SLC和MLC闪存nand flsah的区别和历史
FLASH芯片种类与区别

F L A S H芯片种类与区别 Hessen was revised in January 2021Flash芯片的种类与区别一、IIC EEPROMIICEEPROM,采用的是IIC通信协议。
IIC通信协议具有的特点:简单的两条总线线路,一条串行数据线(SDA),一条串行时钟线(SCL);串行半双工通信模式的8位双向数据传输,位速率标准模式下可达100Kbit/s;一种电可擦除可编程只读存储器,掉电后数据不丢失,由于芯片能够支持单字节擦写,且支持擦除的次数非常之多,一个地址位可重复擦写的理论值为100万次,常用芯片型号有 AT24C02、FM24C02、CAT24C02等,其常见的封装多为DIP8,SOP8,TSSOP8等;?二、SPI NorFlashSPINorFlash,采用的是SPI 通信协议。
有4线(时钟,两个数据线,片选线)或者3线(时钟,两个数据线)通信接口,由于它有两个数据线能实现全双工通信,因此比IIC通信协议的 IIC EEPROM的读写速度上要快很多。
SPI NorFlash具有NOR技术Flash Memory的特点,即程序和数据可存放在同一芯片上,拥有独立的数据总线和地址总线,能快速随机读取,允许系统直接从Flash中读取代码执行;可以单字节或单字编程,但不能单字节擦除,必须以Sector为单位或对整片执行擦除操作,在对存储器进行重新编程之前需要对Sector或整片进行预编程和擦除操作。
NorFlash在擦写次数上远远达不到IIC EEPROM,并且由于NOR技术Flash Memory的擦除和编程速度较慢,块尺寸又较大,因此擦除和编程操作所花费的时间会很长;但SPI NorFlash接口简单,使用的引脚少,易于连接,操作方便,并且可以在芯片上直接运行代码,其稳定性出色,传输速率高,在小容量时具有很高的性价比,这使其很适合应于嵌入式系统中作为 FLASH ROM,所以在市场的占用率非常高。
SLC和MCL的区别

关于现在MP3有用MLC和SLC两种芯片的已经不是什么新闻了,但是很多人都害怕自己买到的是MLC芯片的MP3,认为MLC芯片的MP3就一定不好,其实这里面有很多需要说明的地方,存在很多误解。
在说明MLC MP3之前我们先了解一下什么是MLC和SLC闪存芯片,以及它们的特点和应用。
什么是SLC和MLC?SLC全称为Single-Level Cell,MLC全称为Multi-Level Cell。
数码播放器中一般采用两种不同类型的NAND闪存。
其中一种叫做SLC(Single Level Cell),单层单元闪存;第二种叫做MLC(Multi Level Cell),多层单元闪存。
两者的主要区别是SLC每一个单元储存一位数据,而MLC通过使用大量的电压等级,每一个单元储存两位数据,数据密度比较大。
SLC芯片和MLC技术特点一般而言,SLC虽然生产成本较高,但在效能上大幅胜于MLC。
SLC晶片可重复写入次数约10万次,而MLC晶片的写入次数至少要达到1万次才算标准,而目前三星MLC芯片采用的MLC芯片写入寿命则在5000次左右。
A.读写速度较慢。
相对主流SLC芯片,MLC芯片目前技术条件下,理论速度只能达到2MB左右,因此对于速度要求较高的应用会有一些问题。
B.MLC能耗比SLC高,在相同使用条件下比SLC要多15%左右的电流消耗。
C.MLC理论写入次数上限相对较少,因此在相同使用情况下,使用寿命比较SLC短。
MP3主控芯片对MLC支持的现状随着三星、现代、东芝的MLC闪存芯片开始量产,但是,由于全新的MLC芯片在存储密度等方面加大,对主控芯片的要求也越来越高。
特别是对于读写频繁的数码播放器来说,由于MLC闪存的出错几率很高,对于视频和音频这样的应用来说,必需具备ECC校验机制,目前有的主控芯片通过纯软件校验,这样,无形当中加重了主控芯片的负担。
