°;(3) 900人【解析】【分析】(1)根据非常了解的频数与频率即可求出本次问卷调查取样的样本容量,用1减去各等级的频率即可得到m 值;(2)根据非常了解的频率、比较了解的频率即可求出其百分比,与非常了解的圆心角度数;(3)用全校人数乘以非常了解的频率即可.【详解】解:(1) 本次问卷调查取样的样本容量为40÷0.2=200;m=1-0.2-0.18-0.02=0.6 (2)非常了解20%,比较了解60%;非常了解的圆心角度数:360°×20%=72°(3)1500×60%=900(人)答:“比较了解”垃圾分类知识的人数约为900人.【点睛】此题主要考查扇形统计图的应用,解题的关键是根据频数与频率求出调查样本的容量.24.(1)3yx;(2)x>1;(3)P(﹣54,0)或(94,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入双曲线y=kx,可得y与x之间的函数关系式;(2)依据A(1,3),可得当x>0时,不等式34x+b>kx的解集为x>1;(3)分两种情况进行讨论,AP把△ABC的面积分成1:3两部分,则CP=14BC=74,或BP=14BC=74,即可得到OP=3﹣74=54,或OP=4﹣74=94,进而得出点P的坐标.详解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=kx,可得k=1×3=3,∴y与x之间的函数关系式为:y=3x;(2)∵A(1,3),∴当x>0时,不等式34x+b>kx的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=34x+b,可得3=34+b,∴b=94,∴y2=34x+94,令y2=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=14BC=74,或BP=14BC=74∴OP=3﹣74=54,或OP=4﹣74=94,∴P(﹣54,0)或(94,0).点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.(1)25;(1)35;(3)310;【解析】【分析】(1)直接根据概率公式求解;(1)先画树状图展示所有10种等可能的结果数,再找出一个径赛项目和一个田赛项目的结果数,然后根据概率公式计算一个径赛项目和一个田赛项目的概率P1;(3)找出两个项目都是径赛项目的结果数,然后根据概率公式计算两个项目都是径赛项目的概率P1.【详解】解:(1)该同学从5个项目中任选一个,恰好是田赛项目的概率P=;(1)画树状图为:共有10种等可能的结果数,其中一个径赛项目和一个田赛项目的结果数为11,所以一个径赛项目和一个田赛项目的概率P1==;(3)两个项目都是径赛项目的结果数为6,所以两个项目都是径赛项目的概率P1==.故答案为.考点:列表法与树状图法.26.【小题1】设所求抛物线的解析式为:,将A(1,0)、B(-3,0)、D(0,3)代入,得…………………………………………2分即所求抛物线的解析式为:……………………………3分【小题2】如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…………………①设过A、E两点的一次函数解析式为:y=kx+b(k≠0),∵点E在抛物线上且点E的横坐标为-2,将x=-2,代入抛物线,得∴点E坐标为(-2,3)………………………………………………………………4分又∵抛物线图象分别与x轴、y轴交于点A(1,0)、B(-3,0)、D(0,3),所以顶点C(-1,4)∴抛物线的对称轴直线PQ为:直线x=-1,[中国教#&~@育出%版网]∴点D与点E关于PQ对称,GD=GE……………………………………………②分别将点A(1,0)、点E(-2,3)代入y=kx+b,得:解得:过A、E两点的一次函数解析式为:y=-x+1∴当x=0时,y=1∴点F坐标为(0,1)……………………5分∴=2………………………………………③又∵点F与点I关于x轴对称,∴点I坐标为(0,-1)∴……………………………………④又∵要使四边形DFHG的周长最小,由于DF是一个定值,∴只要使DG+GH+HI最小即可……………………………………6分由图形的对称性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小设过E(-2,3)、I(0,-1)两点的函数解析式为:,分别将点E(-2,3)、点I(0,-1)代入,得:解得:过I、E两点的一次函数解析式为:y=-2x-1∴当x=-1时,y=1;当y=0时,x=-;∴点G坐标为(-1,1),点H坐标为(-,0)∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=∴四边形DFHG的周长最小为. …………………………………………7分【小题3】如图⑤,由(2)可知,点A(1,0),点C(-1,4),设过A(1,0),点C(-1,4)两点的函数解析式为:,得:解得:,过A、C两点的一次函数解析式为:y=-2x+2,当x=0时,y=2,即M的坐标为(0,2);由图可知,△AOM为直角三角形,且,………………8分要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论;……………………………………………………………………………9分①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;……………………………………………………………………………………10分②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立.……11分综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(-4,0)12分【解析】(1)直接利用三点式求出二次函数的解析式;(2)若四边形DFHG的周长最小,应将边长进行转换,利用对称性,要使四边形DFHG的周长最小,由于DF是一个定值,只要使DG+GH+HI最小即可,由图形的对称性和,可知,HF=HI,GD=GE,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小,即,DF+EI=即边形DFHG的周长最小为.(3)要使△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论,①当∠CMP=90°时,CM=,若则,可求的P(-4,0),则CP=5,,即P(-4,0)成立,若由图可判断不成立;②当∠PCM=90°时,CM=,若则,可求出P(-3,0),则PM=,显然不成立,若则,更不可能成立. 即求出以P、C、M为顶点的三角形与△AOM相似的P的坐标(-4,0)27.(1)证明见解析;(2)BC=;.【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°.(2)利用已知条件证得△AGC∽△ABF,利用比例式求得线段的长即可.(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴∠1=∠CAB.∵∠CBF=∠CAB,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线.(2)解:过点C作CG⊥AB于G.∵sin∠CBF=,∠1=∠CBF,∴sin∠1=,∵在Rt△AEB中,∠AEB=90°,AB=5,∴BE=AB•sin∠1=,∵AB=AC,∠AEB=90°,∴BC=2BE=2,在Rt△ABE中,由勾股定理得AE==2,∴sin∠2===,cos∠2===,在Rt△CBG中,可求得GC=4,GB=2,∴AG=3,∵GC∥BF,∴△AGC∽△ABF,∴=.∴BF==.。

2019年浙江省中考数学一模试卷附解析

2019年浙江省中考数学一模试卷附解析

