大数据应用分析案例分析

合集下载

大数据应用案例分析

大数据应用案例分析

大数据应用案例分析第一点:大数据在金融行业的应用案例分析金融行业一直是大数据技术的重要应用领域之一。

大数据技术可以帮助金融机构更好地理解客户需求,提高服务质量,降低风险,优化资产配置等。

以下是几个大数据在金融行业的应用案例。

案例一:信用评分金融机构在发放贷款时,需要对借款人的信用状况进行评估。

传统的信用评分方法往往依赖于人工分析和经验判断,效率低下且容易出错。

借助大数据技术,金融机构可以对借款人的多维度数据进行分析,如消费记录、社交行为、交易行为等,从而更准确地评估其信用状况。

这不仅提高了评估效率,还降低了坏账风险。

案例二:风险控制金融市场波动剧烈,风险控制对于金融机构来说至关重要。

通过大数据技术,金融机构可以实时监控市场动态,分析各种风险因素,如市场风险、信用风险、流动性风险等。

此外,大数据技术还可以帮助金融机构预测市场趋势,从而制定更为合理的风险管理策略,降低潜在损失。

案例三:个性化推荐金融机构可以根据客户的历史交易数据、兴趣爱好等信息,运用大数据技术为客户提供个性化的金融产品推荐。

例如,借助大数据分析,银行可以向客户推荐符合其风险偏好和投资需求的理财产品,提高客户满意度和忠诚度。

案例四:反欺诈金融欺诈行为层出不穷,给金融机构和客户带来了巨大的损失。

大数据技术可以帮助金融机构识别和防范欺诈行为。

通过对客户的行为数据进行分析,金融机构可以及时发现异常行为,如虚假交易、盗用账户等,从而采取措施避免损失。

第二点:大数据在医疗行业的应用案例分析近年来,大数据技术在医疗行业的应用也日益广泛。

以下是几个大数据在医疗行业的应用案例。

案例一:疾病预测和预防通过对大量的医疗数据、人口统计数据、环境数据等进行分析,大数据技术可以预测疾病的发生和传播趋势。

这有助于医疗机构和政府部门制定更为有效的疾病预防和控制策略,如疫苗接种、卫生宣传等。

案例二:精准医疗每个人的基因序列都是独一无二的,大数据技术可以帮助医生根据患者的基因信息,为其量身定制治疗方案。

大数据分析的实际案例

大数据分析的实际案例

大数据分析的实际案例数据从来不是孤立的存在,它们背后总是有一个故事,讲述着人们的生活、社会的变迁。

大数据是当今互联网时代的一个重要词汇,它所带来的不仅仅是数据的增量,更是数据的改变和呈现方式的更新。

各个产业领域都在乘风破浪,试图用大数据技术来变革自己的商业模式和服务方式。

下面,我们来看看大数据分析在实际商业中的应用。

案例一:亚马逊的推荐算法在网购时,我们常常耳熟能详的“看了本书的人也看了……”是怎么实现的呢?亚马逊的推荐算法就是一种基于大数据的人工智能算法。