也有部分主控通过硬件的4bit ECC校验和软件校验相结合,从而减轻了主控负担,但是这只是在一定程度上减少出错的几率,MLC的芯片写入次数限制和传输速度等缺点是无法克服的。
TLCNandFlash技术

TLC Nand Flash 技术
NAND Flash技术从最早期的SLC(Single-Level Cell)世代,1个记忆体储存单元(cell)存放1位元(bit)的资料,到MLC(Multi-Level Cell)中,1个记忆体储存单元存放2位元,一直到2009年TLC(Triple-Level Cell)时代,1个记忆体储存单元可存放3位元。
驱动NAND Flash价格不断下降,也使得快闪记忆卡,尤其是小型记忆卡microSD的容量越来越大。
以4GB容量的小型记忆卡microSD为例,目前普遍作法都是用2颗16Gb晶片去堆叠,在堆叠的过程中,良率会降低,但如果用1颗32Gb的TLC晶片去生产4GB容量的小型记忆卡,成本结构会较划算,因此三星电子(Samsung Electronics) 32Gb的TLC晶片量产,有助于扩大小型记忆卡市场的市占率。
尤其是三星的32纳米TLC晶片量产后,生产4GB容量的小型记忆卡microSD只要用1颗32Gb的TLC晶片即可,但其他竞争对手还在用2颗16Gb晶片去堆叠,良率自然不如三星,有助于三星在小型记忆卡上大抢市占率,而2009年在microSD产品上一直拿不足货的下游厂,2010年可趁势扳回一城。
一文知道NAND闪存的类型

一文知道NAND闪存的类型由于闪存的成本取决于其裸片面积,如果可以在同样的面积上存储更多数据,闪存将更具成本效益。
NAND闪存有三种主要类型:单层单元(SLC)、多层单元(MLC)和三层单元(TLC)。
顾名思义,在相同的单位面积上,TLC闪存比MLC存储的数据更多,而MLC又比SLC存储的数据多。
另一种新型的NAND闪存称为3DNAND或V-NAND(垂直NAND)。
通过在同一晶圆上垂直堆叠多层存储单元,这种类型的闪存可以获得更大的密度。
浮栅晶体管闪存将信息存储在由浮栅晶体管组成的存储单元中。
为了更好地理解不同类型的NAND闪存,让我们来看看浮栅晶体管的结构、工作原理及其局限。
浮栅晶体管或浮栅MOSFET(FGMOS)跟常规MOSFET非常类似,有一点不同的是它在栅极和沟道之间添加了额外的电绝缘浮栅。
图1:浮栅MOSFET(FGMOS)与常规MOSFET对比。
由于浮栅是电隔离的,所以即使在去除电压之后,到达栅极的任何电子也会被捕获。
这使得存储器具有非易失性。
与具有固定阈值电压的常规MOSFET不同,FGMOS的阈值电压取决于存储在浮栅中的电荷量。
电荷越多,阈值电压越高。
与常规MOSFET类似,当施加到控制栅极的电压高于阈值电压时,FGMOS将开始导通。
因此,通过测量其阈值电压并与固定电压电平进行比较,就可以识别存储在FGMOS中的信息。
这称为闪存的读操作。
可以使用两种方法将电子放置在浮栅中:Fowler-Nordheim隧穿或热载流子注入。
对于Fowler-Nordheim隧穿,在带负电的源极和带正电的控制栅极之间施加强电场。
这使得来自源极的电子隧穿穿过薄氧化层并到达浮栅。
隧穿所需的电压取决于隧道氧化层的厚度。
对于热载流子注入方法,高电流通过沟道,为电子提供足够的能量以穿过氧化物层并到达浮栅。
通过在控制栅极上施加强负电压,并在源极和漏极端子上施加强正电压,使用Fowler-Nordheim隧穿可以从浮栅移除电子。
SLC和MLC、TLC有什么区别