2019年浙江省中考数学一模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,在直角坐标系中,⊙O 的半径为1,则直线2y x =-+与⊙O 的位置关系是( )A .相离B .相交C .相切D .以上三种情形都有可能2. 如图是一些相同的小\正方体构成的几何体的三视图:主视图 左视图 俯视图这些相同的小正方体的个数有( )A .4 个B .5 个C .6 个D .7 个 3.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( )A .1B .12C .13D .234.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( )A .11000B .1200C .12D .155.如图,以正方形 ABCD 各边为直径在正方形内画半圆,计算所围成的图形 ( 阴影部分)的面积,正确的方法是( )A .三个半圆的面积减去正方形的面积B . 四个半圆的面积减去正方形的面积C . 正方形的面积减去两个半圆的面积D . 正方形的面积减去三个半圆的面积6.下列命题中,是真命题的为( )A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是菱形C .对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形7.下列可作为证明命题“直角三角形至少有一个锐角大于45°”是假命题的反例是()8.一个几何体的三视图如下图所示,则这个几何体是()A.圆柱B.圆锥C.长方体D.正方体9.两条直线被第三条直线所截,必有()A.同位角相等B.内错角相等C.同旁内角互补D.以上都不对10.两个偶数的平方差一定是()A.2 B.4 C.8 D. 4 的倍数11.已知623m⋅(m 是小于 10 的自然数),则()⨯⋅⨯⋅⨯=10n(810)(510)(210)A. m=8 , n= 11 B. m=8 , n= 12 C. m= 5 , n= 12 D. m= 8 , n= 3612.如图,身高为1.6 m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2 m,CA=0.8 m,那么树的高度为()A.4.8 m B.6.4 m C.8 m D.10 m13.一根长为3.8 m的铁丝被分成两段,各围成一个正方形和长方形,已知正方形的边长比长方形的长少0.1 m,长方形的长和宽之比为2:1,则正方形和长方形的面积分别是()A.2.5 m2和1.8 m2 B.0.25 m2和0.18 m2C.1.6 m2和2 m2 D.0.16 m2和0.2 m2二、填空题14.求下列三角函数的值(精确到 0. 0001).(1)sin36°= ;sin53°16′= ;cos25°18′= .(2) cos36°= ;tan54°24′= ;sin26°18′24"= .(3)tan54°= ;cos48°6′36"= ;tan60°= .15.已知点P 是线段 AB 的黄金分割点,AP>PB .若 AB=2,则 BP= .16.当三角形面积是8cm 2时,它的底边上的高h (cm )与底边长x(cm)之间的函数解析式是 .h=16x17.如果一个多边形的每一个外角都相等,且小于45°,那么这个多边形的边数最少是 .18.如图 ,在△ABC 中,∠ACB=90°,角平分线 AD 、BE 交于点F ,则∠AFB= .19.某单位内线电话号码由3个数字组成,每个数字可以是1、2、3中的任一个,•如果不知道某人的内线电话号码,任意拨一个号码能接通的概率是 .20.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把某一张牌旋转180°,魔术师解除蒙具后,看到如图②所示的4张扑克牌,他很快确定哪一张牌被旋转过,到底哪一张?答: .21.一件工作,甲独做要 3 h 完成,乙独做要5 h 完成,若两人合作完成这件工作的45,则需要 h 完成.三、解答题22.如图,△ABC 中,∠C=90°,0 是 AB 上的点,以 0为圆心,OB 为半径的圆与 AB 相交于点 E ,与 AC 相切于点 D ,已知 AD=2,AE= 1,求 BC.23.如图所示,锐角α的顶点在坐标原点,一边在x 轴的正半轴上,另一边上有一点 P(2,y),若sin α=35,的值.24.已知n m ,是实数,且155+-+-=n n m ,求n m 32-的值.25.如图,用长为120 m 的铁丝一边靠墙围成一个长方形,墙的长度 AB =100 m ,要使靠墙的一边不小于 42 m ,那么不靠墙的一边(垂直于墙的边)应取多少?26.如图所示,先画出线段AB 关于直线1l 对称的线段A ′B ′,再画出线段A ′B ′关于直线2l 对称的线段A ″B ″,看看线段AB 和线段A ″B ″之间有怎样的位置关系.把线段AB 换成三角形试试看.27.求下列各数的立方根:0,-125, -343,0. 064,-1,1,338,21628.如图,从建筑物顶端A 处拉一条宣传标语条幅到地面C 处,为了测量条幅AC 的长,在地面另一处选一点D ,使D 、C 、B (B 为建筑物的底部)三点在同一直线上,并测得∠D=40°,∠ACB=80°,求∠DAC 的度数.29.随着人民生活水平懂得提高,购房者对居住面积的要求有了新的变化.现从某区近期卖出的不同户型的商品房中随机抽取1000套进行统计,并根据统计结果绘出如图所示的统计图,请结合统计图提供的信息,解答下列问题:(1)卖出面积为60~80平方米的商品房多少套?据此补全统计图.(2)面积在什么范围内的住房卖出的最多?约占全部卖出住房的百分之几?(3)假如你是房地产开发商,根据以上信息,你将会多建面积在哪些范围内的住房?请简要说明理由:A BC D30.个正方形的边长为 a(cm),若边长增加6 cm,则新正方形的面积增加了多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.D4.B5.B6.C7.B8.A9.B10.D11.B12.C13.B二、填空题14.(3)1. 3764 , 0. 6677,1. 7320(1)0. 5878,0.8014, 0. 9041(2)0. 8090,1. 3968,0. 443215.35-16. 17.918.135°19.27120.第一张方块421.32三、解答题22.连结OD.∵ 圆 0切 AC 于点D ,∴∠ODA=90°,设⊙O 的半径为 r ,则222()AD OD AE EO +=+,则r= 1.5,且OD AO BC AB=, 2.4BC =. 23.过点P 作x 轴的垂线段,M 为垂足,∵ PM=y ,OM= 2,∴24OP y =+3sin 5PM a OP ==,∴2354y y =+,∴32y ⋅=± ∵y>0 ,∴32y =. 24.-1325.不靠墙的一边应取不小于10 m 且不大于39 m 26.略27.依次为 0,-5,-7,0.4, -1, 1 ,32-,6 28.40°29.(1)350套;(2)80~100m 2,占48%;(3)60~80m 2和80~1OOm 2.理由:购房者对面积在这两个范围内的住房需求量最高 30.22(6)1236a a a +-=+(cm 2)。

2019年最新浙江省中考数学第一次模拟试卷1及答案解析

2019年最新浙江省中考数学第一次模拟试卷1及答案解析
16.某一计算机的程序是:对于输入的每一个数,先计算这个数的平方的6倍,再减去这个数的4倍,再加上1,若一个数无论经过多少次这样的运算,其运算结果与输入的数相同,则称这个数是这种运算程序的不变数,这个运算程序的不变数是.
三、解答题:本题有8小题,第17-20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分.
A.小于8km/hB.大于8km/hC.小于4km/hD.大于4km/h
7.如图,CD是⊙O的弦,O是圆心,把⊙O的劣弧沿着CD对折,A是对折后劣弧上的一点,∠CAD=100°,则∠B的度数是( )
A.100°B.80°C.60°D.50°
8.下列分式运算中正确的是( )
A. B.
C. D.
9.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是( )
(4)请从两个不同的角度评价一下八、九年级学生的总体睡眠情况,并给学校提出合理化的建议.
23.如图,四边形ABCD中,AC、BD是它的对角线,∠ABC=∠ADC=90°,∠BCD是锐角.
(1)写出这个四边形的一条性质并证明你的结论.