亚马逊通过分析大量的交易和用户数据,来准确地预测用户的购物喜好和需求,并将推荐列表个性化地展现给不同用户。

该算法的好处不仅在于提高了用户购买率,还可以减少商品的滞销和回收,提高了商家品牌的知名度。

案例二:滴滴大数据驱动的智慧出行随着经济的发展,城镇化进程加速,交通拥堵成了日常生活中的一大问题。

滴滴大数据的智慧交通方案的出现,真正为解决这个问题提供了一条可行之路。

滴滴依托庞大的用户交易和位置数据,分析出不同地区的交通拥堵状况,并把这些信息反馈给司机,驾驶员便可根据最佳路径规划进行行驶和接送。

除此之外,滴滴还可以基于用户出行数据和天气状况,预测出车辆需求和交通高峰时间,为用户和司机提供更加便利和高效的交通服务。

案例三:浴室卫浴界的大数据在传统的卫浴行业中,产品的生产和销售往往仅基于人的直觉或者经验,缺乏科学而系统的方法。

以艾美特浴室的实践为例,该公司在产品研发和销售过程中,依托大数据技术开展了深入分析,从产品设计、生产制造、营销策略、服务体系全面提升企业的竞争力。

从智慧生产到智慧物流,从精准营销到售后服务,由此形成了一套完整、科学的数字管理模式,为制造企业实现高质量发展提供了有力保障。

结语大数据分析技术为商业提供了更加精细、便捷、高效的服务,它的应用范围是非常广泛的。

无论是从卫浴企业到交通出行,再到电商购物领域,每一种行业都可以通过大数据技术对自己的业务进行创新和优化。

大数据应用案例分析

大数据应用案例分析

大数据应用案例分析随着信息技术的飞速发展,大数据已然成为当今社会的热门话题。

大数据的广泛应用给我们的生活带来了巨大的改变,涵盖了各个领域。

本文将以案例的形式,对大数据在不同领域的应用进行分析和探讨,以期为读者提供更深入的了解和思考。

案例一:智能犯罪预测在公共安全领域,大数据的应用已经取得了不少突破。

例如,在犯罪预测方面,警方可以通过分析大数据和人工智能技术,准确地预测犯罪发生的时间、地点和类型,从而优化警力分布和资源调配,提高犯罪打击效率。

美国芝加哥警局在实施智能犯罪预测系统后,成功降低了暴力犯罪的发生率,并且实现了对重复性犯罪的有效打击。

案例二:医疗健康管理在医疗健康领域,大数据的应用正逐渐改变人们的就医方式和医疗服务质量。

通过搜集和分析患者的个人健康记录、医疗数据和疾病流行情况,大数据可以帮助医生更精确地诊断疾病,选择最佳的治疗方法,并优化药物的研发与分发。

例如,IBM的“沃森医生”可以通过分析数百万份医疗文献和实时的患者数据,为医生提供最新的治疗建议和决策支持。

案例三:智能交通管理在交通领域,大数据的应用为城市交通管理带来了前所未有的便利和效益。

通过对交通摄像头、车辆传感器和移动设备等数据进行实时监测和分析,大数据可以指导道路规划、优化交通信号灯、实现智能导航和拥堵预测等功能,从而提高交通流畅度和行驶安全。

