钢材的强度指标
钢材的屈服强度、抗拉强度和拉伸强度

屈服强度和拉伸强度
抗拉强度:当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。
此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。
钢材受拉断裂前的最大应力值(b点对应值)称为强度极限或抗拉强度。
屈服强度: 当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。
这一阶段的最大、最小应力分别称为上屈服点和下屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度。
有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度。
首先解释一下材料受力变形。
材料的变形分为弹性变形(外力撤销可以恢复原来形状)和塑性变形(外力撤销不能恢复原来形状,形状发生变化)
屈服强度:当材料所受应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到一个值后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。
这一阶段的最大、最小应力分别称为上屈服点和下屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度。
拉伸强度:拉伸强度是指材料在拉伸应力下产生最大均匀塑性变形的应力值。
钢结构(含螺栓)力学指标

钢结构(含螺栓)力学指标
钢结构力学指标是指描述钢结构在受力作用下所表现出的力学性能的参数。
这些指标包括但不限于以下几个方面:
1. 强度指标,强度是材料抵抗外部力量破坏的能力。
对于钢结构而言,常见的强度指标包括屈服强度、抗拉强度、抗压强度、剪切强度等。
这些指标反映了钢材在受力下的承载能力,是设计和施工中必须考虑的重要参数。
2. 刚度指标,刚度是材料抵抗变形的能力,它描述了材料在受力下的变形特性。
对于钢结构而言,刚度指标包括弹性模量、剪切模量等。
这些指标反映了钢结构在受力下的变形情况,对于结构的稳定性和变形控制具有重要意义。
3. 疲劳指标,疲劳是材料在交变应力作用下发生破坏的现象,对于钢结构而言,疲劳指标是评价结构在长期使用中抵抗疲劳破坏能力的重要参数。
常见的疲劳指标包括疲劳极限、疲劳寿命等。
4. 螺栓连接指标,钢结构中的螺栓连接是常见的连接方式,其力学指标包括螺栓的抗剪强度、抗拉强度等。
这些指标影响着螺栓
连接的可靠性和安全性。
总之,钢结构力学指标涵盖了强度、刚度、疲劳和螺栓连接等多个方面,这些指标对于评价钢结构的安全性、稳定性和可靠性具有重要意义。
在设计、制造和使用钢结构时,需要充分考虑这些力学指标,以确保结构的安全和可靠运行。
钢材屈服强度标准值

钢材屈服强度标准值咱今天就来说说钢材屈服强度标准值这事儿啊!你想想看,钢材就好比是建筑界的大力士,那屈服强度标准值就是衡量这个大力士有多厉害的一个重要指标呢!要是这标准值不达标,那不就跟个软脚虾似的,能撑起啥呀!咱盖房子、造大桥,哪一样离得开钢材呀。
这钢材的屈服强度标准值要是不靠谱,那房子会不会摇摇晃晃的呀,大桥会不会走着走着就塌啦?哎呀,真是不敢想啊!这可关系到咱们大家的安全呢,可不是闹着玩的呀!就好像咱挑运动员,肯定得挑那身体素质过硬的吧。
钢材也一样啊,得有个合格的标准值,才能在各种工程里大显身手呀。
你说要是钢材的屈服强度标准值低了,那不就跟个病秧子似的,能指望它干啥大事呀!咱平常买东西还得看看质量好不好呢,更何况是这么重要的钢材呀。
你说要是建个大楼,用了不达标的钢材,那不是给自己找麻烦嘛。
万一哪天来个大风大雨的,这大楼能不能撑得住呀?这可不是开玩笑的哟!你再想想那些大工程,那得用多少钢材呀。
要是每个钢材的屈服强度标准值都不靠谱,那这工程还能让人放心吗?这就好比是搭积木,要是积木不结实,那搭起来的城堡不就容易垮啦?而且呀,不同的工程对钢材屈服强度标准值的要求还不一样呢。
就好比有的比赛要求跑得快,有的比赛要求跳得高,这钢材在不同的地方就得有不同的本事呀。
要是不管啥工程都用一样的钢材,那不是乱套啦?咱老百姓过日子都希望平平安安的,这建筑安全更是重中之重啊。
钢材屈服强度标准值就是保障这一切的关键呀。
所以呀,咱可得重视这个事儿,不能马虎大意哟!总的来说,钢材屈服强度标准值那可是相当重要啊,咱可不能小瞧了它!它就像是建筑界的定海神针,有了它,咱们才能安心地住在坚固的房子里,放心地走在结实的大桥上啊!。
建筑钢材的力学性能及其技术指标

