直线度的检测方法
直线度的介绍及误差检测方法.ppt

时
代潮流
图说历史
主旨句归纳
(1)20世纪初,孙中山提出“民族、民权、
民生”三民主义,成为以后辛亥革命
的
指导思想。
(2)三民主义没有明确提出反帝要求,也
没
有提出废除封建土地制度,是一个
不彻
底的资产阶级革命纲领。
简而言之表示的是零件被测的线要素直不直
的程度。
二、直线度的基本特征
注:形状公差是对单一要素提出
的几何特征,因此无基准要求。
三、直线度公差的标注
1、公差框格 用公差框格标注时,公差要求标注在划 分成两格或多格的矩形框格内,框格中 的内容从左至右顺序填写。 ① 几何特征符号 ② 公差值(单位:mm) ③ 基准符号,因直线度无基准所以不标注
()
A.江南制造总局的汽车
B.洋人发明的火车
C.轮船招商局的轮船
D.福州船政局的军舰
[解析] 由材料信息“19世纪七十年代,由江苏沿江居民 到上海”可判断最有可能是轮船招商局的轮船。
[答案] C
[题组冲关]
1.中国近代史上首次打破列强垄断局面的交通行业是 ( )
A.公路运输
B.铁路运输
C.轮船运输
七、课后作业
1、将今天所学的知识点进行归纳总结 2、预习课本84页,用打表法测量直线 度误差
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
2、限定性规定的标注
(1)如果需要对整个被测要素上任意范围标注同
导轨直线度检测的方法及工具

导轨直线度检测的方法及工具1. 通过使用激光对导轨进行扫描,可以得到高精度的直线度检测数据。
2. 利用光学显微镜和数字影像处理技术,可以实现对导轨的直线度检测。
3. 使用激光干涉仪器对导轨进行测试,可以获得直线度的精确度信息。
4. 利用高精度的电子测量仪器,可以进行导轨直线度的快速检测。
5. 基于摄像头成像技术设计的导轨直线度检测仪,可以满足不同工件的直线度要求。
6. 使用应变片传感器结合数据采集系统,可以对导轨的直线度进行高精度测量。
7. 利用高精度的连接轴进行导轨的直线度测试,可以获得真实可靠的检测数据。
8. 采用数控机械加工中心进行导轨的直线度检测,可以实现高效率和高精度的检测。
9. 利用光栅尺或线性位移传感器进行导轨直线度的在线监测,可以提升生产线的稳定性。
10. 基于图像处理技术设计的导轨直线度检测软件,可以实现自动化的检测和分析。
11. 通过激光投影仪对导轨进行检测,可以实现对直线度的高精度测量。
12. 利用激光干涉仪和激光测距仪结合进行导轨的直线度检测,可以提高测试的准确性。
13. 基于感应原理的导轨直线度检测装置,可以实现对导轨直线度的非接触式检测。
14. 利用振动传感器和数据采集系统,可以实现对导轨直线度的动态检测。
15. 基于机器视觉技术开发的导轨直线度检测系统,能够实时获取导轨的直线度数据并进行分析。
16. 利用光电编码器对导轨进行直线度测量,可以得到高分辨率的检测结果。
17. 采用多点测量法对导轨直线度进行检测,可以有效避免测量误差的影响。
18. 利用电子水准仪结合自动化测量系统,可以实现对导轨直线度的全方位检测。
19. 基于三坐标测量机设计的导轨直线度检测夹具,可以提高检测的稳定性和准确性。
20. 利用微型惯性导航系统对导轨进行直线度检测,可以实现高速运动状态下的测量。
21. 基于电容式传感器开发的导轨直线度检测设备,可以实现高灵敏度的检测。
22. 利用激光测量仪进行导轨直线度的取样检测,可以有效降低人为误差。
