(word完整版)高考导数专题复习
高中数学导数知识点归纳的总结及例题(word文档物超所值)

为函数
_____ _ 的图象的顶点在第四象限,则其导
o
y
x
-33
)
(x
f
y'
=
()y f x ='()f x 为( )
(安微省合肥市2010年高三第二次教学质量检测文科)函数()y f x =的图像如下右)
(x f y '=
(2010年浙江省宁波市高三“十校”联考文科)如右图所示是某
一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )
象大致形状是( )
2009湖南卷文)若函数()y f x =的导函数在区间[,]a b 上是增函数,则函数
()x 在区间[,]a b 上的图象可能是
y
y
y
14.(2008年福建卷12)已知函数y=f(x),y=g(x)的导函数的图象如下图,那么y=f(x),
y=g(x)的图象可能是( )
15.(2008珠海一模文、理)设是函数的导函数,将和的图)('x f )(x f )(x f y =)('x f y =像画在同一个直角坐标系中,不可能正确的是( )
A .
B .
C .
D .16.(湖南省株洲市2008届高三第二次质检)已知函数
)(x f y =的导函数)(x f y '=的图像如下,则(
)
函数)(x f 有1个极大值点,1个极小值点
y。
(完整word版)高三数学三轮复习《导数》各类题型方法总结教案新人教版,推荐文档

导数各种题型方法总结请同学们高度重视:首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。
最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决:第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2012省统测2)例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,4323()1262x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.解:由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=-- 2()3g x x mx ∴=--(1) ()y f x =Q 在区间[]0,3上为“凸函数”,则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <(0)0302(3)09330g m g m <-<⎧⎧⇒⇒>⎨⎨<--<⎩⎩解法二:分离变量法:∵ 当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x ->=-的最大值(03x <≤)恒成立, 而3()h x x x=-(03x <≤)是增函数,则max ()(3)2h x h ==2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数”则等价于当2m ≤时2()30g x x mx =--< 恒成立 变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题)22(2)023011(2)0230F x x x F x x ⎧->--+>⎧⎪⇒⇒⇒-<<⎨⎨>-+>⎪⎩⎩2b a ∴-=请同学们参看2012第三次周考: 例2:设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-= (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围. (二次函数区间最值的例子)解:(Ⅰ)()()22()433f x x ax a x a x a '=-+-=---01a <<Q令,0)(>'x f 得)(x f 令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞)∴当x=a 时,)(x f 极小值=;433b a +-当x=3a 时,)(x f 极大值=b.(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立①则等价于()g x 这个二次函数max min ()()g x a g x a≤⎧⎨≥-⎩ 22()43g x x ax a =-+的对称轴2x a =01,a <<Q 12a a a a +>+=(放缩法)即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。
导数及其应用(压轴题) Word版含解析

2.4导数及其应用(压轴题)命题角度1利用导数研究函数的单调性高考真题体验·对方向1.(2016北京·18)设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.2.(2016四川·21)设函数f(x)=ax2-a-ln x,其中a∈R.(1)讨论f(x)的单调性;(2)确定a的所有可能取值,使得f(x)>-e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).新题演练提能·刷高分1.(2018北京海淀模拟)已知函数f(x)=x3+x2+ax+1.(1)若曲线y=f(x)在点(0,1)处切线的斜率为-3,求函数f(x)的单调区间;(2)若函数f(x)在区间[-2,a]上单调递增,求a的取值范围.2.(2018江西师大附中模拟)已知函数f(x)=(2-m)ln x++2mx.(1)当f'(1)=0时,求实数m的值及曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.3.(2018山东烟台期末)已知函数f(x)=ln x+-x+1-a(a∈R).(1)求函数f(x)的单调区间;(2)若存在x>1,使f(x)+x<成立,求整数a的最小值.4.(2018重庆二诊)已知函数f(x)=-1e x+(x>0,a∈R).(1)若f(x)在(0,+∞)上单调递减,求a的取值范围;(2)当a∈(-3,-e)时,判断关于x的方程f(x)=2的解的个数.命题角度2函数的单调性与极值、最值的综合应用高考真题体验·对方向1.(2018全国Ⅰ·21)已知函数f(x)=-x+a ln x.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a-2.2.(2017北京·19)已知函数f(x)=e x cos x-x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间上的最大值和最小值.3.(2017全国Ⅱ·21)已知函数f(x)=ax2-ax-x ln x,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e-2<f(x0)<2-2.4.(2017山东·20)已知函数f(x)=x2+2cos x,g(x)=e x(cos x-sin x+2x-2),其中e≈2.718 28…是自然对数的底数.(1)求曲线y=f(x)在点(π,f(π))处的切线方程.(2)令h(x)=g(x)-af(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.5.(2016全国Ⅱ·21)(1)讨论函数f(x)=e x的单调性,并证明当x>0时,(x-2)e x+x+2>0;(2)证明:当a∈[0,1)时,函数g(x)=(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.新题演练提能·刷高分1.(2018湖北重点高中协作体联考)已知函数f(x)=.(1)求函数f(x)的极值点;(2)设g(x)=xf(x)-ax2+(a>0),若g(x)的最大值大于-1,求a的取值范围.2.(2018河南中原名校质量考评)已知函数f(x)=e x-x2+ax.