利用泥质含量与孔隙度计算砂岩渗透率
测井曲线计算公式

测井曲线计算公式摘要油层物理是研究储层岩⽯、岩⽯中的流体(油、⽓、⽔)以及流体在岩⽯中渗流机理的⼀门学科。
它表述的是油层的物理性质,储层的岩⽯⾻架和储存于岩⽯⾻架孔隙中的流体。
钻探⼀⼝油井,取⼼测得的孔隙度、渗透率等物性参数,反映的是这⼝井及井筒周围的油层物性参数,即所谓的“⼀孔之见”,从平⾯上看,如果这⼝井位于湖相⽔道砂微相中间,它的孔隙度、渗透率偏⾼,⽤此计算的储量偏⼤,因为向⽔道砂微相两侧的孔、渗参数肯定要⼩;如位于⽔道间的薄砂层中,那计算的储量可能偏⼩,要想真正控制就得还油层以本来⾯⽬。
早期资料较少是难以达到的,⽽随井⽹的不断完善,获取的动、静态信息的不断增加,新技术、新⽅法不断出现,就能还油层以真⾯⽬。
精细油藏描述是指油⽥投⼊开发后,随着开采程度的加深和动、静态资料增加,所进⾏的精细地质特征研究和剩余油分布描述,并不断完善储层预测的地质模型,称为精细油藏描述。
可以细分为开发初期、开发中期和开发后期精细油藏描述。
不同时期的精细油藏描述因资料占有程度不同⽽描述的精度不同。
⽽⽬前在开发后期(指综合含⽔>85%可采储量采出程度在75%以上)的精细油藏描述由于资料占有量相对较多,所以描述的精度要⾼,加上相关新技术、新⽅法的应⽤,才能达到精细描述的程度。
油层物理学科在提⾼采收率的研究的过程中,对油层的⾮均质性、流体粘度及流度⽐和油藏润湿性等对采收率的影响进⾏了研⽬录⼀、引⾔ ---------------(1)⼆、精细油藏描述实例 ----------------(2)1.概况 ---------------(2)2.精细油藏描述对策及思路 ---------------(3)3.精细构造研究 ---------------(4)4.测井多井评价 ---------------(6)5.沉积微相及砂体展布规律 --------------(10)6.储层⾮均质性 --------------(14)7.储层流动单元研究 --------------(20)8.三维建模及油藏⼯程评价 --------------(23)三、结论及认识 --------------(24)四、结束语 --------------(25)油层物理与精细油藏描述――结合板桥油⽥板北板⼀油组实例分析⼀、引⾔油层物理表述的是油层的物理性质,储层的岩⽯⾻架和储存于岩⽯⾻架孔隙中的流体。
泥质砂岩地层评价

所要求输入的测井曲线数目少,在地质情况比较
简单的情况下可以得到较好的解释结果,且本程 序的解释软件结构是目前常规测井解释软件的典 型模式,因此目前国内仍普遍使用,或针对地区 条件作了改进后使用。
School of Geophysics and Oil Resources
第三节 POR分析程序的处理方法
School of Geophysics and Oil Resources
二、POR分析程序的输入、输出参数
2.输入解释参数: –GMN1、GMX1—纯砂岩和纯泥岩的自然伽马测井 值,隐含值分别为0和100。 (2-补偿中子 ; 3-自然电位 ;4-宏观俘获截面值 ;5-电阻 率 ) –SHFG—确定泥质含量方法和参数的标志符 。 –SWOP,PFG –A,B,M,N,RW,RMF,DG,DF,TM,TF,GCUR,SIRR,BIT, –NSH,DSH,TSH,ADEN,ACNL,AAC,AGR,ASP,ART,AN LL
por有效孔隙度porx冲洗带的残余烃体积perm渗透率bulk出砂指数sw含水饱和度sh泥质含量pf累计孔隙厚度米或英尺hf累计油气厚度米或英尺schooloilresources第三节por分析程序的处理方法一por分析程序的解释原理二por程序输入输出参数三por程序流程四por程序成果显示schooloilresources三por分析程序流程callrdflnmcallconstcallcalloutcall是否第一次循环将输入的解释参数转换成程序所需要的参数所需要的dencnlac存在否对输入的测井值作某些校正oilresources三por分析程序流程计算泥质含量计算孔隙度将输出结果化为百分数callout计算sw和sxo计算porwporfshport计算bulkpermhfpfschooloilresources第三节por分析程序的处理方法一por分析程序的解释原理二por程序输入输出参数三por程序流程四por程序成果显示schooloilresources四por分析程序成果显示
测井实验报告_2

测井资料处理与解释课程设计目录一、实验目的 (2)二、实验要求 (2)三、实验内容 (2)四、基本原理 (2)1. 岩性研究方法 (2)2. 物性研究方法 (5)五、实现步骤 (8)1.骨架图版的制作 (8)2.综合解释 (9)六、课程设计感想与体会 (14)一、实验目的本课程设计是测井资料处理与解释教学环节的延续(独立设课),目的是巩固课堂所学的的理论知识,加深对测井资料处理方法及解释方法的理解,会用所学程序设计语言完成设计题目的程序编写,利用现有卡奔绘图软件完成数据成图,对所得结果做分析研究,划分出油水层,最终完成报告一份。
二、实验要求1.基本测井数据的加载2.骨架图版的制作3.对特定井段的泥质含量、孔隙度、渗透率、饱和度逐点定量解释以及对油水层的划分三、实验内容1.运用所学的测井知识及老师所提供的的资料,完成解释图版的绘制。
2.使用井径、自然伽马和自然电位划分砂泥岩井段。
3. 利用深侧向和浅侧向电阻率测井划分渗透层和非渗透层。
4. 根据声波、补偿中子和密度测井曲线的特点,在渗透层应用三孔隙度测井曲线求出储层的平均孔隙度。
5.根据阿尔奇公式计算原始含油饱和度和剩余油饱和度。
6.根据开发过程中含油饱和度的变化,确定储层含油性的变化,并判断该储层的性质。