建筑钢材的力学性能及其技术指标建筑钢材是指用于建筑结构中的钢材,它具有良好的力学性能和技术指标。
下面将介绍建筑钢材的力学性能及其技术指标。
一、建筑钢材的力学性能1.强度和刚度:建筑钢材具有较高的抗拉强度和抗压强度,能够承受较大的外部载荷。
同时,由于其刚度大,具有较小的变形,能够满足建筑结构的稳定性要求。
2.塑性和韧性:建筑钢材具有良好的塑性和韧性,能够在受力时发生较大的塑性变形,吸收和耗散外部能量,减少结构的破坏和破裂。
3.耐久性:建筑钢材具有较好的耐久性,能够长期承受外界气候和环境的影响而不失去其力学性能。
4.焊接性能:建筑钢材具有良好的焊接性能,能够通过焊接工艺进行连接,形成结构稳定的整体。
5.疲劳性能:建筑钢材具有较好的疲劳性能,能够在反复加载下保持其强度和刚度,延长结构的使用寿命。
6.抗震性能:建筑钢材具有良好的抗震性能,能够在地震等自然灾害中发挥重要作用,减少人员伤亡和财产损失。
二、建筑钢材的技术指标1.材料标志和牌号:建筑钢材按照国家标准进行分类和命名,各种型号的钢材具有不同的技术指标和力学性能。
2.化学成分:建筑钢材的化学成分对其力学性能有重要影响,需要满足国家标准规定的要求。
3.技术要求:建筑钢材需要符合国家标准中对其材质、外观、尺寸、允许偏差等技术要求的规定。
4.制造工艺:建筑钢材需要通过特定的制造工艺来满足其设计要求,如轧制、锻造、热处理等。
5.力学性能指标:建筑钢材需要满足国家标准中规定的抗拉强度、屈服强度、伸长率、冲击功等力学性能指标。
6.表面质量:建筑钢材的表面应光洁,无裂纹、缺陷和鳞片,能够满足建筑外观和防腐要求。
7.表面处理:建筑钢材可以进行防腐处理,如喷涂防锈剂、热镀锌等,以提高其抗腐蚀性能。
总结:建筑钢材具有良好的力学性能和技术指标,能够满足建筑结构的要求。
在实际应用中,需要根据具体的工程需求选择合适的建筑钢材,并进行相关的技术检验和验收,以确保其质量和安全性能。
常用热轧钢筋的品种及强度标准值

目前我国常用的热轧钢筋品种、强度标准值见下表
表面形状牌号常用符号屈服强度R eL
(MPa)
抗拉强度R m(MPa)不小于不小于
光圆
HPB235 235 370
HPB300 -300 420
带肋HRB335
335 455 HRBF335 -
HRB400
400 540 HRBF400 -
HRB500
HRBF500
-500 630
注:热轧带肋钢筋牌号中,HRB属于普通热轧钢筋,HRBF属于细晶粒热轧钢筋。
钢筋的力学性质:
1.屈服强度:是钢筋开始丧失对变形的抵抗能力,并开始产生大量塑性变形时所对应的应力。
(屈服强度是作为钢材抗力的重要指标)
2.抗拉强度:指材料在外力拉力作用下,抵抗破坏的能力。
(抗拉性能是钢材的重要性能)
3.伸长率δ:指金属材料受外力(拉力)作用断裂时,试件伸长的长度与原来长度的百分比,它表示钢材塑性变形能力。
(伸长率是衡量钢材塑性的一个指标。
它的数值越大,表示钢材的塑性越好。
q235钢材抗剪强度设计值