(1)当a>-1时,试判断函数f(x)的单调性;(2)若a<1-e,求证:函数f(x)在[1,+∞)上的最小值小于.3.(2018安徽合肥第二次质检)已知函数f(x)=(x-1)e x-ax2(e是自然对数的底数).(1)判断函数f(x)极值点的个数,并说明理由;(2)若∀x∈R,f(x)+e x≥x3+x,求a的取值范围.4.(2018山东青岛一模)已知函数f(x)=a e2x-a e x-x e x(a≥0,e=2.718…,e为自然对数的底数),若f(x)≥0对于x∈R恒成立.(1)求实数a的值;(2)证明:f(x)存在唯一极大值点x0,且≤f(x0)<.命题角度3利用导数研究函数的零点或方程的根高考真题体验·对方向1.(2018全国Ⅱ·21)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.2.(2017全国Ⅱ·21)已知函数f(x)=a e2x+(a-2)e x-x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.3.(2015全国Ⅰ·21)已知函数f(x)=x3+ax+,g(x)=-ln x.(1)当a为何值时,x轴为曲线y=f(x)的切线;(2)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.新题演练提能·刷高分1.(2018湖北黄冈等八市联考)已知函数f(x)=e x,g(x)=.(1)设函数F(x)=f(x)+g(x),试讨论函数F(x)零点的个数;(2)若a=-2,x>0,求证:f(x)·g(x)>.2.(2018广东深圳第二次调研)设函数f(x)=e x-1-a ln x,其中e为自然对数的底数.(1)若a=1,求f(x)的单调区间;(2)若0≤a≤e,求证:f(x)无零点.3.(2018山东济南一模)已知函数f(x)=a ln x-x2+(2a-1)x(a∈R)有两个不同的零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1+x2>2a.命题角度4导数与不等式高考真题体验·对方向1.(2018全国Ⅲ·21)已知函数f(x)=(2+x+ax2)ln(1+x)-2x.(1)若a=0,证明:当-1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.2.(2016全国Ⅲ·21)设函数f(x)=αcos 2x+(α-1)·(cos x+1),其中α>0,记|f(x)|的最大值为A.(1)求f'(x);(2)求A;(3)证明:|f'(x)|≤2A.新题演练提能·刷高分1.(2018河北唐山二模)设f(x)=,g(x)=a x+x a.(1)证明:f(x)在(0,1)上单调递减;(2)若0<a<x<1,证明:g(x)>1.2.(2018河南郑州第二次质量检测)已知函数f(x)=e x-x2.(1)求曲线f(x)在x=1处的切线方程;(2)求证:当x>0时,≥ln x+1.3.(2018山西太原二模)已知函数f(x)=m ln x-e-x(m≠0).(1)若函数f(x)是单调函数,求实数m的取值范围;(2)证明:对于任意的正实数a,b,当a>b时,都有e1-a-e1-b>1-.4.(2018河北石家庄一模)已知函数f(x)=(x+b)(e x-a)(b>0)在(-1,f(-1))处的切线方程为(e-1)x+e y+e-1=0.(1)求a,b;(2)若方程f(x)=m有两个实数根x1,x2,且x1<x2,证明:x2-x1≤1+.命题角度5恒成立与存在性问题高考真题体验·对方向(2017全国Ⅲ·21)已知函数f(x)=x-1-a ln x.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,1+1+…1+<m,求m的最小值.新题演练提能·刷高分1.(2018江西南昌一模)已知函数f(x)=ln(ax)+bx在点(1,f(1))处的切线方程是y=0.(1)求函数f(x)的极值;(2)当≥f(x)+x(m<0)恒成立时,求实数m的取值范围(e为自然对数的底数).2.(2018河北唐山一模)已知函数f(x)=e x-1,g(x)=ln x+a.(1)设F(x)=xf(x),求F(x)的最小值;(2)证明:当a<1时,总存在两条直线与曲线y=f(x)与y=g(x)都相切.3.(2018河北衡水中学模拟)已知函数f(x)=.(1)确定函数f(x)在定义域上的单调性;若f(x)≤k e x在(1,+∞)上恒成立,求实数k的取值范围.4.(2018山东潍坊一模)函数f(x)=e x sin x,g(x)=(x+1)cos x-e x.(1)求f(x)的单调区间;(2)对∀x1∈0,,∃x2∈0,,使f(x1)+g(x2)≥m成立,求实数m的取值范围;(3)设h(x)=·f(x)-n·sin 2x在0,上有唯一零点,求正实数n的取值范围.。
(完整word版)导数与零点(含答案)

导数与零点考点一。
求参数取值范围(1)设函数329()62f x x x x a =-+-,若方程()0f x =有且仅有一个实根,求a 的取值范围. 解:(1) '2()3963(1)(2)f x x x x x =-+=--, 因为 当1x <时, '()0f x >;当12x <<时, '()0f x <;当2x >时, '()0f x >;所以 当1x =时,()f x 取极大值 5(1)2f a =-;当2x =时,()f x 取极小值 (2)2f a =-; 故当(2)0f > 或(1)0f <时, 方程()0f x =仅有一个实根. 解得 2a <或52a >. (2)已知函数3()310f x x ax a =--≠,(),若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交点,求m 的取值范围。
解:'22()333(),f x x a x a =-=-因为()f x 在1x =-处取得极大值,所以'2(1)3(1)30, 1.f a a -=⨯--=∴= 所以3'2()31,()33,f x x x f x x =--=-由'()0f x =解得121,1x x =-=。
()f x 在1x =-处取得极大值(1)1f -=, 在1x =处取得极小值(1)3f =-,又直线y m =与函数()y f x =的图象有三个不同点,则m 的范围是(3,1)-。
(3)已知函数2()sin cos f x x x x x =++,若曲线()y f x =与直线y b = 有两个不同的交点,求b 的取值范围. 解:由2()sin cos f x x x x x =++,得()(2cos )f x x x '=+,令()0f x '=,得0x =.函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增,(0)1f =是()f x 的最小值.当1b ≤时,曲线()y f x =与直线y b =最多只有一个交点;当1b >时,()y f x =与直线y b =有且只有两个不同交点.综上可知,b 的取值范围是(1,)+∞.(4)已知函数1()1x f x x e =-+,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值. 解:()11x f x x e =-+,直线l :1y kx =-与曲线()y f x =没有公共点, 等价于关于x 的方程111xkx x e -=-+在R 上没有实数解,即关于x 的方程: ()11x k x e -=在R 上没有实数解. ①当1k =时,方程(*)可化为10xe =,在R 上没有实数解. ②当1k ≠时,方程(*)化为11x xe k =-. 令()x g x xe =,则有()()1x g x x e '=+. 令()0g x '=,得1x =-, 当1x =-时,()min 1g x e =-,同时当x 趋于+∞时,()g x 趋于+∞, 从而()g x 的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭.所以当11,1k e ⎛⎫∈-∞- ⎪-⎝⎭时,方程(*)无实数解, 解得k 的取值范围是()1,1e -. 综上,得k 的最大值为1. 考点二。