(2)若BD=BC,证明: .
(3)①若AB=BC=4,AD+DC=6,求 的值.
4.如图,BD⊥AB,BD⊥CD,则∠α的度数是( )
A.50°B.40°C.60°D.45°
5.掷两次1元硬币,至少有一次正面(币值一面)朝上的概率是( )
A. B. C. D.
6.甲、乙两人从相距24km的A、B两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )
浙江省中考数学一模试卷
一、选择题:本题有10小题,每小题4分,共40分,请选出各题中一个符合题意的正确选项,不选、多选、错选,均不得分.

浙江省温州市2019-2020学年中考数学一模考试卷含解析

浙江省温州市2019-2020学年中考数学一模考试卷含解析

浙江省温州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac . 其中正确的结论有( )A .1个B .2个C .3个D .4个2.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )A .B .C .D .3.如图,一个斜坡长130m ,坡顶离水平地面的距离为50m ,那么这个斜坡的坡度为( )A .512B .1213C .513D .13124.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--o5.如图,矩形 ABCD 的边 AB=1,BE 平分∠ABC ,交 AD 于点 E ,若点 E 是 AD 的中点,以点 B 为圆心,BE 长为半径画弧,交 BC 于点 F ,则图中阴影部分的面积是( )A .2-4π B .324π- C .2-8π D .324π- 6.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。

问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。

问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )A .5210258x y x y +=⎧⎨+=⎩B .52107718x y x y +=⎧⎨+=⎩C .7718258x y x y +=⎧⎨+=⎩D .5282510x y x y +=⎧⎨+=⎩7.如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为( )A .30tan α米 B .30sinα米 C .30tanα米 D .30cosα米8.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( ) A .16B .13C .12D .239.如图,在底边BC 为3,腰AB 为2的等腰三角形ABC 中,DE 垂直平分AB 于点D ,交BC 于点E ,则△ACE 的周长为( )A .2+3B .2+23C .4D .3310.若30m n +-=,则222426m mn n ++-的值为( ) A .12B .2C .3D .011.如图,直线 AB 与▱ MNPQ 的四边所在直线分别交于 A 、B 、C 、D ,则图中的相似三角形有( )A .4 对B .5 对C .6 对D .7 对12.如图,在ABC ∆中,点D 为AC 边上一点,,6,3DBC A BC AC ∠=∠==则CD 的长为( )A .1B .12C .2D .32二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC 中,∠A=70°,∠B=50°,点D ,E 分别为AB ,AC 上的点,沿DE 折叠,使点A 落在BC 边上点F 处,若△EFC 为直角三角形,则∠BDF 的度数为______.14.如图所示,直线y=x+b 交x 轴A 点,交y 轴于B 点,交双曲线8(0)y x x=>于P 点,连OP ,则OP 2﹣OA 2=__.15.如图,在半径为2cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为_____.16.分解因式8x 2y ﹣2y =_____. 17.计算:(1)(23b a)2=_____;(2)210ab c 54ac÷=_____. 18.观察下列的“蜂窝图”按照它呈现的规律第n 个图案中的“”的个数是_____(用含n 的代数式表示)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.20.(6分)如图①,一次函数y=12x ﹣2的图象交x 轴于点A ,交y 轴于点B ,二次函数y=12-x 2+bx+c 的图象经过A 、B 两点,与x 轴交于另一点C . (1)求二次函数的关系式及点C 的坐标;(2)如图②,若点P 是直线AB 上方的抛物线上一点,过点P 作PD ∥x 轴交AB 于点D ,PE ∥y 轴交AB 于点E ,求PD+PE 的最大值;(3)如图③,若点M 在抛物线的对称轴上,且∠AMB=∠ACB ,求出所有满足条件的点M 的坐标.21.(6分)如图,在锐角△ABC 中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于AB 的长为半径作弧,两弧分别相交于点P 、Q ;②作直线PQ 分别交边AB 、BC 于点E 、D .小明所求作的直线DE 是线段AB的 ;联结AD,AD =7,sin ∠DAC =,BC =9,求AC 的长.22.(8分)先化简,再求值:2221()4244a aa a a a -÷--++,其中a 是方程a 2+a ﹣6=0的解. 23.(8分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是38;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为12.求 x 和 y 的值.24.(10分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元. (1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率. 25.(10分)(1)解方程:x 2﹣5x ﹣6=0;(2)解不等式组:43(2)123x x x x +≤+⎧⎪-⎨<⎪⎩.26.(12分)解不等式组:21512x x x x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.27.(12分)如图,在平面直角坐标系中,二次函数2y x bx c =++的图象与x 轴交于A ,B 两点,与y 轴交于点()0,3C-,A 点的坐标为()1,0-.(1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,直接写出使QBC ∆为直角三角形的点Q 的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】首先根据抛物线的开口方向可得到a <0,抛物线交y 轴于正半轴,则c >0,而抛物线与x 轴的交点中,﹣2<x 1<﹣1、0<x 2<1说明抛物线的对称轴在﹣1~0之间,即x=﹣2ba>﹣1,可根据这些条件以及函数图象上一些特殊点的坐标来进行判断 【详解】由图知:抛物线的开口向下,则a <0;抛物线的对称轴x=﹣2ba>﹣1,且c >0; ①由图可得:当x=﹣2时,y <0,即4a ﹣2b+c <0,故①正确; ②已知x=﹣2ba>﹣1,且a <0,所以2a ﹣b <0,故②正确; ③抛物线对称轴位于y 轴的左侧,则a 、b 同号,又c >0,故abc >0,所以③不正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:244ac b a->2,由于a <0,所以4ac ﹣b2<8a ,即b 2+8a >4ac ,故④正确; 因此正确的结论是①②④.故选:C.