四、基本原理1.岩性研究方法岩性是指岩石的性质类型等,包括细砂岩、粉砂岩、粗砂岩等,同时还包括碎屑成分、填隙物、粒间孔发育、颗粒分选、颗粒磨圆度、接触关系、胶结类型等方面。
通过划分岩性和分析岩心资料总结岩性规律,其研究主要依据岩心资料,地质资料和测井资料等。
通过分析取心井的岩心资料和地质资料以及测井曲线的响应特征来识别岩性,并建立在取心井上的泥质含量预测解释模型。
一般常用岩性测井系列的自然伽马GR、自然电位SP、井径CAL曲线来识别岩性。
a.岩性定性评价在对淡水泥浆钻的井内,地层剖面由砂岩、粉砂岩、煤层和泥岩四种岩石组成。
如果测井资料有自然电位、自然伽马、微电极、密度和电阻率曲线,则可按下列步骤区分它们:①用自然电位和微电极测井曲线把渗透层和非透层区分开:砂岩和粉砂岩的自然电位有明显负异常,微电极有正幅度差,而煤层和泥岩自然电位无异常,微电极无幅度差。
2006-考试题(测井原理与综合解释)答案

2006一、名称解释(每题3分,共15分)康普顿效应:康普顿效应:在康普顿效应中,伽马光子与原子的核外电子发生非弹性碰撞,一部分能量转移给电子,使它脱离原子成为反冲电子,而散射光子的能量和运动方向发生变化。
挖掘效应:具有相同含氢指数的岩石,由于含有天然气而使得用中子测井测得的孔隙度比实际的含氢指数要小的现象。
地层因素:岩石电阻率与该岩石中所含水的电阻率的比值就是岩石的地层因素(或相对电阻率)。
该比值只与岩样的孔隙度、胶结情况和孔隙形状有关,而与孔隙中所含水的电阻率无关。
电极系互换原理:把电极系中的电极和地面电极功能互换(原供电电极改为测量电极,原测量电极改为供电电极),各电极相对位置不变,所测得的视电阻率和原来的完全相同,这就叫电极系互换原理。
含油气孔隙度:油气体积占岩石体积的百分数(V油气/V岩石)。
体积物理模型:见参考书46周波跳跃:周波跳跃是指声波时差比邻近的值高出一个或几个波长,而出现周期性增大的现象。
横向各项异性:是指在沿井轴方向和与井轴垂直方向(水平方向)上,地层的声波速度、弹性力学性质有差异,而在与该轴垂直的平面(水平面)上,在各个方向上的声波速度和弹性力学性质相同,就是横向各项异性。
二、选择题(每题1分,共12分):下面每题有4个答案,选择正确的答案填入括号中。
1、岩性密度测井主要利用伽马射线与地层之间的(B)作用来进行测量的。
A:电子对效应与康普顿效应B:光电效应与康普顿效应C:康普顿效应与俘获效应D:光电效应与弹性散射2、对于普通电阻率测井,电极系的电极距增大,(B)A:其探测深度会增大,纵向分辨率会增高。
B:其探测深度会增大,纵向分辨率会降低。
C:其探测深度会减小,纵向分辨率会增高。
D:其探测深度会减小,纵向分辨率会降低。
3、利用中子测井曲线进行读值,下面哪句话表述不正确( D )。
A:砂岩的孔隙度总是大于它的真孔隙度。
B:白云岩的孔隙度总是小于它的真孔隙度。
C:石灰岩的孔隙度总是等于它的真孔隙度。
《测井解释与数字处理》渗透层划分及孔隙度、渗透率计算

黑103井岩芯归位图
下沥青砂岩段 孔隙度—密度测井解释模型
30 下沥青砂岩段
20
10
下沥青砂岩段 孔隙度—声波测井解释模型
20
15
10
下沥青砂岩段
5
孔隙度,% 孔隙度,%
0
0
1.85 2.1 2.35 2.6 2.85
40
70
100
密度,g/cm3
声波时差,us/ft
孔隙度解释模型
泉四段 φ=-26.886DEN+76.584 φ=0.2185AC-38.375 φ=0.8853CNL+1.3996 青一段 φ=-40.656DEN+111.33 φ=0.2528AC-45.213 φ=1.1087CNL-0.3939 青二段 φ=-47.877DEN+128.89 φ=0.2189AC-37.486 φ=1.0382CNL-0.182 青三段 φ=0.4225Δt-85.781
4、地区经验公式——岩心刻度测井
①测井资料的环境校正和标准化处理; ②岩心分析资料的深度归位、分辨率匹配(滤波或插值)、
重新采样; ③测井资料和岩心分析资料的相关性分析; ④建立储层参数(y)与测井资料(x)的统计模型; ⑤统计模型的可靠性检验。
例: 1.73 0.662b Vsh 100.0206GR0.03291 K 102.3038 2.1763/ GR0.8528 log( Sw) a0 a1 log( Rw) a2 log() a3 log( Rt )
井 储 层 参 数 处 理 成 果 图
§3.4 含油性评价
一、阿尔奇公式——测井油气识别与评价的理论基础 二、油气层定性识别:电阻率比较法(实例,YT1、
致密砂岩油藏测井响应特征及有利区评价

㊀㊀收稿日期:20220529;改回日期:20230603㊀㊀基金项目:中国石油 十四五 前瞻性基础性科技重大项目 鄂尔多斯盆地西缘海相页岩气资源潜力与富集分布规律研究 (2021DJ1904)㊀㊀作者简介:赵辉(1982 ),男,高级工程师,2004年毕业于北京石油化工学院过程装备与控制工程专业,现主要从事精细油藏描述方面的工作㊂DOI :10.3969/j.issn.1006-6535.2023.05.005致密砂岩油藏测井响应特征及有利区评价赵㊀辉,齐怀彦,王㊀凯,蔡㊀涛,孟利华,周㊀兵(中国石油长庆油田分公司,宁夏㊀银川㊀750000)摘要:针对姬塬油田K39井区砂岩油藏测井响应特征复杂多变㊁有效储层识别较为困难等问题,基于测井原理和数据,建立储层参数测井解释模型,明确研究区测井相模式,对孔隙度㊁含油饱和度㊁渗透率等测井响应特征参数进行聚类分析,建立了致密砂岩储层流动单元识别标准㊂应用该测井模型重新解释油层91m /8层,油水同层108m /13层,含油水层77m /7层,新增石油地质储量23.8ˑ104t ㊂应用致密砂岩储层流动单元识别标准,明确了有利区分布,其中,Ⅰ㊁Ⅱ类流动单元石油地质储量共计202.5ˑ104t ,在实际应用中效果较好㊂该研究成果丰富了鄂尔多斯盆地有效储层识别方法及有利区优选评价,对该地区致密油藏开发调整和井位部署具有参考价值㊂关键词:致密砂岩;测井响应特征;有利区评价;解释模型;鄂尔多斯盆地中图分类号:TE122.2㊀㊀文献标识码:A ㊀㊀文章编号:1006-6535(2023)05-0035-07Characteristics of Well Logging Response and Evaluation of Favorable Zones in Tight Sandstone ReservoirsZhao Hui ,Qi Huaiyan ,Wang Kai ,Cai Tao ,Meng Lihua ,Zhou Bing(PetroChina Changqing Oilfield Company ,Yinchuan ,Ningxia 750000,China )Abstract :To address the difficult problem of complex and variable well logging response characteristics of sandstonereservoirs in Well K39Area of Jiyuan Oilfield and the difficulty of identifying effective reservoirs ,the well loggingprinciples and methods were applied to analyze well logging interpretation models of effective reservoir parameters ,clarify well logging phase patterns in the study area ,innovate and carry out cluster analysis of well logging responsecharacteristics parameters such as porosity ,oil content saturation and permeability ,and establish four types of flowunit identification criteria for dense sandstone reservoirs.The study results show that in Well K39area ,the estab-lished well logging model is used to reinterpret 8oil layers ,totaling 91m ,13oil -water layers ,totaling 108m ,and 7water with oil layers ,totaling 77m ,releasing a total of 23.8ˑ104t of reserves ,which is effective in practical ap-plication ,and evaluating the favorable Class I and II flowing unit reserves of Jiyuan Oilfield totaling 202.5ˑ104t.The research results enrich the study of effective reservoir identification and favorable zone preference in Ordos Ba-sin ,and have reference value for development adjustment and well deployment of tight reservoir in Ordos Basin.Key words :tight sandstone ;well logging response ;favorable zone evaluation ;interpretation model ;Ordos Basin0㊀引㊀言致密砂岩具有微观孔喉结构复杂㊁孔隙度与渗透率极低的特征,测井响应复杂多变㊂鄂尔多斯盆地姬塬油田K39井区三叠系致密砂岩低阻油层与常规油水层并存,隔㊁夹层变化大,有效储层测井识别难度极大,亟需建立致密砂岩储层测井模型,开展测井响应特征精细研究[1-3],重建致密砂岩油藏测井响应特征识别标准,明确鄂尔多斯盆地K39井区油藏有效储层的潜力㊂徐德龙等[4-6]认为在致密砂岩储层评价中,常规电阻率测井㊁自然伽马测井等测井资料处理结果往往很难达到要求㊂目前应用核磁共振测井㊁测井二次识别等新技术与测井响应特征模型相结合的聚类分析方法,具有更强的针对性与更高的分辨率,可直接获取地下信息,在致密砂岩勘探开发评价中优势明显㊂致密砂岩㊀36㊀特种油气藏第30卷㊀低阻油层与常规砂岩油层相比测井响应识别难度更大,因此,应用聚类分析方法,以测井解释的渗透率㊁孔隙度等为主要因子开展致密储层测井模型及响应特征分析,建立流动单元划分标准,为K39井区致密砂岩油藏新一轮的调整开发提供可靠的有利区评价结果㊂该研究对鄂尔多斯盆地三叠系致密油藏开发调整以及后期规划部署具有重要意义㊂1㊀研究区概况姬塬油田区域构造位于陕北斜坡中段西部,构造平缓,为一宽缓西倾斜坡,构造平均坡度小于1ʎ,平均坡降为6~7m /km㊂该油田的K39井区发育一个完整背斜,共发育延长组长6㊁长7㊁长8㊁长9等多套地层,其中,该区长8 