半导体物理学

合集下载

半导体物理学--基本概念汇总

半导体物理学--基本概念汇总

半导体物理学基本概念有效质量--——-载流子在晶体中的表观质量,它体现了周期场对电子运动的影响.其物理意义:1)有效质量的大小仍然是惯性大小的量度;2)有效质量反映了电子在晶格与外场之间能量和动量的传递,因此可正可负。

空穴--—-—是一种准粒子,代表半导体近满带(价带)中的少量空态,相当于具有正的电子电荷和正的有效质量的粒子,描述了近满带中大量电子的运动行为。

回旋共振--——半导体中的电子在恒定磁场中受洛仑兹力作用将作回旋运动,此时在半导体上再加垂直于磁场的交变磁场,当交变磁场的频率等于电子的回旋频率时,发生强烈的共振吸收现象,称为回旋共振. 施主-——-—在半导体中起施予电子作用的杂质. 受主-————在半导体中起接受电子作用的杂质.杂质电离能——---使中性施主杂质束缚的电子电离或使中性受主杂质束缚的空穴电离所需要的能量。

n—型半导体———-——以电子为主要载流子的半导体。

p—型半导体----——以空穴为主要载流子的半导体。

浅能级杂质-—-——-杂质能级位于半导体禁带中靠近导带底或价带顶,即杂质电离能很低的杂质。

浅能级杂质对半导体的导电性质有较大的影响。

深能级杂质———--——杂质能级位于半导体禁带中远离导带底(施主)或价带顶(受主),即杂质电离能很大的杂质。

深能级杂质对半导体导电性质影响较小,但对半导体中非平衡载流子的复合过程有重要作用.位于半导体禁带中央能级附近的深能级杂质是有效的复合中心。

杂质补偿--—-—在半导体中同时存在施主和受主杂质时,存在杂质补偿现象,即施主杂质束缚的电子优先填充受主能级,实际的有效杂质浓度为补偿后的杂质浓度,即两者之差。

直接带隙--———半导体的导带底和价带顶位于k 空间同一位置时称为直接带隙。

直接带隙材料中载流子跃迁几率较大.间接带隙-———-半导体的导带底和价带顶位于k 空间不同位置时称为间接带隙。

间接带隙材料中载流子跃迁时需有声子参与,跃迁几率较小。

平衡状态与非平衡状态—-—--半导体处于热平衡态时,载流子遵从平衡态分布,电子和空穴具有统一的费米能级.半导体处于外场中时为非平衡态,载流子分布函数偏离平衡态分布,电子和空穴不具有统一的费米能级,载流子浓度也比平衡时多出一部分,但可认为它们各自达到平衡,可引入准费米能级表示. 电中性条件—-———半导体在任何情况下都维持体内电中性,即单位体积内正电荷数与负1电荷数相等。

半导体物理学复习

半导体物理学复习
第一章
1、 金刚石结构
半导体中的电子状态
原子在晶胞中的排列情况是:8 个原子位于立方体的 8 个角顶上,6 个原 子位于 6 个面中心处,晶胞内部有四个原子。
1、在室温下 Si 的晶格常数 a=5.43A; Ge 的晶格常数 a=5.66A,分别计算单位体积内 硅、锗的原子个数。 2、 分别计算 Si (100) , (110) , (111) 面每平方厘米内的原子个数, 即原子面密度 (提 示:先画出各晶面内原子的位置和分布图) 。 3、计算硅<100>, <110>和〈111〉晶向上单位长度内的原子数,即原子线密度。 解: 1、Si: N Si Ge: N Ge
3、n 型半导体载流子浓度
ND E - ED 1 + 2 exp( F ) k0T ① 低温弱电离区:当温度很低时,大部分施主杂质被电子占据,只有少数杂质电离,使少量电 E - EF ND + )= = nD 子进入导带,称作低温弱电离: n0 = N C exp( - C E E k0T F 1 + 2 exp( - D ) k0T 1/ 2 1/ 2 N D NC EC ED N D NC ΔED EC + ED k0T ND exp( )= exp( ) 得到: EF = + ln( ) n0 = 2 2k0T 2 2k0T 2 2 2 NC N C exp(
8
a
3