中国的深圳交警部门通过利用大数据技术,成功解决了城市中交通拥堵和事故高发问题。

案例四:智能金融风险管理在金融领域,大数据的应用已经成为金融机构风险管理的重要手段。

通过对客户的消费习惯、信用记录和交易行为等进行全面的数据分析,大数据可以实现智能推荐、个人信用评估和欺诈检测等功能,从而提供更安全、高效和个性化的金融服务。

例如,中国的支付宝通过分析庞大的交易数据,实现了对用户的个性化信用评分,为用户提供更多的金融服务和信用贷款。

综上所述,大数据在公共安全、医疗健康、交通管理和金融风险管理等领域的应用已经取得了不少成果。

大数据分析应用案例分享

大数据分析应用案例分享

大数据分析应用案例分享随着信息技术的高速发展,数据这一资源也变得越来越重要。

大数据分析便是在这背景下应运而生的一项重要技术。

大数据分析是指针对海量数据,从中提取有用信息、进行数据挖掘和分析的过程。

在工业、金融、医疗、交通等各个领域,大数据分析都发挥着重要的作用。

一、金融领域大数据分析应用实例金融领域的大数据分析一直是众多企业投资的热点。

大数据分析在金融行业中的应用主要包括风险控制、市场分析、投资组合管理等方面。

以下是银行行业的应用实例。

1. 风险控制一个银行的客户关系管理系统 (CRM) 很大程度上依赖于其风险控制策略。

对于一个新客户,银行可以通过大数据技术自动审查该用户的信用记录、贷款历史和其他行为,以评估该客户可以得到多少贷款批准以及贷款的利率。

2. 市场分析大型银行需要跟踪和分析大量交易贸易数据和市场数据,以追踪最新市场走势,并确保其产品和服务能够满足各个阶段的客户需求。

大数据分析可以帮助银行自动抓住市场趋势和变化。

3. 投资组合管理越来越多的银行在使用大数据技术作为投资组合管理的一种手段。

这种方法基于银行的资产管理策略,为客户制定最优的资产组合。

二、医疗领域大数据分析应用实例医疗领域是另一个大数据分析的重要领域。

随着越来越多的医疗保健机构和药品生产商使用庞大的医学文献和患者记录,大数据分析在医疗行业中的应用也不断增加。

1. 传染病控制全球范围内传染病是一项重要的公共卫生问题。

通过整合和分析大量的数据,可以及早识别和预测传染病暴发的情况。

这有助于政府部门,医学专家和医疗保健公司制定更好的策略来控制传染病的流行。

2. 诊断支持与药物研究大数据分析的目标是让数据更加智能化。

医疗保健公司能够利用来自整个行业的大量数据,从中提取出有用的信息,以辅助诊断和治疗。

此外,在药物研究方面也有了更多的技术支持,各种分析工具和算法已被广泛应用于药物研究。

三、电商领域大数据分析应用实例电子商务业是另一个应用大数据的领域。

大数据分析与应用案例

大数据分析与应用案例

大数据分析与应用案例近年来,随着互联网的快速发展和信息技术的成熟,大数据分析与应用逐渐成为各行各业关注的焦点。

大数据分析可以通过对大规模数据集进行收集、处理和分析,揭示数据背后隐藏的模式、趋势和规律,为企业决策提供科学依据。

本文将通过几个实际的案例来探讨大数据分析与应用的重要性和实际价值。

案例一:零售业销售分析某零售巨头利用大数据分析技术对销售数据进行深入分析,发现了一个有趣的现象:在某一地区,每当天气变冷,卖出的啤酒和尿布的销量都会大幅上升。

通过进一步分析,他们发现这是因为在周末,年轻父母通常会携带孩子去购物,孩子买尿布,父母顺便买啤酒放松。

而当天气变冷,人们更愿意在家聚会,所以啤酒和尿布的销量呈现出明显的相关性。

基于这一发现,该零售巨头调整了货架陈列策略,将啤酒和尿布放在了一起,销售额显著提升。

案例二:社交媒体情感分析社交媒体上的海量数据蕴藏着巨大的商机。

某网络公司利用大数据分析技术,对用户在社交媒体上的发帖、评论等信息进行情感分析,以了解用户对其产品的态度。

通过对用户评论的情感词汇进行统计和分析,该公司能够得知用户对不同产品的喜好和评价,为产品改进提供参考依据。

同时,该公司还可以通过对竞争对手的情感分析,及时了解市场动态,进行竞争策略的调整和优化。

案例三:交通拥堵预测城市交通拥堵是人们日常生活中的一个头疼问题。

一家科技公司利用大数据分析技术,通过收集和分析道路监控、手机信令等数据,实现了对交通拥堵情况的实时监测和预测。

他们建立了一个基于大数据的交通预测模型,通过对历史数据和实时数据的综合分析,能够准确预测未来交通状况,提前采取措施避免交通拥堵。

这项技术不仅提高了城市交通的效率,也为城市规划和交通管理提供了有力的决策支持。

案例四:医疗诊断与预测在医疗领域,大数据分析可以为医生和患者提供更精准的诊断和预测。

比如,某家医疗科技公司利用大数据分析技术,通过分析患者的病例数据和基因序列等信息,识别出不同基因型对于特定药物疗效的影响。

大数据分析应用案例

大数据分析应用案例

大数据分析应用案例大数据分析在当今信息时代扮演着至关重要的角色。

通过对大量数据进行采集、处理和分析,我们可以揭示隐藏在其中的规律和洞见,为各行各业提供更好的决策依据和业务优化方案。

本文将以一系列实际案例,介绍大数据分析在不同领域的应用。

案例一:市场营销领域在市场营销领域,大数据分析可以帮助企业了解消费者需求和行为,制定更精确的营销策略。

比如,一家电子商务公司利用大数据分析,对用户的购物历史、浏览行为以及社交媒体数据进行挖掘,然后根据消费者个性化的需求,给出更有针对性的推荐产品,从而提高销售转化率和客户忠诚度。