q235钢材抗剪强度设计值Q235钢材抗剪强度设计值钢材是一种常用的材料,在建筑、桥梁、机械等领域都有广泛的应用。
而钢材的性能指标之一就是抗剪强度。
在设计和使用钢材时,了解和合理利用其抗剪强度设计值对于确保结构的安全性至关重要。
Q235钢材是一种常见的结构钢材,其抗剪强度设计值是多少呢?在国家标准中,对于Q235钢材的抗剪强度设计值有明确的规定。
根据《钢结构设计规范》(GB 50017-2017)的规定,Q235钢的抗剪强度设计值为0.7倍抗拉强度设计值,即0.7fy。
那么,什么是抗剪强度呢?抗剪强度是指材料在受到垂直于其截面的剪切力作用下能够抵抗破坏的能力。
在钢材的设计和使用过程中,抗剪强度的合理利用可以提高结构的稳定性和安全性。
Q235钢材的抗剪强度设计值是根据该材料的力学性能经过实验和统计得出的。
在实际工程中,我们需要根据具体的设计要求和结构形式来确定合适的抗剪强度设计值。
通过合理的设计和合理利用材料的性能,可以确保结构的安全性和可靠性。
需要注意的是,抗剪强度设计值只是一个理论值,实际使用时还需要考虑其他因素的影响。
例如,结构的几何形状、连接方式、荷载条件等都会对抗剪强度产生影响。
因此,在具体的设计过程中,需要结合实际情况进行综合考虑,确保结构的安全可靠。
除了抗剪强度设计值,Q235钢材还有其他重要的力学性能指标,如抗拉强度、屈服强度、弹性模量等。
这些指标在设计和使用过程中同样需要考虑和利用。
只有全面了解和合理利用材料的力学性能,才能设计出安全可靠的结构。
Q235钢材的抗剪强度设计值是根据国家标准进行规定的。
在实际工程中,我们需要根据具体的设计要求和结构形式来确定合适的抗剪强度设计值,并结合其他因素进行综合考虑。
通过合理的设计和合理利用材料的性能,可以确保结构的安全性和可靠性。
在使用钢材时,我们应该充分了解和利用其力学性能指标,以确保工程质量和人员安全。
钢才强度指标有哪些

1钢才强度指标有哪些?简要阐述答:(1).屈服强度f y —应力应变曲线开始产生塑性流动时对应的应力,它是衡量钢材的承载能力和确定钢材强度设计值的重要指标。
(2). 抗拉强度f u —应力应变曲线最高点对应的应力,它是钢材最大的抗拉强度。
(3). 伸长率试件断裂时的绝对变形值与原标距长度的百分比,用δ表示。
(4).断面收缩率是指试件拉断后,颈缩区的断面面积缩小值与原断面面积比值的百分比,用ψ表示。
(5).弹性模量E:反映材料的应力与变形量的大小的正切值2什么是钢才的韧性?影响因素有哪些?P11答:韧性是指钢材抵抗冲击或振动的能力,影响因素有:(1)冲击韧性与试件刻槽有关(2)冲击韧性还与试验的温度有关(3)3建筑钢材的的破坏形式有哪些?其对应特征是什么?答:(1)塑性破坏。
特征,构件应力超过屈服点,并且达到抗拉极限强度后,构件产生明显的变形并断裂。
(2)脆性破坏,特征,在破坏前无明显变形,平均应力也小(一般都小于屈服点),没有任何预兆。
4什么是应力集中?产生原因与预防措施有哪些?答:在钢结构构件中不可避免的存在着孔洞、槽口、凹角、裂缝、厚度变化、形状变化和内部缺陷等,此时截面中的应力分布不再保持均匀,而是在一些区域产生局部高峰应力,形成所谓应力集中现象。
1、产生原因:(1)外部原因:孔洞、槽口、凹角、裂缝、厚度变化、形状变化(2)内部原因:内部缺陷、内部应力2、预防措施:在进行钢结构设计时,应尽量使构件和连接节点的形状和构造合理,防止截面的突然改变,采取圆滑的过渡。
在进行钢结构的焊接构造设计和施工时,应尽量减少焊接残余应力。
5请解释蓝脆现象与低温冷脆现象。
答:蓝脆现象:钢材受温度影响总的趋势是随温度升高,f y 、f u 、E下降,但温度达250︒C左右时,钢材抗拉强度提高,塑性、韧性下降,表面氧化膜呈蓝色,即发生蓝脆现象。
低温冷脆:在负温范围,即当温度从常温下降时,塑性、韧性降低,下降到某一温度时冲击韧性突然变得很降,发生脆性破坏,这就是低温冷脆现象。
钢材的屈服强度、抗拉强度、延伸率、冲击功的关系