8 4.99 10 28 m 3 10 3 (5.43 10 )
2、{1 0
{1 1
{1 1
3、<100>:
<110>:
<111>:
8 4.4 10 28 m 3 10 3 a (5.66 10 ) 1 14 2 4 2 0} : 6.78 10 14 atom / cm 2 2 2 8 2 a a (5.43 10 ) 1 1 2 4 2 4 2 4 9.59 10 14 atom / cm 2 0} : 2a a 2a 2 1 1 4 2 2 4 4 2 1} : 7.83 10 14 atom / cm 2 2 3 3a a 2a 2 1 2 1 2 1 1.84 10 7 cm 1 8 a a 5.43 10 1 2 1 2 1.41 2 2.6 10 7cm 1 8 5 . 43 10 2a 2a 1 1 2 2 1.15 2 2.1 10 7cm 1 8 5.43 10 3a 3a

半导体物理学 课后习题答案

半导体物理学 课后习题答案

EF
= Ei
= EC
− EV 2
3kT + ln
4
m
∗ p
mn∗
当T1
= 195K时,kT1
=
0.016eV ,
3kT 4
ln
0.59m0 1.08m0
= −0.0072eV
当T2
= 300K时,kT2
=
0.026eV , 3kT 4
ห้องสมุดไป่ตู้
ln
0.59 1.08
= −0.012eV
3kT 0.59 当T2 = 573K时,kT3 = 0.0497eV , 4 ln 1.08 = −0.022eV
E(k)
2ℏ 2 =
MAX ma 2
k = 2n π 时,E(k)有极小值 a
所以布里渊区边界为 k = (2n + 1) π a
(2)能带宽度为 E(k)
− E(k )
2ℏ 2 =
MAX
MIN ma2
(3)电子在波矢 k 状态的速度 v = 1 dE = ℏ (sin ka − 1 sin 2ka)
Ec + 8mn∗l 2
π m 4
(2
* n
EC
h2
3
)2 (E
1
− EC ) 2 dE
=
4π ( 2m*n ) 3 2 h2
2 (E 3
− EC
3
)2
Ec
+
100h 2 8mn∗ L2
Ec
1000π = 3L3
2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。
2.证明:si、Ge半导体的E(IC)~ K关系为
17 2

半导体论文——精选推荐

半导体论文——精选推荐

一、半导体物理发展史简介半导体物理学是研究半导体原子状态和电子状态以及各种半导体器件内部电子过程的学科。

是固体物理学的一个分支。

研究半导体中的原子状态是以晶体结构学和点阵动力学为基础,主要研究半导体的晶体结构、晶体生长,以及晶体中的杂质和各种类型的缺陷。

研究半导体中的电子状态是以固体电子论和能带理论为基础,主要研究半导体的电子状态,半导体的光电和热电效应、半导体的表面结构和性质、半导体与金属或不同类型半导体接触时界面的性质和所发生的过程、各种半导体器件的作用机理和制造工艺等。

半导体物理学的发展不仅使人们对半导体有了深入的了解,而且由此而产生的各种半导体器件、集成电路和半导体激光器等已得到广泛的应用。

能带理论的建立为半导体物理的研究提供了理论基础,晶体管的发明激发起人们对半导体物理研究的兴趣,使得半导体物理的研究蓬勃展开,并对半导体的能带结构、各种工艺引起的半导体能带的变化、半导体载流子的平衡及输运、半导体的光电特性等作出理论解释,继而发展成为一个完整的理论体系——半导体物理学。

1947年,美国贝尔实验室发明了半导体点接触式晶体管,从而开创了人类的硅文明时代。

1、半导体的起源法拉第在1833年发现硫化银,它的电阻随着温度上升而降低。

对半导体而言,温度上升使自由载子的浓度增加,反而有助于导电,这也是半导体一个非常重要的物理性质。

1874年,德国的布劳恩注意到硫化物的电导率与所加电压的方向有关,这就是半导体的整流作用。

1906年,美国发明家匹卡发明了第一个固态电子元件:无线电波侦测器,它使用金属与硅或硫化铅相接触所产生的整流功能,来侦测无线电波。

整流理论能带理论2、电晶体的发明3、积体电路:积体电路就是把许多分立元件制作在同一个半导体晶片上所形成的电路4、超大型积体电路二、半导体和集成电路的现状及发展趋势半导体材料的发展,现状和趋势第一代的半导体材料:以硅(包括锗)材料为主元素半导体第二代半导体材料:以砷化镓(GaAs)为代表的第二代化合物半导体材料第三代半导体材料:氮化物(包括SiC、ZnO等宽禁带半导体)第三代半导体器件由于它们的独特的优点,在国防建设和国民经济上有很重要的应用,前景无限。

