常用的复合材料

合集下载

建筑材料的新型复合材料有哪些

建筑材料的新型复合材料有哪些

建筑材料的新型复合材料有哪些在现代建筑领域,新型复合材料的出现为建筑设计和施工带来了更多的可能性。

这些新型复合材料具有优异的性能,能够满足各种复杂的建筑需求。

接下来,让我们一起了解一下建筑材料中一些常见的新型复合材料。

纤维增强复合材料(FRP)是目前应用较为广泛的一种新型复合材料。

FRP 通常由纤维材料(如碳纤维、玻璃纤维等)和树脂基体组成。

碳纤维增强复合材料(CFRP)具有高强度、高刚度和轻质量的特点。

它在加固老旧建筑结构方面表现出色,能够有效地提高结构的承载能力和抗震性能。

玻璃纤维增强复合材料(GFRP)则具有较好的耐腐蚀性,常用于海洋工程和化工建筑等环境恶劣的场所。

FRP 材料还可以被制成板材、筋材和索材等形式,应用于桥梁、高层建筑和大跨度空间结构中。

聚合物基复合材料(PMC)也是一类重要的新型建筑材料。

PMC以高分子聚合物为基体,加入各种增强材料,如纤维、颗粒等。

其中,纳米复合材料是近年来的研究热点。

通过在聚合物基体中加入纳米级的填料(如纳米黏土、碳纳米管等),可以显著提高材料的力学性能、热性能和阻隔性能。

例如,纳米复合材料制成的建筑涂料具有更好的耐候性和自清洁功能,能够延长建筑物的外观保持时间。

金属基复合材料(MMC)在建筑领域也有一定的应用。

铝基复合材料具有较高的比强度和比刚度,同时还具有良好的导热性和导电性。

它可以用于制造建筑中的结构件和装饰件,如窗框、扶手等。

钛基复合材料则具有优异的耐高温和耐腐蚀性,适用于一些特殊环境下的建筑应用。

陶瓷基复合材料(CMC)具有高强度、高硬度、耐高温和耐磨损等优点。

在建筑领域,CMC 可以用于制造高温炉窑的内衬、耐磨地面材料等。

然而,CMC 的成本相对较高,限制了其在一些大规模建筑项目中的广泛应用。

智能复合材料是另一类具有创新性的新型建筑材料。

这类材料能够感知外界环境的变化,并做出相应的响应。

例如,形状记忆合金复合材料可以在一定条件下恢复到预先设定的形状,这在自适应结构和抗震结构中具有潜在的应用价值。

举例日常生活中用到的复合材料并说明它的制备应用

举例日常生活中用到的复合材料并说明它的制备应用

举例日常生活中用到的复合材料并说明它的制备应用复合材料是由两种或两种以上的不同材料组合而成的材料,具有优于单一材料的特性和性能。

下面是一些日常生活中用到的复合材料以及它们的制备方法和应用。

1.碳纤维复合材料:制备方法:将预浸的碳纤维布固定于特定形状的模具上,然后将其浸渍于环氧树脂基体,并经高温烘干固化。

应用:碳纤维复合材料轻质高强,广泛应用于航空航天、汽车、体育器材等领域,如飞机机身、汽车车身以及高尔夫球杆等。

2.玻璃钢复合材料:制备方法:在玻璃纤维布上涂覆树脂,通过手工层叠、模压或者喷涂等方式制备而成。

应用:玻璃钢复合材料具有耐腐蚀、高强度等特点,常应用于建筑、船舶、化工设备等领域,如泳池、船体以及储罐等。

3.铝塑板:制备方法:将涂覆有胶粘剂的铝箔与聚乙烯塑料薄膜复合而成。

应用:铝塑板重量轻、耐热耐腐蚀,广泛应用于装饰、广告标牌、室内隔断等领域。

4.聚合物基复合材料:制备方法:将纤维或者颗粒等增强材料与热塑性或者热固性聚合物基体混合,并加热熔融、塑炼或固化成型。

应用:聚合物基复合材料具有良好的机械性能、尺寸稳定性和耐磨性,常用于汽车制造、电子设备以及家居用品等领域。

5.金属基复合材料:制备方法:将金属基体与非金属相如陶瓷、纤维等相结合,常使用粉末冶金、堆叠压制、熔融浸渍等方法制备。

应用:金属基复合材料具有高温强度、耐磨损等优点,被广泛应用于航空、能源、汽车等领域,如航空发动机叶片、刀具等。

以上仅是日常生活中复合材料的一些例子,复合材料的种类繁多,各种不同的制备方法和应用领域都有。

复合材料的制备过程通常涉及到材料选择、预处理、原料混合、成型、加工等多个步骤,以满足不同应用的需求。

