电化学体系的相间电位和热力学
《电化学热力学》课件

本课件将详细介绍电化学热力学的基本概念、平衡电位和极化现象、阳极和 阴极反应、电化学与化学反应热力学逆问题、实验技术和应用,以及电化学 动力学。
电化学热力学基础概念
电化学反应的基本概念
了解电化学反应的基本定义 和原理。
电荷和电动势的定义
研究电荷的性质和电动势的 定义及其应用。
探索电化学反应在工业领域 中的广泛应用案例。
电化学动力学
1
电荷转移和电阻控制过程
描述电荷转移和电阻控制过程的机理和影响因素。
2
极化现象和反应速率的关系
探讨极化现象与电化学反应速率之间的关系及其影响。
3
电化学反应动力学的应用
分析电化学反应动力学在能源储存和转换等领域的实际应用。
外加电势与电化学反应 的关系
揭示外加电势与电化学反应 之间的关系及其重要性。
平衡电位和极化现象
平衡电位的概念
解释平衡电位的定义和作用。
极化现象的原因和分类
深入探讨极化现象的发生原因和不同的分类。
极化的影响
说明极化对电化学反应和电解过程的影响。
阳极和阴极反应
1
阳极反应的特点和例子
概述阳极反应的特点,并通过示例展示
探讨在电解过程中求解热力 学逆问题的方法和步骤。
热力学逆问题在电池工 程中的应用
展示热力学逆问题在电池工 程中的重要应用和影响。
实验技术和应用
电极电位的测定方法
详细介绍电极电位的测定方 法和实验技术。
电解过程中电荷和电流 的测量方法
讨论电解过程中电荷和电流 的测量方法及实践应用。
电化学反应的工业应用
阴极反应的特点和例子
2
其在实际应用中的重要性。
电化学原理

第一章 绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。
第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。
三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。
电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。
腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。
阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质 分类:弱电解质与强电解质—根据电离程度 缔合式与非缔合式—根据离子在溶液中存在的形态 可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。
水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。
可分为原水化膜与二级水化膜。
活度与活度系数: 活度:即“有效浓度”.活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。
规定:活度等于1的状态为标准态。
对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。
离子强度I :离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于0.01mol ·dm -3时才有效。
电导∶量度导体导电能力大小的物理量,其值为电阻的倒数。
符号为G ,单位为S ( 1S =1/Ω)。
ii i x αγ=∑=221iiz mI I A ⋅-=±γlog LAG κ=影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。
当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1·cm 2·eq -1。
电化学原理知识点

电化学原理第一章 绪论两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。
第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。
三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。
电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。
腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。
阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。
分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。
水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。
可分为原水化膜与二级水化膜。
活度与活度系数: 活度:即“有效浓度”。
活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。
规定:活度等于1的状态为标准态。
对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。
离子强度I :离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。
电导:量度导体导电能力大小的物理量,其值为电阻的倒数。
符号为G ,单位为S ( 1S =1/Ω)。
影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。
当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。
热力学和电化学的原理

热力学和电化学的原理热力学和电化学是物理学的两个分支,分别研究热量和电量的转化和分配。
这两个领域互相关联,相互影响,是科学研究的重要组成部分。
本文将从热力学和电化学的原理两方面进行探讨。
一、热力学的原理热力学从宏观的角度研究热量的转化和分配规律。
它的核心概念是热力学第一定律和热力学第二定律。
热力学第一定律表明了热量可以与其他形式的能量相互转化,但总能量守恒。
即系统吸收的热量等于外界对系统所做的功与系统内部能量的变化之和。
举个例子,当我们把手插进温水中时,手会感觉到热,这是因为温水把热量传递给了手,我们的身体就把这些能量变成了热能或动能,但总能量守恒。
热力学第二定律则表明了热量的自发流动方向。
它指出热量永远不能从低温物体传递到高温物体,这是因为热量自发流动的方向是从高温物体流向低温物体,直到达到热平衡。
这个定律被称为熵增定律,表明了任何自发过程熵都增加。
理解热力学的原理可以帮助我们更好地利用和控制热量的转化和分配,从而发挥能量的最大效用。
二、电化学的原理电化学研究电荷在化学反应中的转移和分配规律。
它主要探讨电化学反应的动力学和热力学特性,包括电解和电化学腐蚀等。
在电化学反应中,电子是电荷的主要载体。
例如,当我们在用电池时,正极会释放电子,负极会吸收电子,电子在电路中传输,从而实现能量的转化和分配。
电化学反应的动力学特性可以用电位和电流强度来描述,而热力学特性则可以用电势差和熵变来描述。
电化学反应的热力学特性可以用化学反应热和物质的热力学性质来计算。
例如,当我们在制备氧气时,可以通过电解水来分离氢氧离子,生成氧气和氢气。
这个反应的热力学特性可以用热化学方程式来计算。
电化学反应的研究可以帮助我们更好地理解化学反应的机理,控制化学反应的速度和方向,以及设计和制造更高效的电池和电化学器件。
总结热力学和电化学是相互关联的两个领域,两者都涉及能量的转化和分配规律。
热力学研究热量的转化和分配,电化学研究电荷的转移和分配。
电化学原理知识点