实验七自准直仪测量直线度

实验七⾃准直仪测量直线度实验七⾃准直仪测量直线度⼀、仪器原理:⾃准直仪是测量微⼩⾓度变化量的精密光学仪器,它适⽤于测量精密导轨的直线度误差及⼩⾓度范围内的精密⾓度测量,⽤⾃准直仪测量被测量要素的直线度误差。
利⽤⾃准直仪的光轴模拟理想直线,将被测量直线与理想直线⽐较,将所得数据⽤作图法或计算法来求出直线度误差值。
图3-3-1为⾃准直仪外形图。
图3-3-1⾃准直仪外形图1-灯头2-光源锁紧螺母3-读数⿎4-⽬镜5-紧固螺钉6-光电头锁紧⿎7-光电头8-基座⽀架9-物镜10-反射镜11-光电检波器图3-3-2⾃准直仪光路系统图1-光源2-聚光镜3-⼗字线分划板4-⽴⽅棱镜5-物镜组6-反射镜7-分光镜8-双刻线分划板9-⽬镜10-振动狭缝11-聚光镜12-光敏电阻13-测微螺丝14-测微读数⿎轮15-光电检波器⾃准直仪的光路系统如图3-3-2所⽰,光源1发出的光线经聚光镜2,照亮⼗字线分划板3后,经过中间有半透膜的⽴⽅棱镜4射向物镜组5,经物镜组成平⾏光束投射到反射镜6上。
平⾏光束经反射镜⼜返回到⽴⽅棱镜4,并反射向上⾄分光镜7。
⼀路光透过分光镜7,把分划板3的⼗字线成象在带双刻线分划板8上,通过⽬镜9即可进⾏⽬视瞄准;另⼀路光在分光镜7上反射,把⼗字线成象在振动狭缝10处,再经聚光镜11聚焦到光敏电阻12上,光敏电阻将光通量的变化转变为电信号,并送⾄检波器,经处理后由微安表指⽰。
振动狭缝、光敏电阻、和测微分划板连成⼀体,并装在光电头壳体中。
旋转测微读数⿎轮14能带动它们⼀起移动,可使狭缝振动中⼼与⼗字线象中⼼重合,此时微安表的指针指零,表⽰已瞄准好。
同时,在⽬镜视场中测微分划板的双线也应瞄准⼗字线象,表⽰⽬视瞄准与光电瞄准是同步的。
通过读数⿎轮便可读出⼀个⾓度值,(或从光电检波器上读数)。
测量时,平⾯反射镜6偏转某⼀⾓度,⼗字线象在双刻线分划板8和振动狭缝10上的位置就有所改变。
旋转读数⿎轮再次进⾏瞄准,即可在⿎轮(光电检波器)上读得另⼀⾓度值。
直线度检测方法

直线度检测方法直线度检测方法引言:直线是我们日常生活中最基本的几何形状之一,对于许多领域来说,直线的准确性和度量是至关重要的。
无论是在制造业、建筑业还是科学研究领域,直线度的检测都是一个关键的步骤。
在本文中,我们将介绍一些常见的直线度检测方法,并探讨它们的原理、优缺点以及应用领域。
一、光学比较法光学比较法是直线度检测中最常用和传统的方法之一。
它基于将被测直线与一个标准直线进行比较来评估其直线度。
实施步骤:1. 准备一个光学比较仪器,例如投影仪或显微镜。
2. 将被测直线放在光学比较仪器下,并调整仪器以使标准直线尽可能与被测直线重合。
3. 观察直线之间的差异,通过目视比较或图像测量来评估直线度。
优点:- 相对简单且易于操作。
- 结果直观,可以看到直线的形状。
缺点:- 受到人眼观察和仪器精度的限制。
- 适用于对直线度要求不高的场景,对于高精度要求的检测可能不够准确。
应用领域:- 制造业中的零部件加工。
- 建筑工程中的基础测量。
二、激光干涉法激光干涉法是一种高精度的直线度检测方法,通过光的干涉原理来测量被测直线的直线度。
实施步骤:1. 使用一束激光来照射被测直线。
2. 被测直线上的反射光与参考平面上的反射光相干叠加,形成干涉条纹。
3. 根据干涉条纹的形态来评估被测直线的直线度。
优点:- 高精度,可以检测到微小的直线度误差。
- 结果数字化,可以进行精确的数据分析和处理。
缺点:- 设备较为复杂,需要专业操作和维护。