半导体物理学-半导体中杂质和缺陷能级

半导体物理学-半导体中杂质和缺陷能级

氢原子中电子的能量:En
m0q4
802h2n2
n=1时,基态电子能量 E18m 002qh42 13.6eV
n=时,氢原子电离 E=0
氢原子的电离能
E 0E E 11.6 3eV
精选课件ppt
26
mn* 0.12m0
2.1 硅、锗晶体中的杂质能级
晶体内杂质原子束缚的电子与类氢模型相比:
m0mn*, mp*; 0 r0
●● ●● ●● ●●
对于Si中的P原子, 剩余电子的运动
半径:r ~ 6○5 Å
精选课件ppt
对于Ge中的P 原子,r 85 Å
10
多余 价电子
+4 +4
磷原子
+5 +4
Ⅴ族元素有5个价电子,其中的四个价电子与周围 的四个硅原子形成共价键,还剩余一个电子,同 时Ⅴ族原子所在处也多余一个正电荷,称为正离 子中心,所以,一个Ⅴ族原子取代一个硅原子, 其效果是形成一个正电中心和一个多余的电子。
施主杂质的电离能: E D8m r 2n *q 0 24 h2m m 0 n *E r 2 01.6 3 m m 0n *r 2
Si: mn* 0.26m0 r 12 ED0.02e5V
Ge: mn* 0.12m0 r 16 ED0.00e6V 4
受主杂质的电离能 E A 精选 课 件p8 ptm r 2 P *q 0 2h 42m m P * 0E r 2 0 1.6 3 m m 0P * 2r 72
金钢石晶体结构中的四面体间隙位置 内部4个原子构成T空隙
金钢石晶体结构中的六角形间隙位置 3个邻位面心+3个内部原子构成H空隙
精选课件ppt
7
2.1 硅、锗晶体中的杂质能级

半导体物理学名词解释.

半导体物理学名词解释.

半导体物理学名词解释1.能带:在晶体中可以容纳电子的一系列能2.允带:分裂的每一个能带都称为允带。

3.直接带隙半导体:导带底和价带顶对应的电子波矢相同间接带隙半导体:导带底和价带顶对应的电子波矢不相同4、施主杂质:能够施放电子而在导带中产生电子并形成正电中心的杂质,称为施主杂质。

施主能级:被施主杂质束缚的电子的能量状态称为施主能级。

5、受主杂质:能够能够接受电子而在价带中产生空穴,并形成负电中心的杂质,称为受主杂质。

受主能级:被受主杂质束缚的空穴的能量状态称为受主能级。

6、本征半导体:本征半导体就是没有杂质和缺陷的半导体。

7、禁带宽度:导带底与价带顶之间的能量差。

8、禁带:(导带底与价带顶之间能带)9、价带:(0K 条件下被电子填充的能量最高的能带)10、导带:(0K 条件下未被电子填充的能量最低的能带)11、迁移率:表示单位场强下电子的平均漂移速度,单位cm^2/(V ·s)。

12、有效质量:的作用。

有效质量表达式为:,速度:13、电子:带负电的导电载流子,是价电子脱离原子束缚后形成的自由电子,对应于导带中占据的电子空穴:带正电的导电载流子,是价电子脱离原子束缚后形成的电子空位,对应于价带中的电子空位14、费米分布:大量电子在不同能量量子态上的统计分布。

费米分布函数为:15、漂移运动:载流子在电场作用下的运动。

扩散运动:载流子在浓度梯度下发生的定向运动。

16、本征载流子:就是本征半导体中的载流子(电子和空穴),即不是由掺杂所产生出来的。

17、产生:电子和空穴被形成的过程222*dk Ed h m n =E E Fe Ef 011)(-+=直接复合:导带中的电子越过禁带直接跃迁到价带,与价带中的空穴复合,这样的复合过程称为直接复合间接复合:导带中的电子通过禁带的复合中心能级与价带中的空穴复合,这样的复合过程称为间接复合。