(完整word版)导数及其应用(1)

强化提升一 导数及其应用层次一:导数的概念、意义及简单应用突破点(一) 导数的运算八个公式+三个法则+复合函数求导[例1] (1)y =(1-x )⎝⎛⎭⎫1+1x ;(2)y =ln xx ;(3)y =tan x ;(4)y =3x e x -2x +e ;(5)y =ln (2x +3)x 2+1. [方法技巧]00A .e 2 B .1 C .ln 2 D .e(2)已知f (x )=12x 2+2xf ′(2 017)+2 017ln x ,则f ′(1)=________.[解析] (1)由题意可知f ′(x )=2 017+ln x +x ·1x =2 018+ln x .由f ′(x 0)=2 018,得ln x 0=0,解得x 0=1.(2)由题意得f ′(x )=x +2f ′(2 017)+2 017x , 所以f ′(2 017)=2 017+2f ′(2 017)+2 0172 017, 即f ′(2 017)=-(2 017+1)=-2 018. 故f ′(1)=1+2×(-2 018)+2 017=-2 018. [答案] (1)B (2)-2 018[方法技巧]对抽象函数求导的解题策略在求导问题中,常涉及一类解析式中含有导数值的函数,即解析式类似为f (x )=f ′(x 0)x +sin x +ln x (x 0为常数)的函数,解决这类问题的关键是明确f ′(x 0)是常数,其导数值为0.因此先求导数f ′(x ),令x =x 0,[例1]已知函数f(x)=x3-(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.[解](1)∵f′(x)=3x2-8x+5,∴f′(2)=1,又f(2)=-2,∴曲线f(x)在点(2,f(2))处的切线方程为y-(-2)=x-2,即x-y-4=0.(2)设切点坐标为(x0,x30-4x20+5x0-4),∵f′(x0)=3x20-8x0+5,∴切线方程为y-(-2)=(3x20-8x0+5)(x-2),又切线过点(x0,x30-4x20+5x0-4),∴x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),整理得(x0-2)2(x0-1)=0,解得x0=2或x0=1,∴经过A(2,-2)的曲线f(x)的切线方程为x-y-4=0或y+2=0.[方法技巧][例2]设曲线y=e x在点(0,1)处的切线与曲线y=1x(x>0)上点P处的切线垂直,则点P的坐标为________.[解析] y =e x 的导数为y ′=e x ,则曲线y =e x 在点(0,1)处的切线斜率k 1=e 0=1.y =1x (x >0)的导数为y ′=-1x 2(x >0),设P (m ,n ),则曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0).因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).[答案] (1,1)[例3] 直线y =kx +1b 的值等于( ) A .2 B .-1 C .1D .-2[解析] 依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a ×1+b =3,3×12+a =k ,k ×1+1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C.[答案] C[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解. 层次二:函数的单调性、极值最值突破点(一) 利用导数讨论函数的单调性或求函数的单调区间[解] f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x .(1)当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; (2)当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; (3)当0<a <1时,令f ′(x )=0,解得x =1-a 2a ,则当x ∈⎝ ⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ 1-a 2a ,+∞时,f ′(x )>0,故f (x )在⎝⎛⎭⎪⎫0, 1-a 2a 上单调递减,在 1-a2a,+∞上单调递增.[方法技巧][例2]已知函数f(x)=x4+ax-ln x-32,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x,求函数f(x)的单调区间.[解]对f(x)求导得f′(x)=14-ax2-1x,由曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=12x,知f′(1)=-34-a=-2,解得a=54.所以f(x)=x4+54x-ln x-32,则f′(x)=x2-4x-54x2,令f′(x)=0,解得x=-1或x=5,因x=-1不在f(x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时,f′(x)<0,故f(x)在(0,5)内为减函数;当x∈(5,+∞)时,f′(x)>0,故f(x)在(5,+∞)内为增函数.所以函数f(x)的单调递增区间为(5,+∞),单调递减区间为(0,5).[方法技巧]用导数求函数单调区间的三种类型及方法(1)当不等式f′(x)>0或f′(x)<0可解时,确定函数的定义域,解不等式f′(x)>0或f′(x)<0求出单调区间.(2)当方程f′(x)=0可解时,确定函数的定义域,解方程f′(x)=0,求出实数根,把函数f(x)的间断点(即f(x)的无定义点)的横坐标和实根按从大到小的顺序排列起来,把定义域分成若干个小区间,确定f′(x)在各个区间内的符号,从而确定单调区间.(3)不等式f′(x)>0或f′(x)<0及方程f′(x)=0均不可解时求导并化简,根据f′(x)的结构特征,选择相应基本初等函数,利用其图象与性质确定f′(x)的符号,得单调区间.突破点(二)利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围;(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围;(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围.[例1] 已知函数f (x )=x 3-ax -1.(1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围; (2)若f (x )在区间(-1,1)上为减函数,求a 的取值范围; (3)若f (x )的单调递减区间为(-1,1),求a 的值.[解] (1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立,所以a ≤3x 2在(1,+∞)上恒成立,所以a ≤3,即a 的取值范围为(-∞,3].(2)因为f (x )在区间(-1,1)上为减函数,所以f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,即a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3.即a 的取值范围为[3,+∞).(3)因为f (x )=x 3-ax -1,所以f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0). 因为f (x )的单调递减区间为(-1,1), 所以3a3=1,即a =3. 