- 成本较高。
应用领域:- 科学研究中的光学实验。
- 高精度设备的制造和校准。
三、机械比较法机械比较法是一种基于机械测量原理的直线度检测方法,通过对被测直线的物理接触和移动来评估直线度。
实施步骤:1. 准备一个接触式比较仪器,例如游标卡尺或测微计。
2. 将应用压力的探针或测头沿着被测直线移动,并记录每个位置的测量值。
3. 通过对测量值进行分析和比较来评估直线度。
优点:- 相对简单且易于操作。
- 可以进行实时的测量和评估。
导轨直线度的几种检测方法

第58卷0引言导轨广泛应用于机床设备、输送装置、铁轨等领域。
直线度是导轨非常重要的技术指标,它是指被测导轨实际线对其理想直线的变动量。
导轨直线度误差是形状误差之一[1]。
设备的准确性、可靠性和稳定性都与导轨的直线度高低相关,因此有必要对其进行精确测量。
目前,测试导轨直线度的方法很多,一般有4种方法,分别为水平仪测量法、自准直仪测量法、钢丝和显微镜测量法、激光干涉仪测量法[2]。
本文利用以上4种方法分别测量某导轨的直线度。
其中,水平仪测量法是一种传统的直线度测量方法,其优点是操作简单,使用方便,而且成本较低,缺点是其测量精度较低,需要图解法求解导轨直线度误差,数据的采集和分析很容易出错,不易测量超长导轨的直线度[3];自准直仪测量法的精度相对水平仪测量法有所提高,测量精度为5μm /m 。
此外,由于测试光线在空气中并非绝对准直,测量范围越大,其偏差就越大,不适用于超高精度导轨直线度的测试要求[4];用钢丝和显微镜法测量直线度简单、易操作、读数直观、准确和成本低[5];激光追踪仪测量导轨直线的优点为可测量距离大且测试精度高,一般可到达0.4μm /m ,缺点是在测量超长导轨时,由于光路过长,空气扰动、振动等一系列因素将会对测量产生很大的影响,且该方法的数据处理和运算等比较复杂,因此很难高精度地完成对超长导轨直线度的测量[1]。
收稿日期:2022-09-28;修订日期:2022-10-23作者简介:井溢涛(1985—),男,工程师,从事机械制造工艺技术研究。
E-m ai l :j i ngyi t ao1012@导轨直线度的几种检测方法井溢涛(济南铸锻所检验检测科技有限公司,山东济南250399)摘要:导轨作为机床的一个部件,起到支承和导向作用,主要用于机床的床身、立柱、滑台上。
导轨的几何精度影响工件的表面粗糙度、尺寸精度和形状精度。
本文利用框架水平仪测量法、自准直仪测量法、钢丝和显微镜测量法以及激光跟踪仪测量法四种方法检测同一导轨的直线度,并总结了四种检测方法的适用范围。
直线度的基本概念

直线度的基本概念
直线度的基本概念
直线度是衡量曲线或线段的直线性程度的量度。
它是指物体在一个方向上的直线性程度,检测物体在一个方向上的直线性程度,并将其测量出来。
直线度的判断误差取决于精度要求,最常用的检查标准是二维图像法。
它采用二维像素之间的距离进行测量,根据图片中点的坐标之间的误差来判断该绘制的线程是否符合误差要求。
为了更好地衡量直线度,现代技术使用多维坐标测量系统来测量线程的直线性。
多维坐标测量系统可以更加精确地测量线程的直线性,它可以把每个点的坐标及其之间的距离准确来测量,从而有助于精确测量物体曲率的程度。
直线度的检测标准有很多,其中最常用的两种是绝对检测、相对检测。
绝对检测以一个物体的绝对值为基准,而相对检测以另一个物体为基准,它们都可以根据精度要求来测量直线度。
绝对检测可以测量出更精确的误差值,但它对于检测曲线形状的准确性要求很高。