【点睛】本题主要考查对二次函数图象与系数的关系,抛物线与x轴的交点,二次函数图象上点的坐标特征等知识点的理解和掌握,能根据图象确定与系数有关的式子的正负是解此题的关键.2.B【解析】分析:由已知条件可知,从正面看有1列,每列小正方数形数目分别为4,1,2;从左面看有1列,每列小正方形数目分别为1,4,1.据此可画出图形.详解:由俯视图及其小正方体的分布情况知,该几何体的主视图为:该几何体的左视图为:故选:B.点睛:此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.3.A【解析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,22=10m,13050∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.4.A【解析】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 5.B【解析】【分析】利用矩形的性质以及结合角平分线的性质分别求出AE,BE的长以及∠EBF的度数,进而利用图中阴影部分的面积=S ABCD矩形-S ABEV-S EBF扇形,求出答案.【详解】∵矩形ABCD的边AB=1,BE平分∠ABC,∴∠ABE=∠EBF=45°,AD∥BC,∴∠AEB=∠CBE=45°,∴2,∵点E是AD的中点,∴AE=ED=1,∴图中阴影部分的面积=S ABCD矩形−S ABEV −S EBF扇形=1×2−12245(2)3-24π⨯π故选B.【点睛】此题考查矩形的性质,扇形面积的计算,解题关键在于掌握运算公式6.D【分析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组5282510x yx y+=⎧⎨+=⎩错误,故选:D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.7.C【解析】试题解析:在Rt△ABO中,∵BO=30米,∠ABO为α,∴AO=BOtanα=30tanα(米).故选C.考点:解直角三角形的应用-仰角俯角问题.8.D【解析】试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:4263=,故选D.9.B【解析】分析:根据线段垂直平分线的性质,把三角形的周长问题转化为线段和的问题解决即可. 详解:∵DE垂直平分AB,∴BE=AE,∴,∴△ACE 的周长 故选B .点睛:本题考查了等腰三角形性质和线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等. 10.A 【解析】 【分析】先根据30m n +-=得出3m n +=,然后利用提公因式法和完全平方公式2222()a ab b a b ++=+对222426m mn n ++-进行变形,然后整体代入即可求值.【详解】 ∵30m n +-=, ∴3m n +=,∴222224262()623612m mn n m n ++-=+-=⨯-=. 故选:A . 【点睛】本题主要考查整体代入法求代数式的值,掌握完全平方公式和整体代入法是解题的关键. 11.C 【解析】由题意,AQ ∥NP ,MN ∥BQ ,∴△ACM ∽△DCN ,△CDN ∽△BDP ,△BPD ∽△BQA ,△ACM ∽△ABQ ,△DCN ∽△ABQ ,△ACM ∽△DBP ,所以图中共有六对相似三角形. 故选C . 12.C 【解析】 【分析】根据∠DBC=∠A ,∠C=∠C ,判定△BCD ∽△ACB=代入求值即可. 【详解】∵∠DBC=∠A ,∠C=∠C , ∴△BCD ∽△ACB , ∴CD BCBC AC=,∴636=,∴CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.110°或50°.【解析】【分析】由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.【详解】∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC ﹣∠B=50°;综上:∠BDF的度数为110°或50°.故答案为110°或50°.【点睛】本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.14.1【解析】解:∵直线y=x+b与双曲线8yx=(x>0)交于点P,设P点的坐标(x,y),∴x﹣y=﹣b,xy=8,而直线y=x+b与x轴交于A点,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案为1.15.﹣1.【解析】试题分析:假设出扇形半径,再表示出半圆面积,以及扇形面积,进而即可表示出两部分P,Q面积相等.连接AB,OD,根据两半圆的直径相等可知∠AOD=∠BOD=45°,故可得出绿色部分的面积=S△AOD,利用阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色,故可得出结论.解:∵扇形OAB的圆心角为90°,扇形半径为2,∴扇形面积为:=π(cm2),半圆面积为:×π×12=(cm2),∴S Q+S M =S M+S P=(cm2),∴S Q=S P,连接AB,OD,∵两半圆的直径相等,∴∠AOD=∠BOD=45°,∴S绿色=S△AOD=×2×1=1(cm2),∴阴影部分Q的面积为:S扇形AOB﹣S半圆﹣S绿色=π﹣﹣1=﹣1(cm2).故答案为﹣1.考点:扇形面积的计算.16.2y(2x+1)(2x﹣1)【解析】【分析】首先提取公因式2y,再利用平方差公式分解因式得出答案.【详解】8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1).故答案为2y(2x+1)(2x-1).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.17.429b a8b c【解析】 【分析】(1)直接利用分式乘方运算法则计算得出答案; (2)直接利用分式除法运算法则计算得出答案. 【详解】(1)(23b a )2=429b a ;故答案为429b a;(2)210ab c 54a c ÷=21045ab c c a ⨯=8bc . 故答案为8bc.【点睛】此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键. 18.3n+1 【解析】 【分析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律. 【详解】解:由题意可知:每1个都比前一个多出了3个“”,∴第n 个图案中共有“”为:4+3(n ﹣1)=3n+1故答案为:3n+1. 【点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19. (1) 14;(2)112. 【解析】 【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解. 【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14; (2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.20.(1)二次函数的关系式为y =215222x x -+-;C (1,0);(2)当m =2时,PD +PE 有最大值3;(3)点M 的坐标为(52,12)或(52,21.【解析】 【分析】(1)先求出A 、B 的坐标,然后把A 、B 的坐标分别代入二次函数的解析式,解方程组即可得到结论; (2)先证明△PDE ∽△OAB ,得到PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -),PD+PE =3PE ,然后配方即可得到结论.(3)分两种情况讨论:①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.求出圆心O 1的坐标和半径,利用MO 1=半径即可得到结论.②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.