固态硬盘SLC和MLC、TLC有什么区别简单来说就是下面的这样的参数:1.SLC = Single-Level Cell ,即1bit/cell,速度快寿命长,价格超贵(约MLC 3倍以上的价格),约10万次擦写寿命;2.MLC = Multi-Level Cell,即2bit/cell,速度一般寿命一般,价格一般,约3000---10000次擦写寿命;3.TLC即Triple-cell-per-bit,由于采用三层存储单元,因此可以以较低的成本实现更大的容量。
具体来讲,因此,普通用户购买MLC的固态硬盘就够用,不要使用固态硬盘下载东西,不要将浏览器,在线播放软件等会产生大量临时数据的的软件安装在固态硬盘,或者将这些软件的缓存目录修改成其它机械硬盘,大量临时数据的写入操作会加速固态硬盘的闪存芯片的老化速度。
1bit/cell和2bit/cell的意思就是,SLC架构由于每Cell仅存放1bit数据,故只有高和低2种电平状态,使用1.8V的电压就可以驱动。
而MLC架构每Cell需要存放多个bit,即电平至少要被分为4档(存放2bit)。
在一次读写中SLC只有0或1两种状态,这种技术能提供快速的程序编程与读取,简单点说每Cell就像我们日常生活中使用的开关一样,只有开和关两种状态,非常稳定,就算其中一个Cell损坏,对整体的性能也不会有影响。
在一次读写中MLC有四种状态(以每Cell存取2bit为例),这就意味着MLC存储时要更精确地控制每个存储单元的充电电压,读写时就需要更长的充电时间来保证数据的可靠性。
它已经不再是简单的开关电路,而是要控制四种不同的状态,这在产品的出错率方面和稳定性方面有较大要求,而且一旦出现错误,就会导致2倍及以上的数据损坏,所以MLC对制造工艺和控制芯片有着更高的要求。
成本问题也是因为这个导致的,SLC的一个Cell只存1bit数据,MLC的一个Cell却能存2bit或者更多的bit数据,但芯片的体积并没增加,等于压缩存储了数据,这样的结果就是相同的一块芯片存储的容量变大,自然价格就便宜了。
u盘 芯片

u盘芯片U盘芯片是指U盘中集成的存储器芯片,它是U盘的核心部件,负责存储和读取数据。
U盘芯片可以分为多种类型,不同的芯片具有不同的特点和功能。
下面将详细介绍U盘芯片的相关知识。
一、U盘芯片的分类按照存储介质的不同,U盘芯片可以分为以下几类:1. NAND Flash芯片:这是目前应用最广泛的一种U盘芯片,具有高速传输、可靠性高、容量大的特点。
2. EEPROM芯片:这是一种电可擦除可编程只读存储器,相比NAND Flash芯片,它的读取速度较慢,容量较小,但数据保存时间较长。
3. SLC芯片:这是一种以单元为基本存储单位的U盘芯片,它的读写速度较快,稳定性较好,但价格较高。
4. MLC芯片:这是以多个位为基本存储单位的U盘芯片,相比SLC芯片,它的价格较低,但读写速度较慢,稳定性较差。
二、U盘芯片的原理U盘芯片的工作原理是通过将电信号转换成数字信号进行数据的存取。
当将U盘连接到电脑时,芯片接收电脑发送的指令,并通过控制电路将数据写入或读取到芯片中。
同时,芯片还负责对存取的数据进行传输和控制,确保数据的完整性。
三、U盘芯片的特点1. 容量大:现在的U盘芯片容量从几十MB到几十TB不等,可以根据需求选择合适的存储容量。
2. 读写速度快:U盘芯片的高速传输是它的一大特点,可以达到MB/s或GB/s级别的传输速度,大大提高了数据传输效率。
3. 可擦写次数多:NAND Flash芯片一般可以支持上百万次的擦写操作,使得用户可以反复使用U盘而不用担心芯片的寿命问题。
4. 低功耗:U盘芯片采用了低功耗技术,可以有效延长使用时间和电池寿命。
5. 稳定可靠:U盘芯片具有良好的抗磨损性能和高可靠性,即使在恶劣的环境下也能正常工作。
四、U盘芯片的发展趋势1. 容量不断增大:随着科技的不断进步,U盘芯片的容量将越来越大,未来可能会实现TB级别的存储容量。
2. 读写速度提升:随着高速数据传输技术的发展,U盘芯片的读写速度将更加快速,大大提高数据传输效率。
一分钟解析固态硬盘SSD主大类的区别,准备换硬盘的看过来!