应用结论“函数f (x )在(a ,b )上单调递增⇔f ′(x )≥0恒成立;函数f (x )在(a ,b )上单调递减⇔f ′(x )≤0恒成立”时,切记检验等号成立时导数是否在(a ,b )上恒为0. [易错提醒][例2] (1)若0<x 1<x 2A .e x 2-e x 1>ln x 2-ln x 1 B .e x 2-e x 1<ln x 2-ln x 1 C .x 2e x 1>x 1e x 2 D .x 2e x 1<x 1e x 2(2)已知函数f (x )(x ∈R)满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)构造函数f (x )=e x-ln x ,则f ′(x )=e x-1x =x e x -1x .令f ′(x )=0,得x e x -1=0.根据函数y=e x 与y =1x 的图象可知两函数图象交点x 0∈(0,1),因此f (x )=e x -ln x 在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故A ,B 错;构造函数g (x )=e x x ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2,故函数g (x )=e xx 在(0,1)上单调递减,故g (x 1)>g (x 2),即e x 1x 1>e x 2x 2,则x 2e x 1>x 1e x 2,故选C. (2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12, ∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)C (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.突破点(三) 利用导数解决函数的极值问题根据函数图象判断函数极值的情况[例1] 设函数象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2)[解析] 由图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.[答案] D [方法技巧]知图判断函数极值情况的策略知图判断函数极值情况的思路是:先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x 轴交点的横坐标为函数的极值点.求函数的极值[例2] (2017·桂林、崇左联考)设a >0,函数f (x )=12x 2-(a +1)x +a ln x .(1)当a =2时,求曲线y =f (x )在点(3,f (3))处切线的斜率; (2)求函数f (x )的极值.[解] (1)由已知x >0.当a =2时,f ′(x )=x -3+2x ,∴曲线y =f (x )在点(3,f (3))处切线的斜率为f ′(3)=23.(2)f ′(x )=x -(a +1)+a x =x 2-(a +1)x +a x =(x -1)(x -a )x .由f ′(x )=0得x =1或x =a .①若0<a <1,当x ∈(0,a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(a,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增. ∴当x =a 时,f (x )取极大值f (a )=-12a 2-a +a ln a ,当x =1时,f (x )取极小值f (1)=-a -12.②若a >1,当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(1,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. ∴当x =1时,f (x )取极大值f (1)=-a -12;当x =a 时,f (x )取极小值f (a )=-12a 2-a +a ln a .③当a =1时,x >0时,f ′(x )>0,函数f (x )单调递增,f (x )没有极值. 综上,当0<a <1时,f (x )的极大值为-12a 2-a +a ln a ,极小值为-a -12;当a >1时,f (x )的极大值为-a -12,极小值为-12a 2-a +a ln a ;当a =1时,f (x )没有极值. [方法技巧][例3] (1)(2017·a 的取值范围是( )A .(-∞,0) B.⎝⎛⎭⎫0,12C .(0,1) D .(0,+∞)(2)(2017·太原五中检测)函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则a 的值为________. [解析] (1)∵f (x )=x (ln x -ax ),∴f ′(x )=ln x -2ax +1,由函数f (x )有两个极值点,可知f ′(x )在(0,+∞)上有两个不同的零点, 令f ′(x )=0,则2a =ln x +1x ,设g (x )=ln x +1x ,则g ′(x )=-ln xx 2,∴g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 又∵当x →0时,g (x )→-∞,当x →+∞时,g (x )→0, 而g (x )max =g (1)=1,∴只需0<2a <1,即0<a <12.(2)由题意得f ′(x )=3x 2+2ax +b ,因为在x =1处,f (x )有极值10, 所以f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得a =4,b =-11或a =-3,b =3,当a =-3,b =3时,在x =1处,f (x )无极值,不符合题意; 当a =4,b =-11时,符合题意,所以a =4. [答案] (1)B (2)4 [方法技巧]已知函数极值点或极值求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.(2)验证:因为某点处的导数值等于0不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.突破点(四) 利用导数解决函数的最值问题[例1] 已知函数f (x )=(x (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值.[解] (1)由题意知f ′(x )=(x -k +1)e x .令f ′(x )=0,得x =k -1. f (x )与f ′(x )的情况如下:所以,f (x )(2)当k -1≤0,即k ≤1时,f (x )在[0,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (0)=-k ;当0<k -1<1,即1<k <2时,f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1; 当k -1≥1,即k ≥2时,f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 综上,当k ≤1时,f (x )在[0,1]上的最小值为f (0)=-k ; 当1<k <2时,f (x )在[0,1]上的最小值为f (k -1)=-e k -1; 当k ≥2时,f (x )在[0,1]上的最小值为f (1)=(1-k )e. [方法技巧]利用导数求函数最值的规律求函数f (x )在区间[a ,b ]上的最值时:(1)若函数在区间[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数在闭区间[a ,b ]上有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值,最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极值点,这个极值点就是最大(或小)值点,此结论在导数的实际应用中经常用到.[例2] 已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.