长9油层组为三角洲前缘分流河道沉积㊂受牵引流沉积作用影响,三角洲前缘分流河道发育沙纹层理㊁平行层理㊁波状层理㊁脉状层理㊁韵律层理,三角洲分流河道相多为致密遮挡,物性较差,砂岩十分致密㊂K39井区致密砂岩储层具有非均质性强㊁基质颗粒杂乱㊁孔喉结构复杂㊁渗透率极低的特征㊂该区致密砂岩储层岩性变化大,从长石砂岩演变到岩屑砂岩,具有较高含水饱和度以及较低可流动流体饱和度,且油水关系复杂,油水重力分异不明显㊂K39井区致密砂岩储层平均渗透率为0.27mD,平均孔隙度低于15.00%,属于低孔特低渗油藏㊂2㊀测井模型的建立及应用效果分析鄂尔多斯盆地晚三叠世延长组沉积早期,湖盆整体处于沉降阶段,湖盆快速下沉,研究区距物源较近,发育辫状河三角洲沉积体系㊂姬塬油田K39井区长8 长9油层组以三角洲前缘分流河道沉积为主,三角洲前缘水下分流河道发育,河口坝等其他微相不发育[7-9],多期河道叠置㊂通过岩心观察与测井响应的对比,形成研究区长8㊁长9油层组三角洲平原㊁三角洲前缘亚相各沉积微相的测井相模式:研究区水下分流河道微相测井曲线形态呈钟形及箱形;河口坝微相测井曲线呈漏斗状;分流间湾与前三角洲相似,测井曲线形态呈平缓齿化低值;多期次水下分流河道砂体叠置的测井曲线形态为箱形㊂2.1㊀孔隙模型的建立致密油藏的孔隙度㊁渗透率等参数复杂多变,因此,需要采用更加精细的测井解释模型进行有效识别和评价㊂按照矿物来源分类,来自地球上地幔及地壳深部矿物为第一成矿物质来源,如蒙脱石;来自硅铝层下部及有关部分矿物为第二成矿物质来源,其成矿物质主要来自硅铝㊂2种来源的成矿物质相关数据可以通过实验室测试得到㊂正确选择储层参数可以精确计算地层孔隙度㊂从储层岩性㊁物性㊁电性㊁含油性关系分析可知,致密砂岩储层声波㊁密度测井资料与孔隙度存在较好的对应关系㊂因此,在孔隙度分析计算时采用密度㊁声波测井曲线,可较准确地计算出孔隙度㊂建立测井响应方程组如下:ρb =ϕρf +V 1ρb1+V 2ρb2Φb =ϕΦbf +V 1Φb1+V 2Φb2Δt =ϕΔt f +V 1Δt 1+V 2Δt 2ϕ+V 1+V 2=1ìîíïïïïïï(1)式中:下标b 代表矿物,f 代表地层;ρb ㊁ρf ㊁ρb1㊁ρb2分别为矿物密度㊁地层密度㊁第一矿物地层密度㊁第二矿物地层密度,g /cm 3;Φb ㊁Φbf ㊁Φb1㊁Φb2分别为矿物中子测井值㊁地层矿物中子测井值㊁第一矿物中子测井值㊁第二矿物中子测井值,%;ϕ为地层孔隙度,%;V 1㊁V 2分别为第一矿物和第二矿物所占总矿物的体积分数,%;Δt ㊁Δt f ㊁Δt 1㊁Δt 2分别为矿物声波时差测井值㊁地层声波时差测井值㊁第一矿物声波时差测井值㊁第二矿物声波时差测井值,μs /m㊂2.2㊀饱和度模型参考经典的阿尔奇饱和度模型[10]:S wt =nadR w ϕm R t(2)式中:S wt 为含水饱和度,%;R t 为地层电阻率,Ω㊃m;R w 为地层水电阻率,Ω㊃m;m ㊁n ㊁a ㊁d 为与岩性及孔喉结构有关的岩电参数㊂2.3㊀渗透率模型在覆压的实验条件下,通过达西定律可以测得不同岩心的渗透率数据,在前文孔隙度计算模型基础上可绘制孔隙度与渗透率的关系曲线,如图1所示㊂由图1可拟合得到渗透率计算公式(3),由于姬塬地区长9储层的非均质性较强,拟合公式相对可靠㊂㊀第5期赵㊀辉等:致密砂岩油藏测井响应特征及有利区评价37㊀㊀K =0.0022e 0.491ϕ(3)式中:K 为渗透率,mD㊂图1㊀K39井区孔隙度与渗透率相关图Fig.1㊀The correlation of porosity andpermeability in the Well K39Area2.4㊀流体识别及测井响应特征致密砂岩储层与中高渗砂岩储层的测井响应存在较大差异,致密砂岩低阻油层与常规油水层并存[11-13],测井响应特征类似,难以区分㊂关于流体的测井识别方法较多,包括不同探测深度电阻率组合法㊁电阻率增大系数法㊁孔隙度-电阻率交会图法㊁三孔隙度测井重叠分析法㊁可动油气分析法㊁视地层水电阻率综合分析法等常规测井方法㊂不同的流体识别方法存在一定的局限性,要准确识别储层中流体特征必须组合各种方法及邻井测井资料㊁试油资料来综合考虑㊂致密砂岩低阻油层测井响应特征(图2):自然伽马值为60API,自然电位幅度差在30图2㊀K39井区油水识别图版Fig.2㊀The oil and water identification plate of Well K39Area较为明显,在9Ω㊃m 左右,深中感应差异明显;声波时差值为72μs /m;孔隙度在15%以上,含水饱和度在55%以下㊂在测井响应的基础上,建立了以孔隙度㊁含水饱和度㊁电阻率㊁自然伽马㊁声波时差等参数为界限的K39井区的油水识别标准(表1):油层孔隙度大于15.00%,含水饱和度小于55%,电阻率大于9Ω㊃m 等㊂并采用孔隙度㊁含水饱和度㊁电阻率等指标的交会识别图版(图2)来识别油水层㊂K39井区完钻井数较少,油水识别标准采用孔隙度与含水饱和度交会及孔隙度与电阻率的交会识别后,完成全区测井二次解释,共解释油层8层,累计厚度为91m;解释油水同层13层,累计厚度为108m;解释含油水层7层,累计厚度为77m㊂表1㊀K39井区长8—长9油层组油水层识别标准㊀38㊀特种油气藏第30卷㊀3㊀有利目标区评价在测井解释模型准确建立及应用效果较好的前提下,开展K39井区有利区评价㊂超低渗透油藏储层地质特征复杂,单井产量低,开采风险大,如何提高单井产量和增产稳产是该类油藏开发的瓶颈问题[14-16]㊂为此,客观描述和评价超低渗油藏有利区是认识储层的有效手段,通过对流动单元的合理划分,可以进一步认识油藏的特征㊂有利区评价原则如下:①选取参数具有合理性;②选取尽可能全面刻画流动单元的静㊁动态开发参数;③选取的参数易于求取和统计分析㊂3.1㊀流动单元划分聚类统计是以统计学为原理,因此,聚类分析又称为聚类统计分析㊂聚类分析方法应用于流动单元划分时,其核心是在相似原则的基础上,选择对致密储层流动单元划分有较大影响的相关参数进行统计分析㊂对于K39井区长8 