电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。
第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。
三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。
电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。
腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。
阳极:发生氧化反应的电极原电池(-)电解池(+)阴极:发生还原反应的电极原电池(+)电解池(-)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。
分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。
水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。
可分为原水化膜与二级水化膜。
活度与活度系数:活度:即“有效浓度”。
活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。
规定:活度等于1的状态为标准态。
对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。
离子强度I : 离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。
电导:量度导体导电能力大小的物理量,其值为电阻的倒数。
符号为G ,单位为S ( 1S=1/Ω)。
影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。
当量电导(率):在两个相距为单位长度的平行板电极之间,放置含有1 克当量电解质的溶液时,溶液所具有的电导称为当量电导,单位为Ω-1 ·cm2·eq-1。
与 K 的关系:与 的关系:当λ趋于一个极限值时,称为无限稀释溶液当量电导或极限当量电导。
电化学反应的 热力学和动力学(优.选)

zF
F:法拉第常量96500 C•mol-1 F=L×e
二、 能斯特方程
dT=0,dp=0
ቤተ መጻሕፍቲ ባይዱ
ΔGT,p≤ Wr’
不可逆过程 可逆过程
对于可逆的电化学反应,其摩尔吉布斯函变
ΔrGm
=
ΔGT,p
Δξ
= Wr’
Δξ
可逆电功:Wr’= -Q EMF
∴
ΔrGm
=
Wr’=
Δξ
− Q EMF
Δξ
=
−zF Δξ Δξ
有迁移 电解质浓差电池 电极浓差电池
有液面接界 (双液) 无迁移
有迁移
(i) 化学电池: Zn(s) ZnCl2 (a) AgCl(s) Ag(s)
阳极反应: 阴极反应:
Zn(s) → Zn2+ (a) + 2e
2AgCl(s) + 2e → 2Ag(s) + 2Cl− (a)
电池反应: Zn(s) + 2AgCl(s) → Zn2+ (a) + 2Ag(s) + 2Cl− (a)
(4)原电池图式
一个实际的电池装置可用简单的符号电池图式表示
例 Cu-Zn电池的电池图式
-
Zn ZnSO4
A +
Cu CuSO4
Zn(s)┃ZnSO4(a) ┇CuSO4(a)┃Cu(s) Zn(s)┃H2SO4(a) ┃Cu(s)
A
-
+
Zn Cu
H2SO4
(1) 阳极在左,阴极在右,按物质接触顺序依次书写。 (2) 纯液体或纯固体应注明物质的相态、离子或电解质溶液应 标明压力(逸度)或浓度(活度),气体应标明压力。 (3) “│”:代表两相的界面;
电化学原理知识点

电化学原理知识点————————————————————————————————作者:————————————————————————————————日期:电化学原理第一章 绪论两类导体: 第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。
第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。
三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。
电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。
腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。
阳极:发生氧化反应的电极 原电池(-)电解池(+) 阴极:发生还原反应的电极 原电池(+)电解池(-) 电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。
分类:1.弱电解质与强电解质—根据电离程度2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型 水化数:水化膜中包含的水分子数。
水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。
可分为原水化膜与二级水化膜。
活度与活度系数: 活度:即“有效浓度”。
活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。
规定:活度等于1的状态为标准态。
对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。
离子强度I :离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为: 注:上式当溶液浓度小于0.01mol ·dm-3 时才有效。
电导:量度导体导电能力大小的物理量,其值为电阻的倒数。
符号为G ,单位为S ( 1S =1/Ω)。
影响溶液电导的主要因素:(1)离子数量;(2)离子运动速度。
(整理)第二章 电化学反应热力学

第二章 电化学反应热力学第一节 电化学体系一、两类电化学装置镀镍是重要电化学工业之一,其装置 示意图如图2.1所示镀镍溶液(主要成分为 NiS04,还有缓冲剂、添加剂等)电解槽或电解池:把两个电极与直流电源连结,使电流通过体系的装置原电池或化学电源:在两电极与外电路中的负载接通后自发地将电能送到外电路的装置。
上述两类电化学装置,也称为电化学体系。
原电沲与电解池的两个电极之间存在着电位差,电位较高的电极称为正极,电位较低的电极称为负极。
在自发电池中,电流(习惯上指正电荷)自正极经外电路流向负极。
电解池的正、负极分别与外电源的正、负极相连。
事实上,在外电路传送的电荷都是电子,电子流动方向与习惯上认为的电流方向相反。
人为规定使正电荷由电极进入溶液的电极称为阳极,使正电荷由溶液进入电极的电极称为阴极,在阳极上进行氧化反应,在阴极上进行还原反应。
在电解时,正极是阳极,负极是阴极。
在原电池中负极是阳极,正极是阴极。
用正、负极名称是按电位高低来区分,用阴、阳极名称是按电极进行还原或氧化反应来区分。
也有用氧化极、还原极来称呼电极的,前者即阳极、后者为阴极。
电流通过电化学体系,必须有两类导体:电子导体和离子导体,以及在这两类导体的界面上进行电化学反应。
因此,电化学的研究对象应当包括三部分:电子导体、离子导体、两类导体的界面及其上发生的一切变化。
电子导体属于物理研究的范围,在电化学中一般只引用它们所得的结论。
离子导体包括电解质溶液、熔融盐和固体电解质。
经典电化学的主要内容:电解质溶液理论。
近代电化学的主要内容: 两类导体的界面性质及界面上所发生的变化,涉及图 2.1 镀镍装置示意图化学热力学和化学动力学的许多问题。
电化学包括的基本内容为电解质溶液理论,电化学平衡和电极对程动力学能量的转换: 电解池,把电能转变为化学能;化学电源,使化学能转变为电能。
电化学主要是研究化学能和电能之间相互转化以及和这过程有关的定律和规则的科学。