[解] (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 当x =1时,切线l 的斜率为3,可得2a +b =0,①当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0,可得4a +3b +4=0,② 由①②,解得a =2,b =-4.由于切点的横坐标为1,所以f (1)=4.所以1+a +b +c =4,得c =5.(2)由(1)可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:所以y =f (x )在[-3,1]上的最大值为13,最小值为9527.[方法技巧]解决函数极值、最值问题的策略(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值. 1.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( ) A.⎝⎛⎭⎫0,12和(1,+∞) B .(0,1)和(2,+∞)C.⎝⎛⎭⎫0,12和(2,+∞) D .(1,2) 解析:选C 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞),令f ′(x )=2x -5+2x =2x 2-5x +2x=(x -2)(2x -1)x >0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝⎛⎭⎫0,12,(2,+∞). 2.若函数f (x )=x 3-tx 2+3x 在区间[]1,4上单调递减,则实数t 的取值范围是( ) A.⎝⎛⎦⎤-∞,518 B.(]-∞,3C.⎣⎡⎭⎫518,+∞ D.[)3,+∞解析:选C f ′(x )=3x 2-2tx +3,由于f (x )在区间[]1,4上单调递减,则有f ′(x )≤0在[]1,4上恒成立,即3x 2-2tx +3≤0在[1,4]上恒成立,则t ≥32⎝⎛⎭⎫x +1x 在[]1,4上恒成立,因为y =32⎝⎛⎭⎫x +1x 在[]1,4上单调递增,所以t ≥32⎝⎛⎭⎫4+14=518,故选C.3.已知函数f (x )=x 3+bx 2+cx +d 的图象如图所示,则函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为( )A.⎣⎡⎭⎫12,+∞ B .[3,+∞)C .[-2,3] D .(-∞,-2)解析:选D 因为f (x )=x 3+bx 2+cx +d ,所以f ′(x )=3x 2+2bx +c ,由图可知f ′(-2)=f ′(3)=0,所以⎩⎪⎨⎪⎧12-4b +c =0,27+6b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-18.令g (x )=x 2+23bx +c 3,则g (x )=x 2-x -6,g ′(x )=2x -1,由g (x )=x 2-x -6>0,解得x <-2或x >3.当x <12时,g ′(x )<0,所以g (x )=x 2-x -6在(-∞,-2)上为减函数,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为(-∞,-2). 4.(2017·甘肃诊断考试)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝⎛⎭⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.5.若函数f (x )=x +bx (b ∈R)的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( ) A .(-2,0) B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D 由题意知,f ′(x )=1-b x 2,∵函数f (x )=x +bx (b ∈R)的导函数在区间(1,2)上有零点,∴当1-bx 2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4).令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意,故选D.6.已知y =f (x )为(0,+∞)上的可导函数,且有f ′(x )+f (x )x >0,则对于任意的a ,b ∈(0,+∞),当a >b 时,有( )A .af (a )<bf (b ) B .af (a )>bf (b )C .af (b )>bf (a ) D .af (b )<bf (a )解析:选B 由f ′(x )+f (x )x >0得xf ′(x )+f (x )x >0,即[xf (x )]′x >0,即[xf (x )]′x >0.∵x >0,∴[xf (x )]′>0,即函数y =xf (x )为增函数,由a ,b ∈(0,+∞)且a >b ,得af (a )>bf (b ),故选B.二、填空题7.若幂函数f (x )的图象过点⎝⎛⎭⎫22,12,则函数g (x )=e x f (x )的单调递减区间为________.解析:设幂函数为f (x )=x α,因为图象过点⎝⎛⎭⎫22,12,所以12=⎝⎛⎭⎫22α,α=2,所以f (x )=x 2,故g (x )=e x x 2,令g ′(x )=e x x 2+2e x x =e x (x 2+2x )<0,得-2<x <0,故函数g (x )的单调递减区间为(-2,0).答案:(-2,0)8.已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎡⎦⎤13,2上是增函数,则实数a 的取值范围为________. 解析:f ′(x )=x +2a -1x ≥0在⎣⎡⎦⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎡⎦⎤13,2上恒成立,∵⎝⎛⎭⎫-x +1x max =83,∴2a ≥83,即a ≥43. 答案:⎣⎡⎭⎫43,+∞ 9.已知R 上可导函数f (x )的图象如图所示,则不等式(x 2-2x -3)·f ′(x )>0的解集为________.解析:由题图可知,⎩⎪⎨⎪⎧f ′(x )>0,x ∈(1,+∞)∪(-∞,-1),f ′(x )<0,x ∈(-1,1),不等式(x 2-2x -3)f ′(x )>0等价于⎩⎪⎨⎪⎧ f ′(x )>0,x 2-2x -3>0或⎩⎪⎨⎪⎧f ′(x )<0,x 2-2x -3<0,解得x ∈(-∞,-1)∪(3,+∞)∪(-1,1). 答案:(-∞,-1)∪(3,+∞)∪(-1,1)10.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是________. 解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a .当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝⎛⎭⎫-19,+∞.答案:⎝⎛⎭⎫-19,+∞ 三、解答题11.已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8. ①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0. 此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0,即a =2 2 时,仅对x =2有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:此时f ⎭⎪⎫∞上单调递增.12.(2017·郑州质检)已知函数f (x )=a ln x -ax -3(a ∈R). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x . 当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞); 当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x .∴g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.g ′(t )<0,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立,由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0,即m <-5且m <-9,即m <-9;由g ′(3)>0,得m >-373. 所以-373<m <-9.即实数m 的取值范围是⎝⎛⎭⎫-373,-9.。