求出点O 2的坐标,算出DM 的长,即可得到结论. 【详解】 解:(1)令y =122x -=0,得:x =4,∴A (4,0). 令x =0,得:y =-2,∴B (0,-2).∵二次函数y =212x bx c -++的图像经过A 、B 两点,∴8402b c c -++⎧⎨-⎩==,解得:522b c ⎧⎪⎨⎪-⎩==,∴二次函数的关系式为y =215222x x -+-.令y =215222x x -+-=0,解得:x =1或x =4,∴C (1,0).(2)∵PD ∥x 轴,PE ∥y 轴, ∴∠PDE =∠OAB ,∠PED =∠OBA ,∴△PDE ∽△OAB .∴PD PE =OA OB =42=2, ∴PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -).∴PD +PE =3PE =3×[(215222m m -+-)-(122m -)]=2362m m -+=()23262m --+.∵0<m <4,∴当m =2时,PD +PE 有最大值3.(3)①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1. ∵△ABC 的外接圆O 1的圆心在对称轴上,设圆心O 1的坐标为(52,-t ). ∴()22522t ⎛⎫+- ⎪⎝⎭=22512t ⎛⎫-+ ⎪⎝⎭,解得:t =2,∴圆心O 1的坐标为(52,-2),∴半径为52. 设M (52,y ).∵MO 1=52,∴522y +=,解得:y=12,∴点M 的坐标为(5122,). ②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2. ∵AO 1=O 1B =52,∴∠O 1AB =∠O 1BA .∵O 1B ∥x 轴,∴∠O 1BA =∠OAB , ∴∠O 1AB =∠OAB ,O 2在x 轴上,∴点O 2的坐标为 (32,0),∴O 2D =1,∴DM 2,∴点M 的坐标为(52,2-).综上所述:点M 的坐标为(52,12)或(52,.点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC外接圆的圆心坐标.21.(1)线段AB的垂直平分线(或中垂线);(2)AC=5.【解析】【分析】(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.【详解】(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);故答案为线段AB的垂直平分线(或中垂线);(2)过点D作DF⊥AC,垂足为点F,如图,∵DE是线段AB的垂直平分线,∴AD=BD=7∴CD=BC﹣BD=2,在Rt△ADF中,∵sin∠DAC=,∴DF=1,在Rt△ADF中,AF=,在Rt△CDF中,CF=,∴AC=AF+CF=.【点睛】本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题. 22.13. 【解析】 【分析】先计算括号里面的,再利用除法化简原式, 【详解】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭ , =()()()()222222a a a a a a-++⋅+- ,=2222a a a a a --+⋅- ,=222a a a a -+⋅-, =2a a+,由a 2+a ﹣6=0,得a=﹣3或a=2, ∵a ﹣2≠0, ∴a≠2, ∴a=﹣3, 当a=﹣3时,原式=32133-+=-. 【点睛】本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算. 23.x=15,y=1 【解析】 【分析】根据概率的求法:在围棋盒中有x 颗黑色棋子和y 颗白色棋子,共x+y 颗棋子,如果它是黑色棋子的概率是38,有38x x y +=成立.化简可得y 与x 的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为12,结合(1)的条件,可得38101102xx yxx y⎧⎪+⎪⎨+⎪⎪++⎩==,解可得x=15,y=1.【详解】依题意得,38101102xx yxx y⎧=⎪+⎪⎨+⎪=⎪++⎩,化简得,53010x yx y-=⎧⎨-=-⎩,解得,1525xy=⎧⎨=⎩.,检验当x=15,y=1时,0x y+≠,100x y++≠,∴x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.24.解:(1)10,50;(2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=82123=;解法二(列表法):(以下过程同“解法一”)【解析】【分析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案.试题解析:(1)10,50;(2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;解法二(列表法):0 10 20 300 ﹣﹣10 20 3010 10 ﹣﹣30 4020 20 30 ﹣﹣5030 30 40 50 ﹣﹣从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;考点:列表法与树状图法.【详解】 请在此输入详解!25.(1)x 1=6,x 2=﹣1;(2)﹣1≤x <1. 【解析】 【分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可; (2)先求出不等式的解集,再求出不等式组的解集即可. 【详解】(1)x 2﹣5x ﹣6=0, (x ﹣6)(x+1)=0, x ﹣6=0,x+1=0, x 1=6,x 2=﹣1;(2)()432x 1x23x x ⎧+≤+⎪⎨-<⎪⎩①② ∵解不等式①得:x≥﹣1, 解不等式②得:x <1,∴不等式组的解集为﹣1≤x <1. 【点睛】本题考查了解一元一次不等式组和解一元二次方程,能把一元二次方程转化成一元一次方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键. 26.则不等式组的解集是﹣1<x≤3,不等式组的解集在数轴上表示见解析. 【解析】 【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集. 【详解】21x 512x x x +>⎧⎪⎨+-≥⎪⎩①,② 解不等式①得:x >﹣1, 解不等式②得:x≤3,则不等式组的解集是:﹣1<x≤3, 不等式组的解集在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,熟知确定解集的方法“同大取大,同小取小,大小小大中间找,大大小小无处找”是解题的关键.也考查了在数轴上表示不等式组的解集.27.(1)223y x x =--;(2)P 点坐标为315,24⎛⎫- ⎪⎝⎭, 758;(3)Q 317⎛-+ ⎝⎭或317⎛-- ⎝⎭或()1,2或()1,4-.【解析】【分析】(1)根据待定系数法把A 、C 两点坐标代入2y x bx c =++可求得二次函数的解析式;(2)由抛物线解析式可求得B 点坐标,由B 、C 坐标可求得直线BC 解析式,可设出P 点坐标,用P 点坐标表示出四边形ABPC 的面积,根据二次函数的性质可求得其面积的最大值及P 点坐标;(3)首先设出Q 点的坐标,则可表示出QB 2、QC 2和BC 2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.