一分钟解析固态硬盘SSD主大类的区别,准备换硬盘的看过来!构成SSD的主要IC有主控芯片和NAND闪存,估计有不少人认为单纯看主控就可以知道SSD的性能,其实这是错误的,就像OCZ现在的产品线那样,用的都是SandForce SF-2281主控,但是通过不同的闪存与固件搭配划分出Vertex 3 MAX IOPS、Vertex 3、Agility 3与Solid 3等不同层次的产品,相互之间性能差异比较大,可见SSD 所用的固件与闪存种类都是对其性能有相当大影响的。
今天迅维快修小编就来说说这个NAND闪存SLC、MLC和TLC 三者的区别TLC是闪存一种类型,全称为Triple-LevelCellX3(3-bit-per-cell)架构的TLC芯片技术是MLC和TLC技术的延伸,最早期NAND Flash技术架构是SLC(Single-Level Cell),原理是在1个存储器储存单元(cell)中存放1位元(bit)的资料,直到MLC(Multi-Level Cell)技术接棒后,架构演进为1个存储器储存单元存放2位元。
2009年TLC架构正式问世,代表1个存储器储存单元可存放3位元,成本进一步大幅降低。
如同上一波SLC技术转MLC技术趋势般,这次也是由NAND Flash大厂东芝(Toshiba)引发战火,之后三星电子(Samsung Electronics)也赶紧加入战局,使得整个TLC技术大量被量产且应用在终端产品上。
TLC芯片虽然储存容量变大,成本低廉许多,但因为效能也大打折扣,因此仅能用在低阶的NAND Flash相关产品上,像是低速快闪记忆卡、小型记忆卡microSD或随身碟等。
像是内嵌世纪液体应用、智能型手机(Smartphone)、固态硬碟(SSD)等技术门槛高,对于NAND Flash效能讲求高速且不出错等应用产品,则一定要使用SLC 或MLC芯片。
2010年NAND Flash市场的主要成长驱动力是来自于智能型手机和平板计算机,都必须要使用SLC或MLC芯片,因此这两种芯片都处于缺货状态,而TLC芯片却是持续供过于求,且将整个产业的平均价格往下拉,使得市调机构iSuppli在统计2010年第2季全球NAND Flash产值时,出现罕见的市场规模缩小的情况,从2010年第1季43亿美元下降至41亿美元,减少6.5%。
SLC MLC TLC 介绍

SLC = Single-Level Cell ,即1bit/cell,速度快寿命长,价格昂贵(约MLC 3倍以上的价格)MLC = Multi-Level Cell,即2bit/cell,速度一般寿命一般TLC = Trinary-Level Cell,即3bit/cell,也有Flash厂家叫8LC,速度慢寿命短,价格便宜QLC = Quad-Level Cell?即4bit/cell,速度最慢寿命最短QLC FLASH说明文档截图,一个简单介绍,不过TLC部分数据有误,500P/E是第一代TLC产品,工艺不成熟。
现在Hynix官方PDF介绍TLC闪存大约是2500~5000P/E,东芝的更高(tcbgs)。
SLC MLC TLC 簡介•什麽是SLC?SLC英文全稱(Single Level Cell)即單層式儲存。
•SLC技術特點是在浮置閘極與源極之中的氧化薄膜更薄,在寫入數據時通過對浮置閘極的電荷加電壓,然後透過源極,即可將所儲存的電荷消除,通過這様的方式,便可儲存1個信息單元,這種技術能提供快速的程序編程與讀取,不過此技術受限于Silicon efficiency的問題,必須要由較先進的流程強化技術(Process enhancements),才能向上提升SLC制程技術。