案例二:金融风控领域在金融行业,大数据分析可以帮助银行和金融机构进行风险评估和预测。

例如,一家银行可以通过分析大量的借贷信息、信用卡交易记录以及公共数据库的数据,构建起一个庞大且复杂的风险模型。

这样,银行就能够更好地识别欺诈交易和不良借贷行为,及时采取相应措施,保护自身和客户的利益。

案例三:医疗领域大数据分析在医疗领域的应用日益广泛。

通过分析来自医院、社交媒体和健康监测设备等渠道的医疗数据,医生和研究人员可以提取出有价值的信息,实现个体化诊疗。

例如,利用大数据分析可以预测疾病的转归和患者的治疗效果,并推荐最佳的治疗方案。

此外,大数据分析还能帮助疾病的早期发现和疫情的监测,提高医疗水平和公共健康管理。

案例四:城市规划领域城市规划是一个复杂而庞大的系统工程,大数据分析为城市规划者提供了宝贵的决策支持。

通过分析城市交通流量、人口分布、能源消耗等数据,可以帮助规划者优化交通布局、改善公共设施分布和推动城市可持续发展。

例如,利用大数据分析,可以发现立交桥建设的最佳位置,减少交通拥堵,提高通行效率;同时,也可以计算出城市能源消耗的模型,为城市能源规划和环境保护提供依据。

案例五:电影行业大数据分析在电影行业中的应用也非常重要。

通过分析大量的用户评论、观看记录和票房数据,电影制片方可以更好地了解观众的口味和喜好,制定更准确的宣传策略和电影推荐,提高影片的票房和口碑。

大数据应用分析案例分析

大数据应用分析案例分析

大数据应用分析案例分析随着信息技术的飞速发展和互联网的普及,各个行业开始广泛应用大数据技术。

大数据的应用对于企业的运营和发展起到了至关重要的作用。

本文将以几个案例分析的方式,探讨大数据在不同行业的应用,并分析其对企业带来的影响。

案例一:电商行业电商行业是大数据应用最为广泛的领域之一。

电商平台拥有庞大的用户数据,通过数据分析可以了解用户的购买习惯、喜好以及个性化需求,并将这些信息应用到用户推荐、运营策略以及产品设计中。

以阿里巴巴为例,他们利用大数据分析技术,通过分析用户的购买记录、搜索行为和点击行为,可以精确地为用户推荐商品,提高用户购买转化率,同时降低推广成本。

此外,阿里巴巴还通过大数据分析识别用户群体,为商家提供精准的广告投放,提高广告投资的回报率。

通过大数据的应用,电商行业可以实现更好的用户体验、提高销售额,并且在市场竞争中取得优势。

案例二:金融行业金融行业也是大数据应用的重要领域。

金融机构拥有大量的客户数据,通过大数据分析可以挖掘出有价值的信息,增加风险评估准确性、提高投资决策效率。

以银行为例,他们可以通过大数据分析客户的贷款记录、消费行为以及信用评级等信息,为客户提供个性化的金融服务,如贷款额度的评估、投资产品的推荐等。

另外,金融机构还可以通过大数据分析识别欺诈行为、风险预警,降低金融风险。

大数据的应用有效地提高了金融行业的运营效率,同时也带来了更加个性化的金融服务,提升了客户满意度。

案例三:医疗行业医疗行业的大数据应用可以为医生提供更好的诊疗支持、改善患者就医体验。

医疗机构通过大数据分析,可以对大量的医疗影像数据进行诊断辅助,帮助医生提高诊断精确度,减少误诊率。

另外,医疗机构还可以通过大数据分析患者的病历记录、生命体征等数据,实现个性化的医疗服务,如健康管理、用药建议等。

此外,通过大数据的应用,医疗机构可以提前发现疾病爆发趋势,提供早期预警,从而提高公共卫生水平。

大数据的应用让医疗行业更加智能化、个性化,提高了医疗质量和效率,为患者提供更好的医疗服务。

大数据应用案例分析报告

 大数据应用案例分析报告

一、引言大数据时代的到来对各个行业产生了深远的影响。

随着数据量的不断增加,对数据的处理和分析需求也越来越迫切。

大数据应用能够为企业提供更加精准的决策支持,促进效率的提升和业务的创新。

本报告将对大数据应用的一些典型案例进行分析,以期能够深入了解大数据在不同领域的应用和价值。

二、大数据应用在金融行业的案例分析1. 信用评分传统的信用评分模型通常是基于个人的信用历史和财务状况来进行评定,但这种方式存在一定的局限性。

而大数据技术可以通过分析更多的数据,包括社交媒体数据、手机通讯记录等,来更加全面地评估一个人的信用情况。

这样可以更准确地判断个人的信用风险,为金融机构提供更好的风险管理支持。

2. 反欺诈大数据技术可以通过分析大量的数据来识别欺诈行为。

例如,通过对客户的交易行为、地理位置等进行分析,可以发现异常的交易行为,并及时进行风险提示。

这对于金融机构来说可以节省大量的损失,提高运营效率。

三、大数据应用在零售行业的案例分析1. 营销策略优化零售企业可以通过大数据技术对客户的消费行为和偏好进行分析,以实现个性化营销。

通过对客户数据的挖掘,可以制定更加精准的促销策略,提高销售效率。

2. 库存管理通过对销售数据和供应链数据进行分析,零售企业可以更加准确地预测商品的销售状况,避免因为库存过剩或者不足造成的损失。