【详解】解:(1)∵A(-1,0),()0,3C -在2y x bx c =++上,103b c c -+=⎧∴⎨=-⎩,解得23b c =-⎧⎨=-⎩, ∴二次函数的解析式为223y x x =--;(2)在223y x x =--中,令0y =可得2023x x -=-,解得3x =或1x =-,()3,0B ∴,且()0,3C -,∴经过B 、C 两点的直线为3y x =-,设点P 的坐标为()223x x x --,,如图,过点P 作PD x ⊥轴,垂足为D ,与直线BC 交于点E ,则(),3E x x -,ABC BCP ABPC S S S ∆∆=+Q 四边形()211433322x x =⨯⨯+-⨯239622x x =-++23375228x ⎛⎫=-+ ⎪⎝⎭, ∴当32x =时,四边形ABPC 的面积最大,此时P 点坐标为315,24⎛⎫- ⎪⎝⎭, ∴四边形ABPC 的最大面积为758; (3)()222314y x x x =--=--Q ,∴对称轴为1x =,∴可设Q 点坐标为()1,t ,()3,0B Q ,()0,3C -,()2222134BQ t t ∴=-+=+,()222213610CQ t t t =++=++,218BC =, QBC ∆Q 为直角三角形,∴有90BQC ∠=︒、90CBQ ∠=︒和90BCQ ∠=︒三种情况,①当90BQC ∠=︒时,则有222BQ CQ BC +=,即22461018t t t ++++=,解得317t -+=或3172t -=,此时Q 点坐标为3171,2⎛-+ ⎝⎭或3171,2⎛-- ⎝⎭; ②当90CBQ ∠=︒时,则有222BC BQ CQ +=,即22418610t t t ++=++,解得2t =,此时Q 点坐标为()1,2;③当90BCQ ∠=︒时,则有222BCCQ BQ +=,即22186104t t t +++=+,解得4t =-,此时Q 点坐标为()1,4-; 综上可知Q 点的坐标为317⎛-+ ⎝⎭或317⎛-- ⎝⎭或()1,2或()1,4-. 【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年浙江省温州市龙湾区中考数学一模试卷一.选择题(共10小题,满分40分,每小题4分)1.若实数a、b互为相反数,则下列等式中成立的是()A.a﹣b=0 B.a+b=0 C.ab=1 D.ab=﹣12.以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是()A.B.C.D.3.某班5位学生参加中考体育测试的成绩(单位:分)分别是:50、45、36、48、50.则这组数据的众数是()A.36 B.45 C.48 D.504.一个n边形的内角和为540°,则n的值为()A.4 B.5 C.6 D.75.若分式的值为0,则x的值是()A.2 B.0 C.﹣2 D.﹣36.小敏的讲义夹里放了大小相同的试卷共12页,其中语文2页、数学4页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为()A.B.C.D.7.如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300米到达B点,则小刚上升了()A.300sinα米B.300cosα米C.300tanα米D.米8.元宵节又称灯节,我国各地都有挂灯笼的习俗.灯笼又分为宫灯,纱灯、吊灯等.若购买1个宫灯和1个纱灯共需75元,小田用690元购买了6个同样的宫灯和10个纱灯.若设每个宫灯x元,每个纱灯为y元,由题可列二元一次方程组得()A.B.C.D.9.如图,点A是射线y═(x≥0)上一点,过点A作AB⊥x轴于点B,以AB为边在其右侧作正方形ABCD,过点A的双曲线y=交CD边于点E,则的值为()A.B.C.D.110.如图,BC是⊙O直径,A是圆周上一点,把△ABC绕点C顺时针旋转得△EDC,连结BD,当BD ∥AC时,记旋转角为x度,若∠ABC=y度,则y与x之间满足的函数关系式为()A.y=180﹣2x B.y=x+90 C.y=2x D.y=x二.填空题(共6小题,满分30分,每小题5分)11.因式分解:3x+9y=.12.已知18°的圆心角所对的弧长是cm,则此弧所在圆的半径是cm.13.不等式组的解集是.14.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=50°,∠B=35°,则∠ECD等于°.15.如果抛物线L:y=ax2+bx+c(其中a、b、c是常数,且a≠0)与直线l都经过y轴上的同一点,且抛物线的顶点P在直线l上,那么称该直线l是抛物线L的“梦想直线”如果直线l:y=nx+1(n是常数)是抛物线L:y=x2﹣2x+m(m是常数)的“梦想直线”,那么m+n的值是.16.如图,已知正方形ABCD的边长是⊙O半径的4倍,圆心O是正方形ABCD的中心,将纸片按图示方式折叠,使EA'恰好与⊙O相切于点A',则tan∠A'FE的值为.三.解答题(共8小题,满分80分,每小题10分)17.计算:(1);(2)化简:(a﹣3)(a+3)+a(6﹣a).18.如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.19.全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.运动形式A B C D E人数1230m549请你根据以上信息,回答下列问题:(1)接受问卷调查的共有人,图表中的m=,n=;(2)统计图中,A类所对应的扇形圆心角的度数为;(3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?20.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.已知△ABC的三个顶点都在格点上:(1)按下列要求画图:①过点B和一格点D画AC的平行线BD;②过点C和一格点E画AB的垂线CE;③在图中标出格点D和点E.(2)求△ABC的面积.21.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,2).(1)求抛物线的表达式,并用配方法求出顶点D的坐标;(2)若点E是点C关于抛物线对称轴的对称点,求tan∠CEB的值.22.如图,已知AB是⊙O的直径,P是BA延长线上一点,PC切⊙O于点C,CG是⊙O的弦,CG⊥AB,垂足为D.(1)求证:∠PCA=∠ABC.(2)过点A作AE∥PC交⊙O于点E,交CD于点F,连接BE,若cos∠P=,CF=10,求BE的长.23.中考前,某校文具店以每套5元购进若干套考试用具,为让利考生,该店决定售价不超过7元,在几天的销售中发现每天的销售数量y(套)和售价x(元)之间存在一次函数关系,绘制图象如图.(1)y与x的函数关系式为(并写出x的取值范围);(2)若该文具店每天要获得利润80元,则该套文具的售价为多少元?(3)设销售该套文具每天获利w元,则销售单价应为多少元时,才能使文具店每天的获利最大?最大利润是多少?24.如图,在Rt△ABC中,∠ACB=90°,AB=5,过点B作BD⊥AB,点C,D都在AB上方,AD交△BCD的外接圆⊙O于点E.(1)求证:∠CAB=∠AEC.(2)若BC=3.①EC∥BD,求AE的长.②若△BDC为直角三角形,求所有满足条件的BD的长.(3)若BC=EC=,则=.(直接写出结果即可)2019年浙江省温州市龙湾区中考数学一模试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:∵实数a、b互为相反数,∴a+b=0.故选:B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.【分析】根据中心对称图形的概念求解.【解答】解:A.此图案是轴对称图形,不符合题意;B.此图案不是中心对称图形,不符合题意;C.此图案是轴对称图形,不符合题意;D.此图案是中心对称图形,符合题意;故选:D.【点评】此题主要考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】根据众数的定义,找出这组数据中出现次数最多的数,即可求出答案.【解答】解:在这组数据50、45、36、48、50中,50出现了2次,出现的次数最多,则这组数据的众数是50,故选:D.【点评】此题考查了众数,掌握众数的定义是本题的关键,众数是一组数据中出现次数最多的数.4.【分析】本题可利用多边形的内角和为(n﹣2)•180°解决问题.