而相对检测,因为它不受固定标准影响,所以它更容易做出可靠的判断。
总之,直线度是衡量线段或曲线的直线性的量度,它的判断误差取决于精度要求,绝对检测可以测量出更精确的误差值,但它对于检测曲线形状的准确性要求很高,而相对检测,因为它不受固定标准影响,所以它更容易做出可靠的判断。
- 1 -。
直线度的介绍及误差检测方法

实用文档
1、直接法此类方法一Fra bibliotek是首先确定一条测量基线,然后通过测量 得到实际被测直线上的各点相对测量基线的偏差,再按 规定进行数据处理得到直线度值。(素线的测量)
如: ①光隙法(利用刀口角尺)
该方法适合于磨削或研磨加工的小平面及短圆柱(锥) 面的直线度误差的测量。
限制被测实际直线对理想直线变动量的一项指标。 被限制的直线有平面内的直线、直线回转体(圆柱 或圆锥)上的素线、平面与平面的交线(形成空间 直线)和轴线等。
简而言之表示的是零件被测的线要素直不直
的程度。
实用文档
二、直线度的基本特征
注:形状公差是对单一要素提出
的几何特征,因此无基准要求。
实用文档
三、直线度公差的标注
1、公差框格 用公差框格标注时,公差要求标注在划 分成两格或多格的矩形框格内,框格中 的内容从左至右顺序填写。 ① 几何特征符号 ② 公差值(单位:mm) ③ 基准符号,因直线度无基准所以不标注
实用文档
2、限定性规定的标注 (1)如果需要对整个被测要素上任意范围标注同
样几何特征的公差时,可在公差值的后面加注限定 范围的线性尺寸值,并在两者之间用斜线隔开。如 下图所示
区域。
实用文档
3、给定任意方向(Φt控制轴线)的直线度公差带
标注含义:在外圆柱面的提取(实际)中心线应限定在直径等
于Φ0.08的圆柱面内。 (如图5所示)
图5
图6
公差带形状:圆柱形(如图6所示)
公差带定义:由于公差值前加注了符号Φ,公差带为直径
等于公差值Φt的圆柱面所限定的区域。
实用文档
五、直线度误差的检测方法 1、直接法
导轨直线度的检测方法

导轨直线度的检测方法机床导轨一般时由两条以上的单根导轨组合而成。
按外型可分为矩形导轨和V 型导轨。
按工作方式可分为直线运动导轨和旋转运动导轨。
导轨的直线度可分解为互相垂直的两个平面的直线度,即垂直面内的直线度(见图3-3-1)和水平面内的直线度(见图3-3-2)。
图3-3-1 垂直平面内的直线度检测图3-3-2 水平面内的直线度检测由图3-3-1和图3-3-2所示,导轨的直线度就时指:组成V形(或矩形)导轨的平面与通过该平面的垂直平面(或水平面)的交线的直线度。
常用的检测工具有:水平仪、平尺以及光学仪器入自准仪、钢丝和显微镜等。
当被测件长度不大于1600mm时,选用水平仪、平尺或光学仪器,当被测件长度大于1600mm时,测只可用水平仪和光学仪器检测。
评定机床导轨的直线度误差的方法有最小包容区域法和两点连线法两种。
1(间隙法间隙法是指用量块(或)塞尺测量被测平面导轨和测量基准线(常用平尺类量具体现)间的间隙,直接评定直线度法差值的方法。
如图3-3-3所示,将一标准平尺置于被测平面导轨上,在距离平尺两端各约2/9L(L为平尺长度)处垫上等量块。
然后用片状塞规或塞尺测检平尺工作面和被测导轨面间的间隙。
若将实测间隙减去所用的等高量块的高度值后,小于机床规定的直线度允差:则说明该机床的导轨直线度误差符合精度要求。
图3-3-3 1——等高块 2——量块例:某机床导轨的直线度的允差为0.012mm/m。
等高量块高度为h。