•什麽是MLC?MLC英文全稱(Multi Level Cell)即多層式儲存。
英特爾(Intel)在1997年9月最先開發成功MLC,其作用是將兩個單位的信息存入一個Floating Gate (Flash Memory存儲單元中存放電荷的部分),然後利用不同電位(Level)的電荷,通過内存儲存的電壓控制精準讀寫。
MLC通過使用大量的電壓等級,每一個單元儲存兩位數據,數據密度比較大。
SLC架構是0和1兩個值,而MLC架構可以一次儲存4個以上的值,因此,MLC架構可以有比較好的儲存密度。
•什麽是TLC?TLC(Trinary-Level Cell;TLC),即3bit/cell,也就是1個記憶體儲存單元可存放3位元元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SLC和MLC闪存nand flsah的区别和历史 Flash闪存是非易失性存储器,这是相对于SDRAM等存储器所说的。即存储器断电后,内部的数据仍然可以保存。Flash根据技术方式分为Nand 、Nor Flash和AG-AND Flash,而U盘和MP3中最常用的内存就是Nand Flash。 Nand Flash也有几种,根据技术方式,分为SLC、MCL、MirrorBit等三种。SLC是Single level cell的缩写,意为每个存储单元中只有1bit数据。而MLC就是Multi-Level-Cell,意为该技术允许2 bit的数据存储在一个存储单元当中。而MirrorBit则是每个存储单元中只有4bit数据。 SLC的技术存储比较稳定,SLC的技术也最为成熟。然而MLC可以在一个单元中有2bit数据,这样同样大小的晶圆就可以存放更多的数据,也就是成本相同的情况下,容量可以做的更大,这也是同样容量,MLC价格比SLC低很多的原因。通常情况下相同容量的MLC和SLC,MLC的价格比SLC低30%~40%,有些甚至更低。 区分SLC(停产)和MLC(现在主流,分新老制程,60NM 和56/50NM ) 1、 看Flash的型号:根据Flash的命名规则,进行区分。 2、 测试读写速度:SLC的非常快,MLC的很慢。
SLC闪存:即单层式储存 (Single Level Cell;SLC),包括三星电子、Hynix、美光(Micron)以及东芝都是此技术使用者 MLC闪存:多层式储存(Multi Level Cell;MLC),目前有东芝、Renesas、三星使用,英飞凌(Infineon)与Saifun Semiconductors合资利用NROM技术所共同开发的多位储存(Multi Bit Cell;MBC)。MLC是英特尔(Intel)在1997年9月最先开发成功的,其作用是将两个单位的信息存入一个Floating Gate,闪存存储单元中存放电荷的部分),然后利用不同电位(Level)的电荷,透过内存储存的电压控制精准读写,假设以4种电压控制、1个晶体管可存取2bits的数据,若是控制8种电压就可以存取3 bits的数据,使Flash 的容量大幅提升,类似Rambus的QRSL技术,通过精确控制Floating Gat上的电荷数量,使其呈现出4种不同的存储状态,每种状态代表两个二进制数值(从00到11)。 三星与东芝这两家Flash(闪存)制造商长期统治着快速增长 的NAND Flash市场。其中三星属于最大的玩家,不断采用先进工艺尺寸,以维持竞争优势。本次主要对这两家公司的最新闪存进行比较,同时也兼顾与Hynix、美光和英特尔等公司的比照。 