长9油层组流动单元的划分,选取渗透率㊁孔隙度㊁泥质含量及含水饱和度等作为聚类分析的输入参数(300个样本),应用聚类分析方法,将流动单元划分为4类(表2)㊂Ⅰ类流动单元主要分布于河道叠置部位,平均渗透率为2.16mD,平均孔隙度为12.56%,平均泥质含量为10.97%,平均含水饱和度为49.77%;Ⅱ类流动单元主要分布于在河道内部,平均渗透率为0.79mD,平均孔隙度为9.82%,平均泥质含量为12.79%,平均含水饱和度为55.94%;Ⅲ类流动单元主要分布于河道边缘和各种坝体内,平均渗透率为0.42mD,平均孔隙度为8.29%,平均泥质含量为13.09%,平均含水饱和度为55.18%;Ⅳ类流动单元主要分布于分流间湾等内部,平均渗透率为0.17mD,平均孔隙度为7.49%,平均泥质含量为14.72%,平均含水饱和度为53.37%㊂在K39井区长8 长9油层组流动单元聚类分析的基础上完成对全区流动单元划分㊂表2㊀K39井区不同流动单元划分标准3.2㊀平面有利区评价利用聚类分析方法对整个姬塬油田流动单元进行划分,Ⅰ类和Ⅱ类流动单元主要发育于长9油层组,Ⅱ类和Ⅲ类流动单元主要发育于长8油层组,由于2个油层组中的每一小层在垂向上都可能存在多个流动单元,因此,根据流动单元的厚度,将每一小层单独划分为4类流动单元㊂姬塬油田长8油层组主要以Ⅱ类流动单元为主,厚度为1~2m,断续分布,Ⅲ类和Ⅳ类流动单元为辅,厚度以1m 以下为主,分布于三角洲前缘分流河道沉积微相中㊂长9油层组I 类流动单元厚度2~4m,主要以2m 以下为主,呈透镜状零星分布;Ⅱ类流动单元主要分布于叠置河道微相中,Ⅲ类和Ⅳ类流动单元分布于河道和河口坝微相中,呈透镜状,且厚度很薄㊂姬塬油田长9油层组剩余油也主要集中在Ⅰ㊁Ⅱ类流动单元,其中,有利的Ⅰ㊁Ⅱ类流动单元储量共计202.5ˑ104t,是鄂尔多斯盆地三叠系致密油藏图3㊀姬塬油田长9油层有利区分布Fig.3㊀The distribution of favorablezones for the Chang9oil layer in Jiyuan Oilfield3.3㊀纵向有利区评价选取渗透率㊁孔隙度㊁泥质含量等参数,采用聚㊀第5期赵㊀辉等:致密砂岩油藏测井响应特征及有利区评价39㊀㊀类分析方法对K39井区长8 长9油层组进行单井垂向流动单元划分(图4)㊂该划分标准综合考虑了研究区复杂的地质情况,能更准确地反映长类可以看出,沉积类型㊁储层物性及流动单元的垂向分布具有复杂性[17-18],同一沉积微相下可划分出多个类型的流动单元㊂由图4可知:长8油层组物性差㊁非均质性严Ia M31746-98-图4㊀K39井区长8—长9油层组流动单元柱状图Fig.4㊀The histogram of flowing units of the Chang8to Chang9oil layer group in the Well K39Area重㊁微观孔隙结构复杂,以Ⅱ类和Ⅲ类流动单元为主;长9油层组物性好,非均质性中等,微观孔隙结构较好,以Ⅰ类和Ⅱ类流动单元为主;Ⅲ类和Ⅳ类流动单元比例较小,只占19%㊂K39区以较好的Ⅰ类和Ⅱ类流动单元为主,厚度适中,连续性较好㊂4㊀应用效果二次测井解释成果表明,姬塬地区含油饱和度有所增加,储层的含油性提高㊂以M104-101井为例(图5),原测井解释结论为油水同层,现解释结论为油层,试油结论分析表明,目前日产油为16t /d,不产水㊂结合周围油水井生产状况,择优实施4口井采取补孔措施(表3),均取得较好生产效果,表明所建测井解释模型比较可靠㊂原测井解释为油水同层的4口井,整体都属于没有新开发潜力的单井,经过流动单元评价后,该区域整体评价为属于Ⅰ类和Ⅱ类流动单元且油层较厚区域,共新增探明石油储量23.8ˑ104t,经过开发验证,区块日产量保持在480t /d,开发效果较好,表明流动单元评价直观有效㊂利用聚类分析方法对整个姬塬油田流动单元进行划分,经过流动单元整体分类评价后,目前姬塬油田K39井区评价结果为高产井的有利区域集中分布在姬塬油田K39井区东南方向,该区域整体㊀40㊀特种油气藏第30卷㊀图5㊀姬塬地区测井二次解释结果及补孔位置Fig.5㊀The secondary interpretation results of well logging in Jiyuan Area and the location of perforations adding表3㊀姬塬地区二次解释结果对比属于Ⅰ类和Ⅱ类流动单元且油层较厚,一般为10~25m㊂有利区8口见效井平均单井日产油为3.60t /d,产能提高了近10倍,平均动液面为1606m,高于区块平均动液面(1760m),均取得较好开发效果(表4)㊂该区域纵向上长9储层见效井多,见效井日产液量高㊁日产油量高,根据油井见效过程中产液量㊁产油量和含水率变化情况进行调整,保持油井整体上日产油量上升,含水率稳定㊂表4㊀K39井区油井见效前后结果对比Table 4㊀The comparison of results before and 5㊀结㊀论(1)K39井区致密砂岩储层共分为4类流动单元,以较好的Ⅰ类和Ⅱ类流动单元为主,厚度适中,连续性较好,具有较好的勘探开发潜力㊂(2)K39井区经过所建油层㊁油水同层㊁含水油层识别标准,总结识别标准解释油层8层,共计91m,油水同层13层,共计108m,含油水层7层,共计77m,新增探明储量23.8ˑ104t,取得较好的效果㊂(3)运用聚类分析方法将研究区划分出4类流动单元,Ⅰ类和Ⅱ类优质流动单元在长9发育,Ⅱ类和Ⅲ类流动单元在长8发育㊂其中,长9油层组纵向上和平面上都以较好的Ⅰ和Ⅱ类流动单元为主,其中有利的Ⅰ㊁Ⅱ类流动单元储量共计202.5ˑ104t,是鄂尔多斯盆地三叠系致密油藏未来有力的资源接替区域㊂参考文献:[1]余涛,王年明,田文涛,等.