复合率:单位时间单位体积内复合的电子-空穴对数。

18、散射:载流子与其它粒子发生弹性或非弹性碰撞,碰撞后载流子的速度的大小和方向发生了改变。

半导体物理学简答题及答案

半导体物理学简答题及答案

复习思考题与自测题第一章1.原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同, 原子中内层电子和外层电子参与共有化运动有何不同。

答:原子中的电子是在原子核与电子库伦相互作用势的束缚作用下以电子云的形式存在,没有一个固定的轨道;而晶体中的电子是在整个晶体内运动的共有化电子,在晶体周期性势场中运动。

当原子互相靠近结成固体时,各个原子的内层电子仍然组成围绕各原子核的封闭壳层,和孤立原子一样;然而,外层价电子则参与原子间的相互作用,应该把它们看成是属于整个固体的一种新的运动状态。

组成晶体原子的外层电子共有化运动较强,其行为与自由电子相似,称为准自由电子,而内层电子共有化运动较弱,其行为与孤立原子的电子相似。

2.描述半导体中电子运动为什么要引入"有效质量"的概念, 用电子的惯性质量描述能带中电子运动有何局限性。

答:引进有效质量的意义在于它概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。

惯性质量描述的是真空中的自由电子质量,而不能描述能带中不自由电子的运动,通常在晶体周期性势场作用下的电子惯性运动,成为有效质量3.一般来说, 对应于高能级的能带较宽,而禁带较窄,是否如此,为什么?答:不是,能级的宽窄取决于能带的疏密程度,能级越高能带越密,也就是越窄;而禁带的宽窄取决于掺杂的浓度,掺杂浓度高,禁带就会变窄,掺杂浓度低,禁带就比较宽。

4.有效质量对能带的宽度有什么影响,有人说:"有效质量愈大,能量密度也愈大,因而能带愈窄.是否如此,为什么?答:有效质量与能量函数对于K的二次微商成反比,对宽窄不同的各个能带,1(k)随k的变化情况不同,能带越窄,二次微商越小,有效质量越大,内层电子的能带窄,有效质量大;外层电子的能带宽,有效质量小。

5.简述有效质量与能带结构的关系;答:能带越窄,有效质量越大,能带越宽,有效质量越小。

半导体物理学名词解释 2

半导体物理学名词解释 2

半导体物理学名词解释1、直接复合:电子在导带与价带间直接跃迁而引起非平衡载流子的复合。

2、间接复合:指的是非平衡载流子通过复合中心的复合。

3、俄歇复合:载流子从高能级向低能级跃迁发生电子-空穴复合时,把多余的能量传给另一个载流子,使这个载流子被激发到能量更高的能级上去,当它重新跃迁回到低能级时,多余的能量常以声子的形式放出,这种复合称为俄歇复合,显然这是一种非辐射复合。

4、施主杂质:V族杂质在硅、锗中电离时,能够施放电子而产生导电电子并形成正电中心,称它们为施主杂质或n型杂质。

5、受主杂质:Ⅲ族杂质在硅、锗中能够接受电子而产生导电空穴,并形成负点中心,所以称它们为受主杂质或p型杂质。

6、多数载流子:半导体材料中有电子和空穴两种载流子。

在N 型半导体中,电子是多数载流子, 空穴是少数载流子。

在P型半导体中,空穴是多数载流子,电子是少数载流子。

7、能谷间散射:8、本征半导体:本征半导体就是没有杂质和缺陷的半导体。

9、准费米能级:半导体中的非平衡载流子,可以认为它们都处于准平衡状态(即导带所有的电子和价带所有的空穴分别处于准平衡状态)。

对于处于准平衡状态的非平衡载流子,可以近似地引入与Fermi能级相类似的物理量——准Fermi能级来分析其统计分布;当然,采用准Fermi能级这个概念,是一种近似,但确是一种较好的近似。