若选用h0mm 厚的片状塞规或塞尺,在导+0.012轨上相距为1m的任何地方均不能塞入,则该导轨的直线度符合精度要求。
2(指示器法此法常用于检测中、小型导轨在垂直平面和水平面内的直线度。
为了降低测量时读数的不确定度,在被测导轨上移动的桥板跨距d取为d?(0.1~0.25)L。
而且,d值应小于或等于500mm,L为导轨长度。
图3-3-4所示为垂直平面内直线度的检测。
首先,将平尺工作面放成水平状,并尽可能靠近被测导轨,距离愈近愈好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线度的检测方法
引言
直线度是一个物体表面或边缘与理想直线之间的偏差程度,是衡量物体形状精度的重要指标之一。
在制造业中,直线度的检测对于保证产品质量、提高生产效率至关重要。
本文将介绍直线度的概念和意义,并详细介绍几种常用的直线度检测方法。
1. 直线度的定义和意义
直线度是指物体表面或边缘与理想直线之间的偏差程度。
它反映了物体形状的准确性和规整性,对于保证工件装配精度、提高产品质量具有重要作用。
在制造业中,许多零部件需要具备一定的直线度要求,如机床导轨、光学元件、传感器等。
如果这些零部件的直线度不达标,可能会导致装配不良、功能失效等问题。
因此,对于制造业来说,准确测量和控制直线度是至关重要的。
2. 直线度检测方法
2.1 视觉法
视觉法是一种简单且常用的直线度检测方法。
它通过人眼观察物体表面或边缘与参考直线之间的偏差来评估直线度。
具体操作步骤如下:
1.准备一条直线作为参考线,可以使用光栅尺、划线仪等工具。
2.将待检测物体放置在平整的工作台上。
3.用目测的方式观察待检测物体表面或边缘与参考直线之间的偏差,并记录下
来。
视觉法简单易行,但受到人眼视觉判断能力的限制,对于精度要求较高的直线度检测可能存在一定误差。
2.2 光学投影法
光学投影法是一种常用的高精度直线度检测方法。
它利用光学原理将待检测物体表面或边缘投影到屏幕上,并通过测量投影图案与参考直线之间的偏差来评估直线度。
具体操作步骤如下:
1.准备一个光学投影仪,它可以将待检测物体表面或边缘投影到屏幕上。
2.将待检测物体放置在适当位置,调整投影仪使得投影图案清晰可见。
3.使用目镜或者测量仪器观察投影图案与参考直线之间的偏差,并记录下来。
光学投影法具有高精度和较低的人为误差,适用于对直线度要求较高的场合。
但需要专用设备和技术支持,成本较高。
2.3 探触法
探触法是一种常用的机械式直线度检测方法。
它利用探头测量待检测物体表面或边缘与参考直线之间的距离变化,从而评估直线度。
具体操作步骤如下:
1.准备一个具有微小位移测量功能的探头,可以使用游标卡尺、激光干涉仪等
设备。
2.将待检测物体放置在平整的工作台上。
3.使用探头接触待检测物体表面或边缘,并记录下探头位移值。
4.移动探头沿着待检测物体表面或边缘进行多点测量,并计算出各点之间的距
离变化。
探触法可以达到较高的精度,并且适用于各种形状和材料的物体。
但需要注意避免对待检测物体造成损伤,同时需要进行多点测量来提高测量精度。
3. 结论
直线度的检测对于制造业中的产品质量控制至关重要。
本文介绍了视觉法、光学投影法和探触法三种常用的直线度检测方法。
视觉法简单易行,但精度较低;光学投影法精度较高,但成本较高;探触法适用于各种形状和材料的物体,并且可以达到较高的精度。
在实际应用中,可以根据具体需求选择合适的直线度检测方法,并结合其他相关指标进行综合评估,以确保产品质量和生产效率的提升。