(完整word版)导数单调性分类讨论

类型二:导数单调性专题类型1。
导数不含参。
类型2.导数含参。
类型3:要求二次导 求单调性一般步骤:(1) 第一步:写出定义域,一般有()0ln >⇒x x(2) 第二步:求导,(注意有常数的求导)若有分母则通分。
一般分母都比0大,故去死若无分母,因式分解(提公因式,十字相乘法)或求根(观察分子)判断导函数是否含参,再进行讨论(按恒成立与两个由为分界)(3) 第三步由()()⎩⎨⎧≤≥解出是减区间解出是增区间00x f x f(4) 下结论类型一:导函数不含参:()()()⎪⎩⎪⎨⎧-+=--++=++=21223,22,,x x e m e x f x x c bx ax x f x b kx x f 如指数型如:二次型如:一次型对于这类型的题,直接由导函数大于0,小于0即可(除非恒成立) 例题1求函数()()x e x x f 3-=的单调递增区间 解:()()()23'-=-+=x e e x e x f x x x 由()()202'>⇒>-=x x e x f x 所以函数在区间()+∞,2单调递增 由()()202'<⇒<-=x x e x f x所以函数在区间()2,∞-单调递减例题2:求函数()()2211x e x x f x --=的单调区间解:()()()()x e e x e x xe e x f x x x x x +-=-+-=-+-=11111'由()()()01011'>-<⇒>+-=x x x e x f x 或所以函数在区间(][)∞+-∞-,和01,单调递增由()()()01011'<<-⇒<+-=x x e x f x 所以函数在区间()0,1-单调递减 例题3:求函数()xxx f ln =的单调区间例题4:已知函数()()()R k kx e x x f x ∈--=21 (1)若1=k 时,求函数()x f 的单调区间例题5.(2010·新课标全国文,21)设函数f (x )=x (e x -1)-ax 2.(1)若a =错误!,求f (x )的单调区间;例题6:已知函数()()112++-=x e ax x f x (1)若0=a ,求函数()x f 的单调区间7。
(完整word版)高考数学导数压轴题7大题型总结

高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。
导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数。
利用导数解决含参的问题(word版含答案和详细解析)

利用导数解决含参的问题(word版含答案和详细解析)高考理科复专题练利用导数解决含参的问题考纲要求:1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次)。
2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次),会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)。
命题规律:利用导数探求参数的范围问题每年必考,有时出现在大题,有时出现在小题中,变化比较多。
不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理。
这也是2018年考试的热点问题。
高考题讲解及变式:利用单调性求参数的范围例1.【2016全国1卷(文)】若函数f(x)=x-sin2x+asinx在(-∞,+∞)上单调递增,则a的取值范围是()。
A。
[-1,1]B。
(-1,1)C。
(-∞,-1]∪[1,+∞)D。
(-∞,-1)∪(1,+∞)答案】C解析】因为f(x)在(-∞,+∞)上单调递增,所以f'(x)>0.将f(x)代入f'(x)得f'(x)=1-2sinx+acosx。
要使f'(x)>0,即要使1-2sinx+acosx>0.因为-1≤sinx≤1,所以1-2sinx≥-1.所以acosx>-1,即a>-1/cosx。
因为cosx=1时,a不等于-1;cosx=-1时,a不等于1.所以a∈(-∞,-1]∪[1,+∞),选C。
变式1.【2018XXX高三实验班第一次月考(理)】若函数f(x)=kx-lnx在区间(1,+∞)上为单调函数,则k的取值范围是_______。
答案】k≥1或k≤-1解析】在区间(1,+∞)上,f'(x)=k-1/x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学专题复习——导数目录一、有关切线的相关问题二、导数单调性、极值、最值的直接应用三、交点与根的分布1、判断零点个数2、已知零点个数求解参数范围四、不等式证明1、作差证明不等式2、变形构造函数证明不等式3、替换构造不等式证明不等式五、不等式恒成立求参数范围1、恒成立之最值的直接应用2、恒成立之分离常数3、恒成立之讨论参数范围六、函数与导数性质的综合运用导数运用中常见结论一、有关切线的相关问题例题、【2015高考新课标1,理21】已知函数f (x )=31,()ln 4x ax g x x ++=-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x = 的切线; 【答案】(Ⅰ)34a =跟踪练习:1、【2011高考新课标1,理21】已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(Ⅰ)求a 、b 的值;解:(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
2、(2013课标全国Ⅰ,理21)设函数f (x )=x 2+ax +b ,g (x )=e x (cx +d ).若曲线y =f (x )和曲线y =g (x )都过点P (0,2),且在点P 处有相同的切线y =4x +2. (1)求a ,b ,c ,d 的值;解:(1)由已知得f (0)=2,g (0)=2,f ′(0)=4,g ′(0)=4. 而f ′(x )=2x +a ,g ′(x )=e x (cx +d +c ), 故b =2,d =2,a =4,d +c =4. 从而a =4,b =2,c =2,d =2.3、 (2014课标全国Ⅰ,理21)设函数1(0ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1)f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ;【解析】:(Ⅰ) 函数()f x 的定义域为()0,+∞,112()ln xx x x a b b f x ae x e e e x x x--'=+-+由题意可得(1)2,(1)f f e '==,故1,2a b == ……………6分二、导数单调性、极值、最值的直接应用 (一)单调性1、根据导数极值点的相对大小进行讨论 例题:【2015高考江苏,19】已知函数),()(23R b a b ax x x f ∈++=.(1)试讨论)(x f 的单调性;【答案】(1)当0a =时, ()f x 在(),-∞+∞上单调递增; 当0a >时, ()f x 在2,3a ⎛⎫-∞-⎪⎝⎭,()0,+∞上单调递增,在2,03a ⎛⎫- ⎪⎝⎭上单调递减;当0a <时, ()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.