基于这种近似,对于导带中的非平衡电子,即可引入电子的准Fermi能级;对于价带中的非平衡空穴,即可引入空穴的准Fermi能级。

10、禁带:能带结构中能态密度为零的能量区间。

11、价带:半导体或绝缘体中,在绝对零度下能被电子沾满的最高能带。

12、导带:导带是自由电子形成的能量空间,即固体结构内自由运动的电子所具有的能量范围。

13、束缚激子:等电子陷阱俘获载流子后成为带电中心,这一中心由于库仑作用又能俘获另一种带电符号相反的载流子从而成为定域激子,称为束缚激子。

14、浅能级杂质:在半导体中、其价电子受到束缚较弱的那些杂质原子,往往就是能够提供载流子(电子或空穴)的施主、受主杂质,它们在半导体中形成的能级都比较靠近价带顶或导带底,因此称其为浅能级杂质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《半导体物理学》参考书:《半导体物理学》刘恩科1 近十年来考过的名词解释:这些概念都是在复试或者初试被考过的,因此非常重要,不但要理解,还要能够很好地表达出来,可以自己试着说一说简并与非简并半岛体非平衡载流子的寿命热载流子二维电子气重空穴与轻空穴迁移率直接禁带与间接禁带半导体俄歇复合扩散电容复合截面费米能级与准费米能级扩散长度霍耳效应调制掺杂布里渊区本征激发陷阱效应半导体发光欧姆接触半导体超晶格能带齐纳击穿空穴状态密度禁带宽度多能谷散射少子寿命本征吸收Pn结回旋共振钠离子对mos结构的c-v效应压阻效应有效质量散射势垒电容雪崩击穿磁阻效应共有化运动单电子近似施主/ 受主能级冻析效应禁带变窄效应p-n结隧道效应半岛体的缺陷同型/反型异质结Pn结光生伏特效应原理本征半导体替位式杂质和间隙杂质表面复合速度表面势直接复合/间接复合半导体主要散射机构半岛体中的深能级杂质受主杂质/施主杂质空间电荷区接触电势差异质结As掺入si中属于什么类型杂质形成什么类型半导体Pn二极管与肖势垒二极管的异同第一章:半导体中的电子状态1 本章重点看前5节,后三节只需要掌握轻/重空穴的概念,闪锌矿的结构,砷化镓的能带结构,什么是间接带隙半导体的概念2 本章重点掌握能带理论3 本章可能考的知识点1 单电子近似2 什么是共有化运动3 什么是有效质量?为什么要引入有效质量的概念?空穴的意义?(重点)有效质量是指在半经典的理论模型下,粒子在晶体中运动时具有的等效质量.4 表述能带理论能带理论是一种解释金属内部结构的一种理论在固体金属内部构成其晶格结点上的粒子,是金属原子或正离子,由于金属原子的价电子的电离能较低,受外界环境的影响(包括热效应等),价电子可脱离原子,且不固定在某一离子附近,而可在晶格中自由运动,常称它们为自由电子。

正是这些自由电子将金属原子及离子联系在一起,形成了金属整体。

这种作用力称为金属键。

当然固体金属也可视为等径圆球的金属原子(离子)紧密堆积成晶体。

这时原子的配位数可高达8至12。

金属中为数不多的价电子不足以形成如此多的共价键。

这些价电子只能为整个金属晶格所共有。

所以金属键不同于离子键;也不同于共享电子局限在两个原子间的那种共价键(定域键)。

广义地说,金属键属于离域键,即共享电子分布在多个原子间的一种键,但它是一种特殊的离域键,既无方向性,也无饱和性。

为阐明金属键的特性,化学家们在MO理论的基础上,提出了能带理论。

现仅以金属Li为例定性讨论。

Li原子核外电子为1s22s1。

两个Li互相靠近形成Li2分子。

按照MO理论,Li 分子应有四个MO。

其中(σ1s)2与(σ1s*)2的能量低,紧靠在Li是空着的(LUMO)。

参与成键的Li原子越多,由于晶格结点上不同距离的Li核对它们的价电子有不同程度的作用力,导致电子能级发生分裂,而且能级差也越来越小,能级越来越密,最终形成一个几乎是连成一片的且具有一定的上、下限的能级,这就是能带。

对于N个Li原子的体系,由于1s与2s之间能量差异较大,便出现了两条互不重叠或交盖的能带。

这种具有未被占满的MO的能带由于电子很容易从占有MO 激发进入空的MO,故而使Li呈现良好的导电性能。

此种能带称为导带。

在满带与导带之间不再存在任何能级,是电子禁止区,称为禁带。

电子不易从满带逾越此空隙区进入导带。

显然,原子在形成简单分子时,便形成了分立的分子轨道,当原子形成晶体时,便形成了分立的能带。

不同的金属,由于构成它的原子有不同的价轨道和不同的原子间距,能带(空带)部分叠合,构成了一个未满的导带,因而容易导电,呈现金属性。

由此看来,只要存在着未充满的导带(不管它本身是未充满的能带,还是由于空带—满带相互交盖而形成的未充满的能带)在外电场作用下便会形成电子定向流动,从而使材料呈导电性。