钢材的屈服强度、抗拉强度、延伸率、冲击功的关系什么是的屈服强度和抗拉强度。
所以,抗拉极限载荷与实验材料的截⾯积之⽐,就是抗拉强度。
抗拉强度是材料单位⾯积上所能承受外⼒作⽤的极限。
超过这个极限,材料将被解离性破坏。
弹性材料在受到恒定持续增⼤的外⼒作⽤下,直到断裂。
究竟发⽣了怎样的变化呢?⾸先,材料在外⼒作⽤下,发⽣弹性形变,遵循胡克定律。
什么叫弹性形变呢?就是外⼒消除,材料会恢复原来的尺⼨和形状。
当外⼒继续增⼤,到⼀定的数值之后,材料会进⼊塑性形变期。
材料⼀旦进⼊塑性形变,当外⼒,材料的原尺⼨和形状不可恢复!⽽这个造成两种形变的的临界点的强度,就是材料的屈服强度!对应施加的拉⼒⽽⾔,这个临界点的拉⼒值,叫屈服点。
从晶体⾓度来说,只有拉⼒超过屈服点,材料的晶体结合才开始被破坏!材料的破坏,是从屈服点就已经开始,⽽不是从断裂的时候开始的!但我要说的是不管哪个强度,只拿⼀个来说事,都不能说明这种材料安全与否或者结实与否!咱们这⾥就说钢材吧,别的不说了。
关于屈服强度和抗拉强度还有⼀个参数,可能知道的⼈不多,它究竟起什么左右,可能知道的⼈更少。
这个参数就是屈强⽐!屈强⽐就是屈服强度和抗拉强度的⽐值。
范围是0~1之间。
屈强⽐是衡量钢材脆性的指标之⼀。
屈强⽐越⼤,表明钢材屈服强度和抗拉强度的差值越⼩,钢材的塑性越差,脆性就越⼤!为什么这样说呢,这⾥要引进⼀个新的指标——延伸率。
通俗⼀点说就是钢材被拉断后,和原来⽐,伸长了多少。
这是检验钢材塑性好坏的⼀个重要指标。
这个数值越⼤,表明钢材的延展性越好。
上⾯我说了,当钢材拉伸超过屈服点之后,这个时候的钢材已经不可能恢复原来的尺⼨,⼀直到断裂,钢材都在不断的被拉长。
屈强⽐越⼤,屈服强度和抗拉强度的差值越⼩,那么在的加荷速率不变的情况下,钢材被拉长的时间就越短,那么延伸率就越低。
有点罗嗦了!下⾯进⼊正题!根据能量守恒定律,能量只能转换或者传递。
当钢材被拉伸的时候,归根结底是能量的转换吸收。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢材的强度指标
冷轧板的机械性能
1. 屈服点(σ s)钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。
设Ps 为屈服点s 处的外力,Fo 为试样断面积,则屈服点σ s =Ps/Fo(MPa),MPa 称为兆帕等于N(牛顿)/mm2,
(MPa=106Pa,Pa:帕斯卡=N/m2)
2. 屈服强度(σ 0.2)有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ 0.2 。
3. 抗拉强度(σ b)材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。
它表示钢材抵抗断裂的能力大小。
与抗拉强度相应的还有抗压强度、抗弯强度等。
设Pb 为材料被拉断前达到的最大拉力,Fo 为试样截面面积,则抗拉强度σ b=
Pb/Fo (MPa)。
4. 伸长率(δ s)材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。
5. 屈强比(σ s/σ b)钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。
屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为0.65-0.75 合金结构钢为0.84-0.86。
6. 硬度硬度表示材料抵抗硬物体压入其表面的能力。
它是金属材料的重要性能指标之一。
一般硬度越高,耐磨性越好。