【解答】解:根据题意,得(n﹣2)•180°=540°,解得:n=5.故选:B.【点评】考查了多边形内角与外角,本题需仔细分析题意,利用多边形的内角和公式结合方程即可解决问题.5.【分析】根据分式的值为零的条件即可求出答案.【解答】解:由题意可知:,解得:x=2,故选:A.【点评】本题考查分式的值为零的条件,解题的关键是熟练运用分式的值为零的条件,本题属于基础题型.6.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵相同的试卷共12页,其中语文2页、数学4页、英语6页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为=;故选:D.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.【分析】利用锐角三角函数关系即可求出小刚上升了的高度.【解答】解:在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB•sinα=300sinα米.故选:A.【点评】此题主要考查了解直角三角形的应用,根据题意构造直角三角形,正确选择锐角三角函数得出AB,BO的关系是解题关键.8.【分析】设每个宫灯x元,每个纱灯y元,根据“购买1个宫灯和1个纱灯共需75元,购买6个宫灯和10个纱灯共需690元”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设每个宫灯x元,每个纱灯y元,依题意,得:.故选:B.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.【分析】设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得到点A的坐标,结合正方形的性质,得到点C,点D和点E的横坐标,把点A的坐标代入反比例函数y =,得到关于m的k的值,把点E的横坐标代入反比例函数的解析式,得到点E的纵坐标,求出线段DE和线段EC的长度,即可得到答案.【解答】解:设点A的横坐标为m(m>0),则点B的坐标为(m,0),把x=m代入y=x得:y=m,则点A的坐标为:(m, m),线段AB的长度为m,点D的纵坐标为m,∵点A在反比例函数y=上,∴k=m2,即反比例函数的解析式为:y=,∵四边形ABCD为正方形,∴四边形的边长为m,点C,点D和点E的横坐标为m+m=m,把x=m代入y=得:y=m,即点E的纵坐标为m,则EC=m,DE=m﹣m=m,=,故选:A.【点评】本题考查了反比例函数图象上的点的坐标特征和正方形的性质,正确掌握代入法和正方形的性质是解题的关键.10.【分析】根据圆周角性质和平行线性质得∠ABD=∠BAC=90°,由旋转性质得∠CBD=∠CDB=90﹣y度,最后由三角形内角和定理可得x、y关系.【解答】解:∵BC是⊙O的直径,∴∠BAC=90°,又∵BD∥AC,∴∠ABD=∠BAC=90°,∵∠ABC=y,∴∠CBD=90﹣y,由旋转性质可知,∠CBD=∠CDB=90﹣y,在△BCD中,∠BCD=180°﹣(∠CBD+∠CDB),即:x=180﹣2(90﹣y),整理,得:y=.故选:D.【点评】本题主要考查圆周角性质、平行线性质及旋转的性质,将∠ABC通过运用几何性质与旋转角联系到一起是解题的通法.二.填空题(共6小题,满分30分,每小题5分)11.【分析】通过提取公因式3进行因式分解即可.【解答】解:原式=3(x+3y).故答案是:3(x+3y).【点评】考查了因式分解﹣提取公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.12.【分析】设此弧所在圆的半径为Rcm,根据弧长公式列式计算即可.【解答】解:设此弧所在圆的半径为Rcm,则=,解得,R=2(cm),故答案为:2.【点评】本题考查的是弧长的计算,掌握弧长的公式l=是解题的关键.13.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:,由①得:x≥4,由②得:x<6,不等式组的解集为:4≤x<6,故答案为4≤x<6.【点评】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.【分析】利用三角形的外角的性质求出∠ACD即可.【解答】解:∵∠ACD=∠A+∠B=50°+35°=85°,又∵CE平分∠ACD,∴∠ECD=∠ACD=42.5°,故答案为42.5.【点评】本题考查三角形的外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.【分析】由直线可求得与y轴的交点坐标,代入抛物线可求得n的值,再由抛物线解析式可求得其顶点坐标,代入直线解析式可求得m的值.【解答】解:在y=nx+1中,令x=0可求得y=1,在y=x2﹣2x+m中,令x=0可得y=m,∵直线与抛物线都经过y轴上的一点,∴m=1,∴抛物线解析式为y=x2﹣2x+1=(x﹣1)2,∴抛物线顶点坐标为(1,0),∵抛物线顶点在直线上,∴0=n+1,解得n=﹣1,∴m+n=0,故答案为:0.【点评】本题考查了二次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,理解题目中“梦想直线”的定义是解题的关键.16.【分析】在Rt△FMO中利用勾股定理得出AF与r的关系,设r=6a,则x=7a,AM=MO=12a,FM=5a,AF=FA'=7a,利用A'N∥OM得到求出AN,NA',再证明∠1=∠2即可解决问题.【解答】解:如图,连接AA',EO,作OM⊥AB,A'N⊥AB,垂足分别为M、N.设⊙O的半径为r,则AM=MO=2r,设AF=FA'=x,在Rt△FMO中,∵FO2=FM2+MO2,∴(r+x)2=(2r﹣x)2+(2r)2,∴7r=6x,设r=6a则x=7a,AM=MO=12a,FM=5a,AF=FA1=7a,∵A'N∥OM,∴,∴,∴A'N=a,FN=a,AN=a,∵∠1+∠4=90°,∠4+∠3=90°,∠2=∠3,∴∠1=∠3=∠2,∴tan∠2=tan∠1=.∴tan∠A'FE=故答案为.【点评】本题考查正方形的性质、圆的有关知识、勾股定理,平行线分线段成比例定理等知识,用设未知数列方程的数学思想是解决问题的关键.三.解答题(共8小题,满分80分,每小题10分)17.【分析】(1)先算平方、二次根式、零指数幂,再算加减法即可求解;(2)先根据平方差公式,单项式乘多项式的计算法则计算,再合并同类项即可求解.【解答】解:(1)=1+3﹣1=3;(2)(a﹣3)(a+3)+a(6﹣a)=a2﹣9﹣6a﹣a2=﹣6a﹣9.【点评】考查了实数的运算,平方差公式,单项式乘多项式,关键是熟练掌握计算法则正确进行计算.18.【分析】(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.【点评】本题主要考查平行四边形的判定与性质,解题的关键是掌握全等三角形、相似三角形及平行四边形的判定与性质.19.【分析】(1)由B项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m =45,再用D项目人数除以总人数可得n的值;(2)360°乘以A项目人数占总人数的比例可得;(3)由表可知样本中散步人数最多,据此可得,再用E项目人数除以总人数可得;(4)总人数乘以样本中C人数所占比例.【解答】解:(1)接受问卷调查的共有30÷20%=150人,m=150﹣(12+30+54+9)=45,n%=×100%=36%,∴n=36,故答案为:150、45、36;(2)A类所对应的扇形圆心角的度数为360°×=28.8°,故答案为:28.8°;(3)根据调查结果,我市市民最喜爱的运动方式是散步,不运动的市民所占的百分比是×100%=6%,故答案为:散步、6%;(4)1500×=450(人),答:估计该社区参加碧沙岗“暴走团”的大约有450人.【点评】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.20.【分析】(1)根据平行线和垂线的定义,结合网格作图即可得;(2)利用割补法求解可得.