基于常规测井的致密储层弹性参数预测[J].断块油气田,2019,26(1):48-52.YU Tao,WANG Nianming,TIAN Wentao,et al.Prediction of e-lastic parameters of tight reservoirs based on conventional logs [J].Fault -Block Oil &Gas Field,2019,26(1):48-52.[2]王瑞,朱筱敏,王礼常.用数据挖掘方法识别碳酸盐岩岩性[J].测井技术,2012,36(2):197-201.WANG Rui,ZHU Xiaomin,WANG ing data mining toidentify carbonate lithology[J].Well Logging Technology,2012,36(2):197-201.[3]周海超,付广,王艳,等.测井资料交会图法在碎屑岩岩性识别中的应用 以十屋断陷为例[J].大庆石油地质与开发,2019,28(1):136-138.ZHOU Haichao,FU Guang,WANG Yan,et al.Application of thecrossplot method of well logging data in the lithology recognition ofclastic rock:taking Shiwu Fault Depression as example[J].Petro-leum Geology &Oilfield Development in Daqing,2019,28(1):㊀第5期赵㊀辉等:致密砂岩油藏测井响应特征及有利区评价41㊀㊀136-138.[4]徐德龙,李涛,黄宝华,等.利用交会图法识别国外M 油田岩性与流体类型的研究[J].地球物理学进展,2012,27(3):1123-1132.XU Delong,LI Tao,HUANG Baohua,et al.Research on the iden-tification of the lithology and fluid type of foreign M Oilfield by u-sing the crossplot method [J].Progress in Geophysics,2012,27(3):1123-1132.[5]王继平,张城玮,李建阳,等.苏里格气田致密砂岩气藏开发认识与稳产建议[J].天然气工业,2021,41(2):100-110.WANG Jiping,ZHANG Chengwei,LI Jianyang,et al.Tight sand-stone gas reservoirs in the Sulige Gasfield:development under-standings and stable -production proposals[J].Natural Gas Indus-try,2021,41(2):100-110.[6]杨双定,赵建武,唐文江,等.低孔隙度㊁低渗透率储层气层识别新方法[J].测井技术,2005,29(1):43-45.YANG Shuangding,ZHAO Jianwu,TANG Wenjiang,et al.Newmethod to identify gas zones in low porosity and permeability res-ervoir[J].Well Logging Technology,2005,29(1):43-45.[7]段长江,高计县,王凯芸,等.神府地区太1段沉积特征及对气藏的控制作用[J].石油地质与工程,2021,35(3):19-24.DUAN Changjiang,GAO Jixian,WANG Kaiyun,et al.Sedimentary characteristics of Tai 1Member and its control effect on gas reservoirs in Shenfu Area[J].Petroleum Geology &Engineering,2021,35(3):19-24.[8]康东雅,向芳,邹佐元,等.鄂尔多斯盆地上古生界砂岩岩石学特征及岩性差异[J].断块油气田,2019,26(3):299-303.KANG Dongya,XIANG Fang,ZOU Zuoyuan,et al.Petrologicalcharacteristics and lithological differences of Upper Paleozoic sandstone of Ordos Basin [J].Fault -Block Oil &Gas Field,2019,26(3):299-303.[9]杨华,付金华,刘新社,等.鄂尔多斯盆地上古生界致密气成藏条件与勘探开发[J].石油勘探与开发,2012,39(3):295-303.YANG Hua,FU Jinhua,LIU Xinshe,et al.Accumulation condi-tions and exploration and development of tight gas in the Upper Paleozoic of the Ordos Basin[J].Petroleum Exploration and De-velopment,2012,39(3):295-303.[10]王贵文,郭荣坤.测井地质学[M].北京:石油工业出版社,2000:200-214.WANG Guiwen,GUO Rongkun.Well logging geology [M].Bei-jing:Petroleum Industry Press,2000:200-214.[11]陈刚,丁超,徐黎明,等.