当升温时,晶格上的原子(离子)振动加剧,电子运动受阻,导电能力降低。

离域的电子的运动又可传递热端的振动能使金属具有良传热性。

共享电子的“胶合”作用,使金属在受外力作用晶体正离子滑移时不致断裂,呈现良好延展性和可塑性。

这与离子型晶体的脆性与易碎裂成为鲜明的对比。

此外,金属中的离域电子容易吸收并重新发射很宽波长范围的光,使它不透明并具有金属光泽。

固体材料中全空的导带称为空带。

当满带与空带之间的禁带宽达5~7eV时,电子难以借热运动等跃过禁带进入空带,因此是绝缘体,如金刚石的禁带宽达5.3eV。

但当禁带宽度在1eV(1.602×10-19J或96.48kJ·mol-1)上下,便属于半导体材料。

典型的半导体Si禁带为1.12eV;Ge为0.67eV。

研究固体中电子运动规律的一种近似理论。

固体由原子组成,原子又包括原子实和最外层电子,它们均处于不断的运动状态。

为使问题简化,首先假定固体中的原子实固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。

能带理论就属这种单电子近似理论,它首先由F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出。

具体的计算方法有自由电子近似法、紧束缚近似法、正交化平面波法和原胞法等。

前两种方法以量子力学的微扰理论作为基础,只分别适用于原子实对电子的束缚很弱和很强的两种极端情形;后两种方法则适用于较一般的情形,应用较广。

孤立原子的能带孤立原子的外层电子可能取的能量状态(能级)完全相同,但当原子彼此靠近时,外层电子就不再仅受原来所属原子的作用,还要受到其他原子的作用,这使电子的能量发生微小变化。

原子结合成晶体时,原子最外层的价电子受束缚最弱,它同时受到原来所属原子和其他原子的共同作用,已很难区分究竟属于哪个原子,实际上是被晶体中所有原子所共有,称为共有化。

原子间距减小时,孤立原子的每个能级将演化成由密集能级组成的准连续能带。

共有化程度越高的电子,其相应能带也越宽。

孤立原子的每个能级都有一个能带与之相应,所有这些能带称为允许带。

相邻两允许带间的空隙代表晶体所不能占有的能量状态,称为禁带。

若晶体由N个原子(或原胞)组成,则每个能带包括N个能级,其中每个能级可被两个自旋相反的电子所占有,故每个能带最多可容纳2N个电子(见泡利不相容原理)。

价电子所填充的能带称为价带。

比价带中所有量子态均被电子占满,则称为满带。

满带中的电子不能参与宏观导电过程。

无任何电子占据的能带称为空带。

未被电子占满的能带称为未满带。

例如一价金属有一个价电子,N个原子构成晶体时,价带中的2N个量子态只有一半被占据,另一半空着。

未满带中的电子能参与导电过程,故称为导带。

固体的能带固体的导电性能由其能带结构决定。

对一价金属,价带是未满带,故能导电。

对二价金属,价带是满带,但禁带宽度为零,价带与较高的空带相交叠,满带中的电子能占据空带,因而也能导电,绝缘体和半导体的能带结构相似,价带为满带,价带与空带间存在禁带。