同时还可以通过对库存数据进行分析,提高货物周转率,优化库存结构。

四、大数据应用在医疗行业的案例分析1. 个性化医疗大数据技术可以通过对患者的基因数据、病史数据等进行分析,为医生提供更为个性化的诊疗方案。

这可以提高治疗的效果,减少不必要的治疗过程,降低医疗成本。

2. 疾病预测通过对大量的医疗数据进行分析,可以发现一些潜在的病因和疾病发生的规律。

这对于疾病的预防和早期诊断非常重要,可以帮助医生尽早发现疾病的迹象,提高治疗的成功率。

五、结论大数据技术在不同行业的应用案例表明,大数据技术已经成为推动企业创新和提高效率的重要工具。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数据应用与案例分析
当下,”大数据”几乎是每个IT人都在谈论的一个词汇,不单单是时代发展的趋势,也是革命技术的创新。

大数据对于行业的用户也越来越重要。

掌握了核心数据,不单单可以进行智能化的决策,还可以在竞争激烈的行业当中脱颖而出,所以对于大数据的战略布局让越来越多的企业引起了重视,并重新定义了自己的在行业的核心竞争。

在当前的互联网领域,大数据的应用已十分广泛,尤其以企业为主,企业成为大数据应用的主体。

大数据真能改变企业的运作方式吗?答案毋庸置疑是肯定的。

随着企业开始利用大数据,我们每天都会看到大数据新的奇妙的应用,帮助人们真正从中获益。

大数据的应用已广泛深入我们生活的方方面面,涵盖医疗、交通、金融、教育、体育、零售等各行各业。

大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。

以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,并在此基础上作简单的梳理和分类。

一、大数据应用案例之:医疗行业
Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。

该技术允许企业找到大量病人相关的临床医疗信息,
通过大数据处理,更好地分析病人的信息。

在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。

通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。

它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。

也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。

二、大数据应用案例之:能源行业
智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。

在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。

通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。

有了这个预测后,就可以向发电或者供电企业购买一定数量的电。

因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。

通过这个预测后,可以降低采购成本。

维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。

利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。

三、大数据应用案例之:通信行业
XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。

XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。

此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。

电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。

中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。

系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。

NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。

四、大数据应用案例之:零售业
"我们的某个客户,是一家领先的专业时装零售商,通过当地的百货商店、网络及其邮购目录业务为客户提供服务。

公司希望向客户提供差异化服务,如何定位公司的差异化,他们通过从 Twitter 和 Facebook 上收集社交信息,更深入的理解化妆品的营销模式,随后他们认识到必须保留两类有价值的客户:高消费者和高影响者。