【解答】解:(1)①如图所示,直线BD即为所求;②如图所示,射线CE即为所求;③点D与点E即为所求.(2)△ABC的面积为3×4﹣×1×3﹣×1×4﹣×2×3=.【点评】本题主要考查作图﹣应用与设计作图,解题的关键是掌握平行线的判定与性质、垂线的定义及割补法求三角形的面积.21.【分析】(1)根据抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C(0,2),可以得到抛物线的解析式,然后将解析式化为顶点式,即可得到顶点D的坐标;(2)根据题意,可以求得点E的坐标,从而可以求得直线EB的函数解析式,进而求得与y轴的交点,从而可以求得tan∠CEB的值.【解答】解:(1)∵抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C (0,2),∴,得,∴y=﹣x2﹣+2=,∴抛物线顶点D的坐标为(﹣1,),即该抛物线的解析式为y=﹣x2﹣+2,顶点D的坐标为(﹣1,);(2)∵y=,∴该抛物线的对称轴为直线x=﹣1,∵点E是点C关于抛物线对称轴的对称点,点C(0,2),∴点E的坐标为(﹣2,2),当y=0时,0=,得x1=﹣3,x2=1,∴点B的坐标为(1,0),设直线BE的函数解析式为y=kx+n,,得,∴直线BE的函数解析式为y=﹣,当x=0时,y=,设直线BE与y轴交于点F,则点F的坐标为(0,),∴OF=,∵点C(0,2),点E(﹣2,2),∴OC=2,CE=2,∴CF=2﹣=,∴tan∠CEF=,即tan∠CEB的值是.【点评】本题考查抛物线与x轴的交点、二次函数的性质、待定系数法求二次函数解析式和一次函数解析式、锐角三角函数,解答本题的关键是明确题意,利用数形结合的思想解答.22.【分析】(1)连接半径OC,根据切线的性质得:OC⊥PC,由圆周角定理得:∠ACB=90°,所以∠PCA=∠OCB,再由同圆的半径相等可得:∠OCB=∠ABC,从而得结论;(2)本题介绍两种解法:方法一:先证明∠CAF=∠ACF,则AF=CF=10,根据cos∠P=cos∠FAD=,可得AD=8,FD =6,得CD=CF+FD=16,设OC=r,OD=r﹣8,根据勾股定理列方程可得r的值,再由三角函数cos∠EAB=,可得AE的长,从而计算BE的长;方法二:根据平行线的性质得:OC⊥AE,∠P=∠EAO,由垂直的定义得:∠OCD=∠EAO=∠P,同理利用三角函数求得:CH=8,并设AO=5x,AH=4x,表示OH=3x,OC=3x﹣8,由OC=OA列式可得x的值,最后同理得结论.【解答】证明:(1)连接OC,交AE于H,∵PC是⊙O的切线,∴OC⊥PC,∴∠PCO=90°,∴∠PCA+∠ACO=90°,(1分)∵AB是⊙O的直径,∴∠ACB=90°,(2分)∴∠ACO+∠OCB=90°,∴∠PCA=∠OCB,(3分)∵OC=OB,∴∠OCB=∠ABC,∴∠PCA=∠ABC;(2)方法一:∵AE∥PC,∴∠CAF=∠PCA,∵AB⊥CG,∴,∴∠ACF=∠ABC,∵∠ABC=∠PCA,∴∠CAF=∠ACF,∴AF=CF=10,(6分)∵AE∥PC,∴∠P=∠FAD,∴cos∠P=cos∠FAD=,在Rt△AFD中,cos∠FAD=,AF=10,∴AD=8,(7分)∴FD==6,∴CD=CF+FD=16,在Rt△OCD中,设OC=r,OD=r﹣8,r2=(r﹣8)2+162,r=20,∴AB=2r=40,∵AB是直径,∴∠AEB=90°,在Rt△AEB中,cos∠EAB=,AB=40,∴AE=32,∴BE==24.(9分)方法二:∵AE∥PC,OC⊥PC,∴OC⊥AE,∠P=∠EAO,,∴∠EAO+∠COA=90°,∵AB⊥CG,∴∠OCD+∠COA=90°,∴∠OCD=∠EAO=∠P,(6分)在Rt△CFH中,cos∠HCF=,CF=10,∴CH=8,(7分)在Rt△OHA中,cos∠OAH=,设AO=5x,AH=4x,∴OH=3x,OC=3x+8,由OC=OA得:3x+8=5x,x=4,∴AO=20,∴AB=40,在Rt△ABE中,cos∠EAB=,AB=40,∴AE=32,∴BE==24.(9分)【点评】本题考查了切线的性质,锐角三角函数,圆周角定理,等腰三角形的性质,连接OC构造直角三角形是解题的关键.23.【分析】(1)设y与x的函数关系式为:y=kx+b,把(5.5,90)和(6,80)代入y=kx+b 即可得到结论;(2)根据题意得方程即可得到结论;(3)根据题意得二次函数解析式,根据二次函数的性质即可得到结论.【解答】解:(1)设y与x的函数关系式为:y=kx+b,把(5.5,90)和(6,80)代入y=kx+b得,,解得:,∴y与x的函数关系式为:y=﹣20x+200(5≤x≤7);故答案为:y=﹣20x+200;(2)根据题意得,(x﹣5)(﹣20x+200)=80,解得:x1=6,x2=9(不合题意舍去),答:该套文具的售价为6元;(3)根据题意得,w=(x﹣5)(﹣20x+200)=﹣20x2+300x﹣1000,当x=﹣=﹣=7.5,∵7.5>7,∴当x=7时,文具店每天的获利最大,最大利润是(7﹣5)(﹣20×7+200)=120(元),答:销售单价应为7元时,才能使文具店每天的获利最大,最大利润是120元.【点评】本题考查了二次函数的应用,主要利用了待定系数法求一次函数解析式二次函数的关系式的求解,比较简单,根据获利=每件商品的利润×销售量是解题的关键.24.【分析】(1)利用圆的内接四边形的性质以及等角的余角相等的性质易证明出结论成立;(2)延长AC交BD于点F,利用平行线等分线段和相似三角形对应边成比例求解即可;(3)利用勾股定理和相似三角形分别求出AE和BD的长,依据对应边等高三角形的面积比是对应边之比,进而求解;【解答】证明:(1)∵四边形BCED内接于⊙O∴∠AEC=∠DBC又∵DB⊥AB∴∠ABC+∠DBC=90°又∵∠ACB=90°∴在Rt△ABC中,∠CAB+∠ABC=90°∴∠DBC=∠CAB∴∠CAB=∠AEC(2)①如图1延长AC交BD于点F,延长EC交AB于点G.∵在Rt△ABC中,AB=5,BC=3∴由勾股定理得,AC=4又∵BC⊥AF,AB⊥BF∠AFB=∠BFC∴Rt△AFB∽Rt△BFC∴=∴BC2=CF•AC即9=CF•4,解得,CF=又∵EC∥BD∴CG⊥AB∴AB•CG=AC•BC即5CG=4×3,解得,CG=又∵在Rt△ACG中,AG=∴AG==又∵EC∥DB∴∠AEC=∠ADB由(1)得,∠CAB=∠AEC∴∠ADB=∠CAB又∵∠ACB=∠DBA=90°∴Rt△ABC∽Rt△DBA∴=即=,解得AD=又∵EG∥BD∴=即=,解得AE=②当△BDC是直角三角形时,如图二所示∵∠BCD=90°∴BD为⊙O直径又∵∠ACB=90°∴A、C、D三点共线即BC⊥AD时垂足为C,此时C点与E点重合.又∵∠DAB=∠BAC,∠ACB=ABD=90°∴Rt△ACB∽Rt△ABD∴=即=,解得AD=又∵在Rt△ABD中,BD=∴BD==③如图三,由B、C、E都在⊙O上,且BC=CE=∴=∴∠ADC=∠BDC即DC平分∠ADB过C作CM⊥BD,CN⊥AD,CH⊥AB垂足分别为M、N.,H.∵在Rt△ACB中AB=5,BC=∴AC=2又∵在Rt△ACB中CH⊥AB∴AB•CH=AC•BC即5CH=2×解得,CH=2∴MB=2又∵DC平分∠ADB∴CM=CN又∵在Rt△CHB中BC=5,CH=2∴HB=1∴CM=CN=1又∵在△DCN与△DCM中∴△DCN与△DCM(AAS)∴DN=DM设DN=DM=x则BD=x+2,AD=x+在Rt△ABD中由AB2+BD2=AD2得,25+(x+2)2=(x+)2解得,x=∴BD=BM+MD=2+=又由(1)得∠CAB=∠AEC,且∠ENC=∠ACB∴△ENC∽△ACB∴===2∴NE=2又∵在Rt△CAN中CN=1,AC=2∴AN===∴AE=AN+NE=+2又∵S△BCD=BD•CM,S△ACE=AE•CN,CM=CN∴===故=【点评】本题综合考察了圆内接四边形的性质,以及等弧对等弦,等弧所对的圆周角相等与相似三角形的判定,勾股定理的运用,全等三角形的证明等多个知识点,需要认真分析,属于偏难题型.欢迎您的下载,资料仅供参考!。

相关文档
最新文档