半导体的禁带宽度从0.1~1.5电子伏,绝缘体的禁带宽度从1.5~1.0电子伏。

在任何温度下,由于热运动,满带中的电子总会有一些具有足够的能量激发到空带中,使之成为导带。

由于绝缘体的禁带宽度较大,常温下从满带激发到空带的电子数微不足道,宏观上表现为导电性能差。

半导体的禁带宽度较小,满带中的电子只需较小能量就能激发到空带中,宏观上表现为有较大的电导率(见半导体)。

能带理论在阐明电子在晶格中的运动规律、固体的导电机构、合金的某些性质和金属的结合能等方面取得了重大成就,但它毕竟是一种近似理论,存在一定的局限性。

例如某些晶体的导电性不能用能带理论解释,即电子共有化模型和单电子近似不适用于这些晶体。

多电子理论建立后,单电子能带论的结果常作为多电子理论的起点,在解决现代复杂问题时,两种理论是相辅相成的。

5 会用能带理论解释导体,半导体,绝缘体导电的成因6 记住k空间的平均速度和加速度的表达式和意义7理解回旋共振测有效质量的原理,会用回旋共振解释硅的导带结构(重点)第二章半导体中的杂质和缺陷能级本章不是重点,只需要掌握以下概念(只需要看第一节,第二节只需要掌握一个概念——等电子陷阱)1 缺陷的种类和形成原因(重点)2 施主能级受主能级3间隙式杂质替味式杂质4 杂质电离5 非三五族杂质在硅,褚中产生的能级有什么特点第三章半导体中载流子的统计分布(重点)1 全都要看,但是不需要掌握推导过程2 本章的重点在于理解载流子分布的原因以及杂质半导体的五个分区3 本章可能考的问题1 热平衡载流子2 什么是倒格子空间(见固体物理)3 什么是费米能级,费米能级的意义(标志了电子填充能级的水平)4 能量的分布,能量分布受哪些因素影响(特别是温度)5 解释导带禁带中电子和空穴的分布6 什么是本征半导体,本征激发7 为什么半导体器件都有温度限制8 温度对于杂质半导体中费米能级的影响(一条曲线,五个分区),掺杂的杂质浓度对于费米能级的影响(重点)9 什么是简并半导体,简并化的条件,简并半导体的效应(冻析效应,禁带变窄效应)第三章半导体的导电性1 本章全都要看2 本章的重点在于迁移率的影响因素3 可能问到的问题1迁移率的概念以及迁移率和电导率的关系2 为什么电子的迁移率要大于空穴的迁移率3 半导体有哪几种散射机制4 自由载流子的概念5 迁移率与杂质浓度和温度的关系(重点,经常问)6 电阻率和杂质浓度的关系,电阻率随温度的变化(重点,多次问过)7 波尔兹曼统计和费米统计的区别8 什么是驰豫时间9 强电场下欧姆定律发生偏离的原因,热载流子的概念(韩郑生老师多次问过)10 什么是多能谷散射第五章非平衡载流子1 本章不用看的部分:无2 本章重点在于什么是准费米能级和有哪几种复合方式(问过)3 可能问的知识点1 为什么非平衡载流子可以起到重要的作用2 什么是非平衡载流子的复合3 解释概念:非平衡载流子的寿命,非平衡载流子的复合率4 为什么要引入准费米能级的概念5 非平衡载流子是怎样复合的?复合过程中放出能量有哪些方法?非平衡载流子有哪几种复合方式?什么是直接复合,间接复合,表面复合,俄歇复合?(重点)6 电子陷阱和空穴陷阱,为什么杂质能级与平衡时费米能级重合时,最有利于陷阱效应?第六章pn结(重点)1 本章全都要看,都是重点(最重点的是pn结的电流电压特性,多次考过)2 可能考的知识点1 pn结的空间电荷区2 6.2节的第一部分有关电流电压特性的部分要很熟练,能够熟练地叙述出来3 影响pn结电流电压特性有哪些因素?4 pn结电容的来源,什么是势垒电容?什么是扩散电容?(重点,多次问过)5 pn结击穿有哪几种机制?简述雪崩击穿和齐纳击穿的原理(重点,多次问过)6 pn结的隧道效应(熟练叙述,去年问我的就是这个问题)第七章金属和半导体的接触1本章重点在于肖势垒二极管的原理2 可能考的问题1 什么是接触电势差?2 表面态对接触势垒有什么影响?3肖势垒二极管的原理(重点,一室经常问)4 什么是欧姆接触(重点)第八章半导体表面和mis结构(重点)1 本章是重点,都要看2 本章的重点在于表面电场效应(多子堆积,多子耗尽,反型)(重点,结合mos管的原理,经常问到)3 本章可能考的问题1 表面态和表面能级2 表面势和空间电荷区内电荷随电压变化的情况(三种)(重点,要熟练叙述)3 二维电子气4 快界面态5 什么是表面电导?表面电导与迁移率有什么关系?6 场感应结, 叙述表面电场下pn结的能带图从第九章到最后不是这本书的重点只需要看以下几节9.1 9.3 9.4 10.4 10.5 11.5 12.1 12.2 12.3 12.7这几节的相关概念。

相关文档
最新文档