鄂尔多斯盆地东缘紫金山侵入岩热演化史与隆升过程分析[J].地球物理学报,2012,55(11):3731-3741.CHEN Gang,DING Chao,XU Liming,et al.Analysis on the ther-mal history and uplift process of Zijinshan intrusive complex in the eastern Ordos Basin [J ].Chinese Journal of Geophysics,2012,55(11):3731-3741.[12]REINHART E G,BLENKINSOP J,PARTERSON R T.Assessmentof a Sr isotope vital effect in marine taxa from Lee Stocking Island,Bahamas[J].Geo -Marine Letters,1998,18(3):241-246.[13]姜烨,李宝芳,王绍昌.鄂尔多斯陆表海层序地层中的低位域沉积 以太原组上段桥头砂岩为例[J].现代地质,2001,15(4):425-430.JIANG Ye,LI Baofang,WANG Shaochang.Low stand system tractsandstone in the sequence of Epicontinental sea in Ordos:a case of Qiaotou sandstone of upper Taiyuan Formation [J].Geosci-ence,2001,15(4):425-430.[14]伏海蛟,汤达祯,许浩,等.致密砂岩储层特征及气藏成藏过程[J].断块油气田,2012,19(1):47-50.FU Haijiao,TANG Dazhen,XU Hao,et al.Characteristics of tightsandstone reservoir and accumulation process of gas pool [J].Fault -Block Oil &Gas Field,2012,19(1):47-50.[15]罗东明,谭学群,游瑜春,等.沉积环境复杂地区地层划分对比方法 以鄂尔多斯盆地大牛地气田为例[J].石油与天然气地质,2008,29(1):38-44.LUO Dongming,TAN Xuequn,YOU Yuchun,et al.Stratigraphicdivision and correlation in areas with complicated sedimentary en-vironment:a case study of Daniudi Gas Field in the Ordos Basin [J].Oil &Gas Geology,2008,29(1):38-44.[16]贾承造,邹才能,李建忠,等.中国致密油评价标准㊁主要类型㊁基本特征及资源前景[J].石油学报,2012,33(3):343-350.JIA Chengzao,ZOU Caineng,LI Jianzhong,et al.Assessment cri-teria,main types,basic features and resource prospects of the tight oil in China[J].Acta Petrolei Sinica,2012,33(3):343-350.[17]沈玉林,郭英海,李壮福,等.鄂尔多斯盆地东缘本溪组-太原组层序地层特征[J].地球学报,2009,30(2):187-193.SHEN Yulin,GUO Yinghai,LI Zhuangfu,et al.Sequence stratig-raphy of Benxi -Taiyuan Formation in eastern Ordos Basin [J].Acta Geoscientia Sinica,2009,30(2):187-193.[18]喻建,杨亚娟,杜金良.鄂尔多斯盆地晚三叠世延长组湖侵期沉积特征[J].石油勘探与开发,2010,37(2):181-187.YU Jian,YANG Yajuan,DU Jinliang.Sedimentation during the transgression period in Late Triassic Yanchang Formation,Ordos Basin [J ].Petroleum Exploration and Development,2010,37(2):181-187.编辑㊀王㊀琳。
岩石物理方程解释

其中
(7)
下标 分别代表岩石骨架,岩石(泥质非泥质混合物)和流体的弹性参数, 是关于纵横比、骨架和流体特性的函数。
然后利用Gassmann方程讨论流体松弛效应,最后得出岩石的纵横波速度
(8)
其中的体积模量和剪切模量均为由Gassmann方程求得。其实我们可以利用K-T模型讨论饱和岩石的弹性性质,但是由于K-T模型中孔隙是孤立的,所以孔隙流体仅仅是局部松弛,我们讨论的是空有效孔隙的岩石骨架,实质上等价于孔隙孤立的岩石,因此在最后讨论流体的影响时利用Gassmann方程。上述所讨论的模型需要明确与泥质和沙质有关孔隙度的纵横比,这样以便讨论泥质含量孔隙度与声波速度之间的关系。
Kuster-Toksöz模型:
几种模型的条件及对比
Voit/Reuss
HS+/HS-
Gassmann
Biot
Xu-white
K-T
直接计算结果
弹性模量
弹性模量
体积模量
声速与模量的关系
弹性模量
弹性模量
考虑因素
应力应变
孔隙流体
流体性质孔隙结构
流体性质孔隙性质
流体,声波频率矿物颗粒
原始参量
体积分数组分模量
关于Gassman方程中骨架(Matrix)模量的计算