对于复合材料的研发和应用有助于提高材料的性能和降低材料的成本,具有重要的科学意义和经济价值。

复合材料包括什么

复合材料包括什么

复合材料包括什么复合材料是由两种或两种以上的材料组成的,具有明显界面的复合材料。

它是由增强材料和基体材料组成的,增强材料可以是玻璃纤维、碳纤维、有机纤维等,基体材料可以是树脂、金属、陶瓷等。

复合材料具有轻质、高强度、耐腐蚀、抗疲劳、设计自由度高等优点,因此在航空航天、汽车、建筑、体育器材等领域得到了广泛的应用。

首先,复合材料包括增强材料。

增强材料是复合材料中起到增强作用的材料,其种类繁多。

常见的增强材料有玻璃纤维、碳纤维、芳纶纤维等。

这些增强材料具有高强度、高模量、耐疲劳等特点,能够有效地提高复合材料的强度和刚度,使其具有更好的性能。

其次,复合材料包括基体材料。

基体材料是复合材料中起到粘结作用的材料,其种类也非常丰富。

常用的基体材料有环氧树脂、聚酰亚胺树脂、聚丙烯、金属、陶瓷等。

这些基体材料具有良好的粘结性能和耐腐蚀性能,能够有效地固定增强材料,使其形成整体。

另外,复合材料还包括界面剂。

界面剂是用来提高增强材料和基体材料之间粘结强度的物质,常见的界面剂有硅烷偶联剂、聚氨酯树脂等。

界面剂能够有效地提高复合材料的界面结合强度,防止增强材料和基体材料之间的剥离和开裂,从而提高复合材料的整体性能。

此外,复合材料还包括填料和添加剂。

填料是用来改善复合材料性能的材料,常见的填料有碳黑、纳米粒子等。

添加剂是用来改善复合材料加工性能和使用性能的物质,常见的添加剂有抗氧化剂、光稳定剂、阻燃剂等。

填料和添加剂能够有效地改善复合材料的力学性能、耐老化性能和阻燃性能,使其更加适用于不同的工程领域。

综上所述,复合材料包括增强材料、基体材料、界面剂、填料和添加剂等多个组成部分。

这些组成部分相互作用,共同发挥作用,使复合材料具有轻质、高强度、耐腐蚀、抗疲劳等优良性能,广泛应用于航空航天、汽车、建筑、体育器材等领域。

复合材料的不断发展和应用将为人类社会带来更多的创新和进步。

复合材料的分类方式

复合材料的分类方式

复合材料的分类方式复合材料是由两种或两种以上不同性质的材料组成的材料。

根据复合材料的不同特点和性质,可以将其分为以下几类:1. 纤维增强复合材料(Fiber Reinforced Composites)纤维增强复合材料是指将纤维材料与基体材料相结合形成的复合材料。

纤维可以分为无机纤维和有机纤维两类。

无机纤维包括玻璃纤维、碳纤维、陶瓷纤维等,有机纤维包括聚合物纤维等。

基体材料可以是金属、陶瓷或聚合物等。

纤维增强复合材料具有高强度、高模量、轻质化等优点,广泛应用于航空航天、汽车制造、建筑等领域。

2. 颗粒增强复合材料(Particle Reinforced Composites)颗粒增强复合材料是指将颗粒状的强化材料分散在基体材料中形成的复合材料。

强化材料可以是金属颗粒、陶瓷颗粒、碳纳米管等。

基体材料可以是金属、陶瓷或聚合物等。

颗粒增强复合材料具有高硬度、高耐磨性、高导热性等特点,常用于制造耐磨零件、导热材料等。

3. 层合复合材料(Laminated Composites)层合复合材料是指将两个或两个以上的层材料按一定的顺序叠加在一起形成的复合材料。

不同层材料可以有不同的性质和功能,常见的有纤维增强塑料、金属层合板等。

层合复合材料具有高强度、高刚度、耐疲劳等特点,广泛应用于船舶、飞机、建筑等领域。

4. 混杂复合材料(Hybrid Composites)混杂复合材料是指将两种或两种以上不同类型的增强材料同时应用于复合材料中形成的复合材料。

根据增强材料的不同,混杂复合材料可以分为纤维/颗粒复合材料、纤维/纤维复合材料等。

混杂复合材料可以综合各种材料的优点,提高材料的性能和功能。

5. 矩阵增强复合材料(Matric Reinforced Composites)矩阵增强复合材料是指在基体材料中添加颗粒状或纤维状的增强材料,通过改变基体材料的组成和结构来实现复合材料的强化。