希望通过接受免费化妆服务,让用户进行口碑宣传,这是交易数据与交互数据的完美结合,为业务挑战提供了解决方案。

"Informatica的技术帮助这家零售商用社交平台上的数据充实了客户
主数据,使他的业务服务更具有目标性。

零售企业也监控客户的店内走动情况以及与商品的互动。

它们将这些数据与交易记录相结合来展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助某领先零售企业减少了17%的存货,同时在保持市场份额的前提下,增加了高利润率自有品牌商品的比例。

五、大数据应用案例之:体育运动业
现在很多运动员在训练的时候应用大数据分析技术了。

比如例如用于网球鼻塞的IBM SlamTracker工具,我们使用视频分析来追踪足球或棒球比赛中每个球员的表现,而运动器材中的传感器技术(例如篮球或高尔夫俱乐部)让我们可以获得对比赛的数据以及如何改进。

很多精英运动队还追踪比赛环境外运动员的活动-通过使用智能技术来追踪其营养状况以及睡眠,以及社交对话来监控其情感状况。

在过去的2014巴西世界杯上,可以看到谷歌、百度、微软等巨头通过大数据分析赛果,让彩民们格外激动,德国队依托SAP Match Insights系统大举夺冠,让对手略感失落,IBM为腾讯提供了全套的社交大数据分析解决方案,在世界杯期间,腾讯每天推出一篇结合热点大数据的舆情分析报道文章,展示球赛期间球迷的心理变化,引起球迷共鸣。

六、大数据应用案例之:教育行业
作为与数据最为相关的领域之一,继互联网、物联网之后,教育被视作大数据大有可为的重要行业。

遍布教、学、研多层面的数据集
合,通过有效利用大数据技术,可帮助学生改善学习效率,提供符合职业规划的个性化学习服务,同时也有助于教育和科研机构加快提升科研成果和教育质量,培养更多更优秀的创新性人才。

如华为大数据一体机服务于北大重点实验室,中科曙光助同济大学在信息学科及其交叉学科研究领域迈上一个新台阶。

七、大数据应用案例之:金融行业
大数据在金融行业主要是应用金融交易。

高频交易(HFT)是大数据应用比较多的领域。

其中大数据算法应用于交易决定。

现在很多股权的交易都是利用大数据算法进行,这些算法现在越来越多的考虑了社交媒体和网站新闻来决定在未来几秒内是买出还是卖出。

此外,大数据对信用卡产品的营销具有很大的促进作用。

例如,在大数据的环境下,银行可以利用先进的互联网、云计算等新兴技术,对消费者的刷卡行为进行数据化的分类、统计,通过整理数据获取消费者的消费习惯、消费能力、消费偏好等非常重要的数据信息。

通过客户数据、财务数据来区隔客户,通过消费区域定位、内容定向,知晓他们的消费习惯,然后进行深入地数据分析挖掘和展开精准营销。

去年,宜信宜人贷先后推出“码上贷”、“极速模式”两款个性鲜明的借款咨询服务,正是其在风控、信审等P2P核心业务领域潜心钻研之后的集中发力之作,而这一切都得益于宜信宜人贷对互联网大数据技术的透彻理解和应用。

不论是哪个行业的大数据分析和应用场景,可以看到一个典型的特点还是无法离开以人为中心所产生的各种用户行为数据,用户业务
活动和交易记录,用户社交数据,这些核心数据的相关性再加上可感知设备的智能数据采集就构成一个完整的大数据生态环境。

相关文档
最新文档