球粒
为第 种组分的体积分数, 和 为与组分几何形状有关的函数。
Boit理论:
两个假设:1波长远大于气孔及气孔间距(低频)
2气孔间无相互作用
Biot理论考虑了多孔介质联通孔隙中流体的运动并预测接种存在的3种体波,2种膨胀波和一种剪切波,同时Boit理论指出类比致密弹性理论,流体填充多孔介质的单位体积应变势能可用一个二次方程表示,对于典型的多孔渗流系统,流体的流动并不统一,并不是完全按宏观压力梯度的方向流动。
红连油田测井参数评价研究

红连油田测井参数评价研究摘要:本文以红连油田白垩系大墩组储层为研究对象,展开储层参数研究。
分析研究了“孔渗饱”等参数计算方法,给出了一系列的储层测井参数计算模型。
实际应用效果表明,本文所应用的计算方法在红连油田有较明显的地质效果,对其他油田的储层计算有很好的借鉴意义。
关键词:红连油田孔隙度渗透率含水饱和度红连油田砂层横向上分布稳定,储层岩石类型为混合砂岩,储集类型为砂岩孔隙型,储集空间以原生粒间孔为主,本文主要分析计算了白垩系大墩组储层参数。
大墩p式中a、b、c为权系数。
根据三孔隙度曲线与孔隙度的相关关系好坏,同时考虑测井曲线质量来选择权系数。
2 渗透率取心分析孔隙度包含泥质中的微小孔隙度,而这部分孔隙度对渗透率几乎无贡献,当泥质含量高时,渗透率与孔隙度相关性很差,因此,在确立渗透率计算模型时,需剔除掉泥岩样品,使用泥质含量不高的砂岩岩样实验分析结果。
利用该关系可以计算地层渗透率。
3 含水饱和度测井解释中计算含水饱和度最常用的公式是阿尔奇公式。
虽然阿尔奇公式是针对粒径孔隙的纯地层得出的,但实际可用于绝大多数常见储集层,它是连接孔隙度测井和电阻率测井两大测井方法的桥梁,因而成为测井资料综合定量解释的最基本关系式。
在较纯净砂岩中,可利用其计算含水饱和度:在利用式(1)计算含水饱和度时,其中岩电参数以及地层水电阻率是由岩电实验和地层水化验分析得到,将在下面进行详述。
3.1 地层水电阻率的计算3.1.1 地层水矿化度全区共有6口井的地层水分析样品,总矿化度最大112304mg/L,最小4479mg/L,上下差异较大,平均46873mg/L,水型主要为CaCl2、NaHCO3型,也有少量的Na2SO4型。
地层水矿化度不仅随深度变化而变化,而且不同组系矿化度差异也较大。
因此在建立地层水电阻率模型时应分为两组。
大墩组分为Ⅰ、Ⅱ两个砂岩组,K1sⅠ平均矿化度为5206mg/L;K1sⅡ平均矿化度为29773mg/L,均为低矿化度地层水。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用泥质含量与孔隙度计算砂岩渗透率
摘要:砂岩储层的渗透率受多个因素的影响,单相关模型往往有其局限性,为保证渗透率模型具有优良的解释能力和预测效果,本文提出一种综合利用岩心粒度分析与物性分析资料,根据泥质含量与孔隙度计算渗透率的方法,并且通过实际井资料的试处理验证,说明其计算方法是可靠的。
关键词:渗透率孔隙度泥质含量粒度分析
渗透率是反映储层渗流特性的一个重要参数,准确求取储层的渗透率,对于储层评价和产层开发有着重要的意义。
目前最常用的渗透率计算方法是建立渗透率与孔隙度的简单一元相关函数,但由于取心分析的孔隙度包含泥质中的微小孔隙度,而这部分孔隙度对渗透率几乎无贡献,当泥质含量高时,渗透率与孔隙度相关性很差。
在这种情况下,综合利用泥质含量与孔隙度计算渗透率是很有必要的。
1 渗透率计算新模型
研究发现,随着地层孔隙度的增加,储集空间、渗透空间增大,渗透率随之增加;随着地层泥质含量的增加,其对渗流通道的阻塞作用增大,渗透率随之减小。
故可用渗透率与泥质含量、孔隙度的多元关系来计算渗透率。
通过对南海西部DF13-1油田某井区粒度资料与岩心物性资料的相关分析,确定了对储层渗透率最为敏感的测井参数,即孔隙度、泥质含量。
由于粒度分析数据和物性分析数据实验性质的区别,两者的实验数据点的深度不能一一对应,因此需要根据其中一种数据点的各深度对另外一种数据进行非线性插值,得到同一深度下的岩心分析渗透率、孔隙度、粒度分析的泥质含量,再结合渗透率与孔隙度、渗透率与泥质含量的变化规律
对比测井计算渗透率与常规物性分析渗透率前,需将常规物性分析渗透率校正到地层条件下。
然后统计出按层段平均的岩心覆压渗透率与测井计算渗透率进行对比,测井计算渗透率绝对误差平均为11.31 mD,相对误差平均为32.3%,渗透率计算误差没有超过一个数量级。
测井计算渗透率与按层段平均的岩心覆压渗透率对比图。
由图可见,样品点分布在中间线附近,说明测井计算的渗透率与岩心分析渗透率结果极为接近,证明该渗透率计算模型适用于本地区。
3 结论
(1)所建立的关于渗透率与孔隙度、泥质含量新模型的拟合相关系数达到了0.88。
验证结果表明,该方法计算结果与岩心分析结果两者十分接近,得到的渗透率有较高的可信度。
(2)实际应用时,利用岩心物性分析资料和岩心粒度分析资料建立渗透率经验公式,并结合测井解释孔隙度和测井计算泥质含量,可以很方便地计算出对应的渗透率值。
(3)该方法在砂岩储层具有一定的适用性。
但对于其他类型的复杂储层,如碳酸盐岩储层,由于裂缝、溶洞等因素,该方法的计算结果会受到一定影响。
参考文献
[1] 雍世合,张超谟.测井数据处理与综合解释[M].山东:石油大学出版社,1996.
[2] Marion.D,雍世和.砂岩,泥岩和泥质砂岩中声速,孔隙度,渗透率和泥质含量间的模拟关系[J].物探化探译丛,1991(6):64-67.
[3] 高楚桥.复杂储层测井评价方法[M].北京:石油工业出版社,2003.
[4] 曾文冲.确定渗透率的测井解释技术[J].测井技术,1979(3):1-11.
[5]楚泽涵.用测井方法估算渗透率的评述[J].石油勘探与开发,1994,21(1):46-52.。