当0a <时,()2,0,3a x ⎛⎫∈-∞-+∞ ⎪⎝⎭时,()0f x '>,20,3a x ⎛⎫∈- ⎪⎝⎭时,()0f x '<, 所以函数()f x 在(),0-∞,2,3a ⎛⎫-+∞ ⎪⎝⎭上单调递增,在20,3a ⎛⎫- ⎪⎝⎭上单调递减.练习:1、已知函数1()ln 1af x x ax x-=-+-()a ∈R .⑴当12a ≤时,讨论()f x 的单调性; 答案:⑴1()ln 1(0)a f x x ax x x -=-+->,222l 11()(0)a ax x a f x a x x x x --++-'=-+=> 令2()1(0)h x ax x a x =-+->①当0a =时,()1(0)h x x x =-+>,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.②当0a ≠时,由()0f x '=,即210ax x a -+-=,解得1211,1x x a==-. 当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 单调递减; 当102a <<时,1110a ->>,(0,1)x ∈时()0,()0h x f x '><,函数()f x 单调递减;1(1,1)x a ∈-时,()0,()0h x f x '<>,函数()f x 单调递增;1(1,)x a∈-+∞时,()0,()0h x f x '><,函数()f x 单调递减.当0a <时110a-<,当(0,1),()0,()0x h x f x '∈><,函数()f x 单调递减;当(1,),()0,()0x h x f x '∈+∞<>,函数()f x 单调递增.综上所述:当0a ≤时,函数()f x 在(0,1)单调递减,(1,)+∞单调递增;当12a =时12x x =,()0h x ≥恒成立,此时()0f x '≤,函数()f x 在(0,)+∞单调递减; 当102a <<时,函数()f x 在(0,1)递减,1(1,1)a -递增,1(1,)a-+∞递减.2、已知a 为实数,函数()(1)e x f x ax =+,函数1()1g x ax=-,令函数()()()F x f x g x =⋅. 当0a <时,求函数()F x 的单调区间.解:函数1()e 1x ax F x ax +=-,定义域为1x x a ⎧⎫≠⎨⎬⎩⎭. 当0a <时,222222221()21()e e (1)(1)xx a a x a x a a F x ax ax +---++'==--. 令()0F x '=,得2221a x a +=. ……………………………………9分①当210a +<,即12a <-时,()0F x '<.∴当12a <-时,函数()F x 的单调减区间为1(,)a -∞,1(,)a +∞.………………11分②当102a -<<时,解2221a x a+=得12x x ==.∵1a <∴令()0F x '<,得1(,)x a ∈-∞,11(,)x x a∈,2(,)x x ∈+∞;令()0F x '>,得12(,)x x x ∈. ……………………………13分∴当102a -<<时,函数()F x 的单调减区间为1(,)a -∞,1(a,()+∞;函数()F x单调增区间为. …………15分 ③当210a +=,即12a =-时,由(2)知,函数()F x 的单调减区间为(,2)-∞-及(2,)-+∞2、根据判别式进行讨论例题:【2015高考四川,理21】已知函数22()2()ln 22f x x a x x ax a a =-++--+,其中0a >.(1)设()g x 是()f x 的导函数,评论()g x 的单调性; 【答案】(1)当104a <<时,()g x在区间)+∞上单调递增,在区间上单调递减;当14a ≥时,()g x 在区间(0,)+∞上单调递增.【解析】(1)由已知,函数()f x 的定义域为(0,)+∞,()()222ln 2(1)ag x f x x a x x '==---+,所以222112()2()2224()2x a a g x x x x -+-'=-+=.当104a <<时,()g x 在区间)+∞上单调递增,在区间上单调递减; 当14a ≥时,()g x 在区间(0,)+∞上单调递增. 练习: 已知函数()ln af x x x x=--,a ∈R . (1)求函数()f x 的单调区间; 解:函数()f x 的定义域为(0,)+∞. 2221()1a x x af x x x x -++'=-+=.令()0f x '=,得20x x a -++=,记14a ∆=+.(ⅰ)当14a -≤时,()0f x '≤,所以()f x 单调减区间为(0,)+∞; …………5分(ⅱ)当14a >-时,由()0f x '=得12x x ==①若104a -<<,则120x x >>,由()0f x '<,得20x x <<,1x x >;由()0f x '>,得21x x x <<.所以,()f x 的单调减区间为,)+∞,单调增区间为; …………………………………………………………7分②若0a =,由(1)知()f x 单调增区间为(0,1),单调减区间为(1,)+∞;③若0a >,则120x x >>,由()0f x '<,得1x x >;由()0f x '>,得10x x <<.()f x 的单调减区间为)+∞,单调增区间为. ……9分综上所述:当14a -≤时,()f x 的单调减区间为(0,)+∞;当104a -<<时,()f x 的单调减区间为,)+∞,单调增区间为;当0a ≥时,()f x 单调减区间为114(,)2a+++∞,单调增区间为114(0,)2a++. ………………………………………………………10分2. 已知函数1()()2ln ()f x a x x a x=--∈R .求函数()f x 的单调区间;解:函数的定义域为()0,+∞,222122()(1)ax x af x a x x x -+'=+-=. ……………1分(1)当0a ≤时,2()20h x ax x a =-+<在(0,)+∞上恒成立,则()0f x '<在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递减. ……………4分 (2)当0a >时,244a ∆=-,(ⅰ)若01a <<,由()0f x '>,即()0h x >,得211a x a -<或211a x a->; ………………5分由()0f x '<,即()0h x <221111a a x --+-<<.………………………6分 所以函数()f x 的单调递增区间为211a --和211()a +-+∞,单调递减区间为221111(a a a a--. ……………………………………7分 (ⅱ)若1a ≥,()0h x ≥在(0,)+∞上恒成立,则()0f x '≥在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递增. ……………………………………………………………3、含绝对值的函数单调性讨论例题:已知函数()ln f x x x a x =--.(1)若a =1,求函数()f x 在区间[1,]e 的最大值; (2)求函数()f x 的单调区间;(3)若()0f x >恒成立,求a 的取值范围 解:(1)若a =1, 则()1ln f x x x x =--.当[1,]x e ∈时, 2()ln f x x x x =--,2'121()210x x f x x x x--=--=>, 所以()f x 在[1,]e 上单调增, 2max ()()1f x f e e e ∴==--. ……………2分(2)由于()ln f x x x a x =--,(0,)x ∈+∞.(ⅰ)当0a ≤时,则2()ln f x x ax x =--,2'121()2x ax f x x a x x--=--=,令'()0f x =,得00x =>(负根舍去),且当0(0,)x x ∈时,'()0f x <;当0(,)x x ∈+∞时,'()0f x >,所以()f x 在上单调减,在)+∞上单调增.