常见的矩阵增强复合材料有金属基复合材料、陶瓷基复合材料等。

常见的复合材料有哪些

常见的复合材料有哪些

常见的复合材料有哪些
复合材料是由两种或两种以上的材料组合而成的新材料,具有优良的性能和广
泛的应用领域。

常见的复合材料有很多种类,下面将对其中一些常见的复合材料进行介绍。

首先,玻璃纤维增强塑料(GFRP)是一种常见的复合材料,其主要成分是玻
璃纤维和树脂。

玻璃纤维具有优异的拉伸强度和刚度,而树脂则能够起到粘合和保护作用。

GFRP具有重量轻、强度高、耐腐蚀等优点,广泛应用于航空航天、汽车、建筑等领域。

其次,碳纤维增强塑料(CFRP)也是一种常见的复合材料,其主要成分是碳
纤维和树脂。

碳纤维具有极高的强度和刚度,重量轻,耐高温,具有优异的导电性能,因此CFRP在航空航天、汽车、体育器材等领域有着广泛的应用。

另外,金属基复合材料也是一类常见的复合材料,其主要成分是金属基体和非
金属增强相。

金属基复合材料具有优异的热传导性和机械性能,同时还具有非金属增强相的特性,因此在航空航天、汽车、船舶等领域有着广泛的应用。

除此之外,陶瓷基复合材料也是一种常见的复合材料,其主要成分是陶瓷基体
和增强相。

陶瓷基复合材料具有优异的耐磨、耐高温、耐腐蚀等特性,因此在航空航天、电子、化工等领域有着广泛的应用。

综上所述,常见的复合材料包括玻璃纤维增强塑料、碳纤维增强塑料、金属基
复合材料和陶瓷基复合材料等,它们在不同的领域具有广泛的应用前景。

随着科技的不断进步,复合材料的种类和性能将会得到进一步的提升,为各个领域的发展提供更加优质的材料支持。

建筑材料的高性能复合材料有哪些

建筑材料的高性能复合材料有哪些

建筑材料的高性能复合材料有哪些在现代建筑领域,高性能复合材料的应用越来越广泛,它们为建筑的设计和建造带来了诸多创新和突破。

高性能复合材料具有优异的性能,能够满足各种复杂的建筑需求。

接下来,让我们一起了解一下建筑材料中常见的高性能复合材料。

碳纤维增强复合材料(CFRP)是一种备受瞩目的高性能复合材料。

碳纤维具有高强度、高模量和轻质的特点,与树脂基体结合后,形成的 CFRP 具有出色的力学性能。

在建筑中,CFRP 可用于加固混凝土结构,如桥梁、梁柱等。

它能够显著提高结构的承载能力和耐久性,延长建筑的使用寿命。

此外,CFRP 还可用于制造新型的建筑构件,如预制板、屋面板等,其轻质的特性有助于减轻建筑的自重,降低基础造价。

玻璃纤维增强复合材料(GFRP)也是常见的高性能复合材料之一。

玻璃纤维成本相对较低,且具有良好的耐腐蚀性和绝缘性。

GFRP 在建筑中的应用十分广泛,如用于制作通风管道、水箱、遮阳板等。

它能够在恶劣的环境条件下保持稳定的性能,减少维护成本。

同时,GFRP 还可用于建筑外立面的装饰,赋予建筑独特的外观效果。

芳纶纤维增强复合材料(AFRP)具有高韧性和抗冲击性的特点。

在建筑抗震领域,AFRP 可用于加固结构节点和关键部位,提高建筑在地震作用下的安全性。

此外,AFRP 还可用于制造防弹和防爆建筑构件,保障特殊场所的安全。

除了纤维增强复合材料,聚合物基复合材料也在建筑中发挥着重要作用。

例如,聚碳酸酯板具有良好的透光性和耐冲击性,常用于建筑的采光顶和幕墙。

它能够让自然光线充分进入室内,减少人工照明的需求,同时提供有效的防护。

另外,热塑性复合材料在建筑中的应用也逐渐增多。

这类材料具有可回收、加工性能好等优点。

比如,它们可以被用于制造建筑模板,提高施工效率和降低成本。

金属基复合材料在一些特殊建筑中也有应用。