……4分(ⅱ)当0a >时,①当x a ≥时, 2'121()2x ax f x x a x x--=--=,令'()0f x =,得14a x =(4a x a =<舍),若4a a ≤,即1a ≥, 则'()0f x ≥,所以()f x 在(,)a +∞上单调增;若4a a >,即01a <<, 则当1(0,)x x ∈时,'()0f x <;当1(,)x x ∈+∞时,'()0f x >,所以()f x 在区间上是单调减,在)+∞上单调增. ……………………………………………6分②当0x a <<时, 2'121()2x ax f x x a x x-+-=-+-=,令'()0f x =,得2210x ax -+-=,记28a ∆=-,若280a ∆=-≤,即0a <≤, 则'()0f x ≤,故()f x 在(0,)a 上单调减;若280a ∆=->,即a >则由'()0f x =得3x =,4x =且340x x a <<<,当3(0,)x x ∈时,'()0f x <;当34(,)x x x ∈时,'()0f x >;当4(,)x x ∈+∞ 时,'()0f x >,所以()f x 在区间上是单调减,在上单调增;在)+∞上单调减. …………………………………………8分综上所述,当1a <时,()f x 单调递减区间是(0,4a ,()f x 单调递增区间是(,)4a +∞;当1a ≤≤, ()f x 单调递减区间是(0,)a ,()f x 单调的递增区间是(,)a +∞;当a >, ()f x 单调递减区间是(0, 4a )和()4a a ,()f x 单调的递增区间是和(,)a +∞. ………………10分 (3)函数()f x 的定义域为(0,)x ∈+∞. 由()0f x >,得ln xx a x->. * (ⅰ)当(0,1)x ∈时,0x a -≥,ln 0xx<,不等式*恒成立,所以R a ∈; (ⅱ)当1x =时,10a -≥,ln 0xx=,所以1a ≠; ………………12分 (ⅲ)当1x >时,不等式*恒成立等价于ln x a x x <-恒成立或ln xa x x>+恒成立.令ln ()xh x x x =-,则221ln ()x x h x x -+'=.因为1x >,所以()0h x '>,从而()1h x >. 因为ln xa x x<-恒成立等价于min (())a h x <,所以1a ≤. 令ln ()xg x x x=+,则221ln ()x x g x x +-'=.再令2()1ln e x x x =+-,则1()20e x x x '=->在(1,)x ∈+∞上恒成立,()e x 在(1,)x ∈+∞上无最大值.综上所述,满足条件的a 的取值范围是(,1)-∞. …………………………16分 2.设a 为实数,函数2()||f x x x a =-(2)求函数()f x 的单调区间4、分奇数还是偶数进行讨论例题:【2015高考天津,理20已知函数()n ,nf x x x x R =-∈,其中*n ,n 2N ∈≥.(I)讨论()f x 的单调性;【答案】(I) 当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (II)见解析; (III)见解析.(2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. 5、已知单调区间求参数范围例题:(14年全国大纲卷文)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1)2()363f x ax x '=++,2()3630f x ax x '=++=的判别式△=36(1-a ).(i )若a ≥1,则()0f x '≥,且()0f x '=当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.(ii )由于a ≠0,故当a<1时,()0f x '=有两个根:121111a ax x a a-+----==,若0<a<1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,()0f x '>,故f (x )在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,()0f x '<,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ()0f x '>,所以当a>0时,f (x )在区间(1,2)是增函数. 若a<0时,f (x )在区间(1,2)是增函数当且仅当(1)0f '≥且(2)0f '≥,解得504a -≤<. 综上,a 的取值范围是5[,0)(0,)4-+∞. 二、极值(一)判断有无极值以及极值点个数问题例题:【2015高考山东,理21】设函数()()()2ln 1f x x a x x =++-,其中a R ∈. (Ⅰ)讨论函数()f x 极值点的个数,并说明理由;(2)当0a > 时, ()()28198a a a a a ∆=--=-①当809a <≤时,0∆≤ ,()0g x ≥ 所以,()0f x '≥,函数()f x 在()1,-+∞上单调递增无极值;②当89a >时,0∆> 设方程2210ax ax a ++-=的两根为1212,(),x x x x < 因为1212x x +=- 所以,1211,44x x <->- 由()110g -=>可得:111,4x -<<-所以,当()11,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增; 当()12,x x x ∈时,()()0,0g x f x '<< ,函数()f x 单调递减; 当()2,x x ∈+∞时,()()0,0g x f x '>> ,函数()f x 单调递增; 因此函数()f x 有两个极值点. (3)当0a < 时,0∆> 由()110g -=>可得:11,x <-当()21,x x ∈-时,()()0,0g x f x '>> ,函数()f x 单调递增; 当()2,x x ∈+∞时,()()0,0g x f x '<< ,函数()f x 单调递减; 因此函数()f x 有一个极值点. 综上:当0a < 时,函数()f x 在()1,-+∞上有唯一极值点; 当809a ≤≤时,函数()f x 在()1,-+∞上无极值点; 当89a >时,函数()f x 在()1,-+∞上有两个极值点; 例题:【2015高考安徽,理21】设函数2()f x x ax b =-+. (Ⅰ)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值;【解析】(Ⅰ)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<.[(sin )]'(2sin )cos f x x a x =-,22x ππ-<<.因为22x ππ-<<,所以cos 0,22sin 2x x >-<<.①当2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值. ②当2,a b R ≥∈时,函数(sin )f x 单调递减,无极值. ③当22a -<<,在(,)22ππ-内存在唯一的0x ,使得02sin x a =. 02x x π-<≤时,函数(sin )f x 单调递减;02x x π<<时,函数(sin )f x 单调递增.因此,22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(二)已知极值点个数求参数范围例题:【14年山东卷(理)】 设函数())ln 2(2x xk x e x f x +-=(k 为常数, 2.71828e =是自然对数的底数)(I )当0k ≤时,求函数()f x 的单调区间;(II )若函数()f x 在()0,2内存在两个极值点,求k 的取值范围。