铝基复合材料具有轻质、高强的特点,可用于制造高层建筑的幕墙框架,减轻结构自重的同时保证结构的稳定性。

复合材料初中

复合材料初中

复合材料初中
复合材料是由两种或两种以上的材料组合而成的,具有优良的性能和广泛的应用。

在我们的日常生活中,复合材料无处不在,比如我们常见的玻璃钢、碳纤维等,都是复合材料的一种。

复合材料的应用范围非常广泛,从航空航天到汽车、建筑、体育器材等领域都有着重要的作用。

首先,复合材料具有很高的强度和刚度,这是其它材料所无法比拟的。

比如碳
纤维复合材料,其强度和刚度是传统金属材料的数倍甚至数十倍。

这使得复合材料在航空航天领域有着广泛的应用,可以减轻飞机的重量,提高飞行速度和燃油效率。

其次,复合材料具有优异的耐腐蚀性能和抗老化性能。

传统的金属材料容易受
到腐蚀和氧化的影响,而复合材料可以有效地抵御这些影响,延长材料的使用寿命。

这使得复合材料在海洋工程、化工设备等领域有着广泛的应用。

另外,复合材料还具有设计灵活性高的特点。

通过不同的材料组合和不同的层
压方式,可以得到不同性能的复合材料,满足不同领域的需求。

这种设计灵活性使得复合材料在汽车、建筑等领域有着广泛的应用。

总的来说,复合材料具有很多优良的性能,使得其在各个领域有着广泛的应用。

随着科技的发展和人们对材料性能要求的提高,相信复合材料的应用范围会越来越广,对人类社会的发展会产生越来越重要的影响。

希望大家能够加深对复合材料的了解,发挥其优势,推动社会的进步和发展。

mdf是什么材料

mdf是什么材料

MDF是什么材料1. 引言MDF是Medium-density fiberboard(中密度纤维板)的缩写,是一种常用于建筑和家具制造的复合材料。

MDF由木材纤维和合成树脂通过高温和高压的工艺加工制成。

本文将详细介绍MDF的特点、应用领域以及与其他材料的比较。

2. MDF的特点2.1 均匀的密度MDF由细小的木材纤维通过高压工艺形成的平均分布的密度结构。

这使得MDF在强度和耐久性方面比实木更具优势,同时也更加稳定。

因为木材纤维的尺寸和形状可控,所以MDF的密度也可以根据需求进行调整。

2.2 易于加工MDF相对于实木更容易进行切割、雕刻和钻孔等加工。

它不会出现实木中的裂纹和翘曲问题,因为木材纤维在加工过程中被稠粘剂包裹。

这使得MDF成为制作家具、门、地板等产品的理想材料。

2.3 稳定性好由于MDF的构成材料非常均匀,它在湿度和温度变化下的膨胀和收缩极小。

相比之下,实木容易受潮和收缩,因此MDF更适合在潮湿环境下使用。

此外,MDF的平坦度和表面质量也更容易控制。

2.4 环保性MDF采用的是可再生的木材纤维作为原材料,因此相对于实木,MDF更具环保性。

它可以将较小和较不适合制造实木家具的木材纤维利用起来。

此外,由于MDF使用胶黏剂将木材纤维粘合在一起,因此不需要使用额外的钉子或螺丝。

3. MDF的应用领域MDF由于其独特的特点,在建筑和家具制造等领域得到了广泛应用。

3.1 家具制造MDF常用于制作床、柜子、桌子和椅子等家具。

其平坦的表面和易于加工的特性使得家具制造商可以轻松地设计和制造各种风格的家具。

3.2 建筑装饰MDF也被广泛应用于建筑的内部装饰,例如门、地板、壁板和屏风等。

其稳定性和均匀的密度使得MDF在这些应用中更加适用。

3.3 手艺品和装饰品由于MDF易于切割和雕刻,它也常被用于制作各种手工艺品和装饰品。

例如,MDF可以用于制作盒子、画框、名片架等小型物品。

4. MDF与其他材料的比较4.1 MDF vs 实木相比之下,MDF更便宜、更容易加工,并且在潮湿环境下更稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)碳纤维
碳纤维是人造纤维(粘胶纤维、聚丙烯腈纤维等),是在 200~300℃空气中加热并施加一定张力进行预氧化处理,然后在氮 气的保护下于1000~1500℃的高温中进行碳化处理而制得。其碳含 量Wc85%~95%。由于其具有高强度,因而称高强度碳纤维,也称Ⅱ 型碳纤维。
在2500~3000℃高温的氩气中进行石墨化处理,就可获得含碳 量为Wc98%以上的碳纤维,又称石墨纤维或高模量碳纤维,也称Ⅰ 型碳纤维。 特点:与玻璃纤维相比,碳纤维具有密度小( 1.33 ~ 2.0g/㎝ 3 ),弹性模量高( 2.8 ~ 4×105MPa );高温及低温性能好,导电 性好、化学稳定性高、摩擦因数小、自润湿性好。 缺点:脆性大、易氧化 (3)硼纤维 它是用化学沉积法将非晶态的硼涂覆到钨丝上而制得的。具有 高 熔 点 ( 2300℃ ) 、 高 强 度 ( 2450 ~ 2750MPa ) 、 高 弹 性 模 量 (3.8~4.9×105MPa)。具有良好的抗氧化性、耐蚀性。
二、叠层复合材料
叠层复合材料是由两层或两层以上不同材料结合而成。
1.双层金属复合材料 将性能不同的两种金属用胶合或熔合铸造、热压、焊接、喷涂 等方法复合在一起,以满足某种性能要求的材料。
2.塑料—金属多层复合材料 典型代表是SF型三层复合材料,如图6-4所示。
三、粒子增强型复合材料
1.颗粒增强复合材料(d>1μ m,体积分数φ v>20%) 金属陶瓷是常见的颗粒增强复合材料。硬质合金就是以TiC、 WC(或TaC)等碳化物为基体,以金属Ni、Co为粘合剂,将它们用 粉末冶金方法经烧结所形成的金属陶瓷。 2.弥散强化复合材料(d=0.01~0.1μ m, φ v=1%~15%) 随着科学技术的进步,一大批新型复合材料将得到应用。例如, C/C复合材料、金属化合物复合材料、纳米复合材料、功能梯度复合 材料、智能复合材料及体现复合材料“精髓”的“混杂”复合材料 将得到发展及应用。21世纪将是复合材料大力发展的时代。
6.3
1.常用增强纤维
常用的复合材料
一、纤维增强复合材料
主要有玻璃纤维、碳纤维、硼纤维、碳化硅纤维、Kevlar有机 物纤维等。
玻璃纤维布
玻璃纤维绳
玻璃纤维绳
纳 米 碳 管 纤 维 玻璃纤维纸
碳 纤 维 绳
(1)玻璃纤维 按玻璃纤维中 Na2O 和 K2O 的含量不同,可将其分为无碱纤维 (碱的质量分数<2%)、中碱纤维(碱的质量分数为2%~12%)、高 碱纤维(碱的质量分数>12%)。随着碱量的增加,玻璃纤维的强度、 绝缘性、耐蚀性降低。 特点:强度高,抗拉强度可达 1000 ~3000MPa ;弹性模量比金 属低得多,为( 3 ~ 5 )×104MPa ;密度小,为 2.5 ~ 2.7g/cm3 ;化 学稳定性好;不吸水、不燃烧、尺寸稳定、隔热、吸声、绝缘等。 缺点:脆性较大、耐热性低,250℃以上开始软化。 优点:价格便宜、制作方便
2) 热固性玻璃钢 它是由60%~70%玻璃纤维(或玻璃布)和30%~40%热固性树脂 (环氧、聚酯树脂等)组成。 主要优点:密度小、强度高,耐蚀性、绝缘性、绝热性好;吸 水性、防磁、微波穿透性好,易于加工成型。 缺点:弹性模量低,热稳定性不高,只能在300℃以下工作。
(2)碳纤维―树脂复合材料 最常用的是碳纤维与聚酯、酚醛、环氧、聚四氟乙烯等树脂组 成的复合材料,具有高强度、高弹性模量、高比强度和比模量,还 具有优良的抗疲劳性能、耐冲击性能、自润滑性、减摩耐磨性、耐 蚀性及耐热性。缺点是纤维与基体结合力低。 (3)硼纤维―树脂复合材料 主要由硼纤维与环氧、聚酰亚胺等树脂组成。具有高的比强度、 比模量,良好的耐热性。其缺点是各向异性明显。 (4)碳化硅纤维树脂复合材料 由碳化硅纤维与环氧树脂组成的复合材料,具有高的比强度、 比模量。 (5)Kevlar纤维树脂复合材料 由Kevlar纤维与环氧、聚乙烯、聚碳酸酯、聚酯等树脂组成。 主要性能特点是抗拉强度大于玻璃钢,而与碳纤维―环氧树脂复合 材料相似;延性好,与金属相当;其耐冲击性超过碳纤维增强塑料; 其疲劳抗力高于玻璃钢和铝合金;减振能力为钢的8倍。
ห้องสมุดไป่ตู้
它是由碳化硅纤维与纯铝(或铸造铝合金、铝铜合金等)组成 的复合材料。
特点:具有高的比强度、比模量,硬度高。 应用:用于制造飞机机身结构件及汽车发动机的活塞、连杆等。 (2)纤维―钛合金复合材料 由硼纤维或改性硼纤维、碳化硅纤维与钛合金(Ti—6Al—4V) 组成。它具有低密度、高强度、高弹性模量、高耐热性、低热膨胀 系数的特点。
3.纤维―金属(或合金)复合材料 纤维增强金属复合材料是由高强度、高模量的脆性纤维(碳、 硼、碳化硅纤维)与具有较高韧性及低屈服强度的金属(铝及其合 金、钛及其合金、铜及其合金、镍合金、镁合金、银铅等)组成, 具有高的横向力学性能、高的层间剪切强度;冲击韧性好、高温强 度高、耐热性、耐磨性、导电性、导热性好;不吸湿、尺寸稳定性 好、不老化等优点。
(3)纤维―铜(或合金)复合材料 由石墨纤维与铜(或铜镍合金)组成的材料。为了增强石墨纤 维和基体的结合强度,常在石墨纤维表面镀铜或镀镍后再镀铜。石 墨纤维增强铜或铜镍合金复合材料具有高强度、高导电性、低的摩 擦因数和高的耐磨性,以及在一定温度范围内的尺寸稳定性。 4.纤维―陶瓷复合材料 用碳(或石墨)纤维与陶瓷组成的复合材料能大幅度提高陶瓷 的冲击韧性和抗热振性,降低脆性,而陶瓷又能保护碳(或石墨) 纤维在高温下不被氧化。因而这类材料具有很高的强度和弹性模量。 除上述三大类纤维增强复合材料外,近年来研制了多种纤维增 强复合材料,例C/C复合材料、混杂纤维复合材料等。
(1)纤维―铝(或合金)复合材料
1)硼纤维―铝(或合金)基复合材料。 硼和铝在高温易形成 AlB2 ,与氧易形成 B2O3 ,故在硼纤维表面 要涂一层SiC以提高硼纤维的化学稳定性。
特点:具有高弹性模量,高抗压强度、抗剪强度和疲劳强度。
应用:主要用于制造飞机和航天器的蒙皮、航空发动机叶片等。
2)石墨纤维―铝(或合金)基复合材料。 由Ⅰ型碳纤维与纯铝或形变铝合金、铸造铝合金组成。 特点:具有高比强度和高温强度,在500℃时其比强度为钛合 金的1.5倍 应用:主要用于制造航天飞机的外壳、飞机蒙皮。 3)碳化硅纤维―铝(或合金)复合材料
缺点:密度大、直径较粗及生产工艺复杂、成本高、价格昂贵。 (4)碳化硅纤维
它是用碳纤维作底丝,通过气相沉积法而制得。具有高熔点、 高强度、高弹性模量。其突出特点是具有优良的高温强度,在 1100℃时其强度仍高达2100MPa。
(5)Kevlar有机纤维(芳纶、聚芳酰胺纤维) 特点:比强度、比模量高;其强度可达2800~3700MPa;密度 小,只有1.45 g/㎝3;耐热性比玻璃纤维好。它还具有优良的抗疲 劳性、耐蚀性、绝缘性和加工性。 2.纤维―树脂复合材料 (1)玻璃纤维―树脂复合材料 亦称玻璃纤维增强塑料,也称玻璃钢。 1)热塑性玻璃钢 它是由20%~40%的玻璃纤维和60%~80%的热塑性树脂(如尼龙、 ABS等)组成,具有高强度和高冲击韧性,良好的低温性能及低热 膨胀系数。
相关文档
最新文档