从历史来看,三星将研发重点集中在了单层单元(SLC)上。SLC架构中每个闪存单元只能存储1个比特的信息。而东芝在转向先进工艺技术方面同样积极,不过其竞争优势在于多层单元(NAND闪存方面的设计经验和能力。MLC闪存在每个存储单元存储2个比特的信息,使得东芝可在给定面积的硅片上存储更多的比特信息,并在存储器尺寸既定的情况下降低生产成本。因此,尽管东芝在工艺技术上可能落后于三星,但在裸片密度上仍是领跑者。 东芝的MLC闪存已经历经数代,其中包括新近发布的采用70nm工艺的8Gb闪存。2005年,东芝曾采用90nm技术与三星的73nm技术展开肉搏。东芝90nm MLC闪存的比特密度为29Mb/mm2,远远高于三星73nm闪存的25.8Mb/mm2的比特密度。 在存储密度固定时,东芝甚至拥有比三星更小的裸片尺寸。例如,东芝90nm工艺生产的4Gb NAND闪存的 裸片尺寸为138mmsup>2,与之相比,三星73nm工艺生产的4Gb NAND闪存尺寸则为156mmsup>2。这使得东芝在成本方面更具竞争力。在用于文件存储方面,NAND闪存不可避免地面临价格战,我们也常常 听到,只有价格领导者才会赢得iPod设计中标。 虽然MLC在某些方面获得相当的认可,但如今对闪存芯片的狂热需求模糊了业界的视线。存储卡制造商需要价格低廉的芯片,但他们也需要稳定 的供货。正是基于这个原因,据报道,去年Kingston已就购买SLC芯片作为第二货源与三星进行了商谈。他们商讨该协议时,全然不顾MLC方案的成本 比SLC要低30%。 长期以来,三星都在鼓吹SLC而非MLC型NAND闪存, 不过2004年和2005年该公司提交给国际固态电路大会(ISSCC)上提交的MLC技术论文,标志着该公司的观点发生了变化。虽然在三星的网站上仍旧 没有任何有关MLC闪存的营销信息,但该公司的确已生产出了4Gb MLC NAND闪存芯片。虽然我们已对该芯片的样品进行了分析,但要在市场中找到其样品仍旧非常困难。其裸片尺寸是156mm2,同东芝采用90nm工艺的MLC型4Gb NAND闪存相比,还是大了18mm2,因此要能与东芝相匹敌,三星在其下一代NAND MLC技术上还需要改进。 除了三星,Hynix等其他存储器制造商也在向MLC闪存迈进。虽然东芝凭借多年的技术积累而在MLC技术上占据优势,但英特尔与美光科技的合资企业IM Flash也有能力结合英特尔MLC技术与美光的NAND闪存,从而在MLC型NAND闪存领域迅猛发展。 MLC闪存技术并非没有不足,实际上,在采用先进工艺生产MLC闪存方面困难重重。随着闪存技术的演进,在浮动栅(floating gate)中存储的电荷总量减少了,使得检测存储的信息变得更加困难,尤其是对MLC芯片而言,它需要识别四个电压值,而非两个。尽管如此,据报道,东芝 在70nm工艺中能够保证采用与90nm技术相同的代码纠错方案。这显示该公司并没有放慢MLC技术缩放的步伐,最少是就现在而言。 此外,与SLC闪存相比,MLC闪存在可靠性方面存在不足。虽然对于消费者而言,可靠性不是他们关注的核心问题,但在其它消费市场却显然是一个弊端。 三星正准备推出采用65nm工艺的4Gb SLC NAND闪存,其尺寸比采用73nm工艺的器件稍为紧凑。由此引发的问题是:在工艺缩放方面是否已经无计可施了? 如果实际情况真的如此,那么情况显得对东芝更为有利,因为目前它已经生产出70nm工艺的MLC闪存。作为权宜之计,三星转向65nm工艺 的芯片或许能够立马同东芝的90nm MLC竞争。但是东芝的70nm工艺8Gb MLC技术已取得重大成就,实现了56.5Mb/mm2的比特密度,比三星65nm工艺31.3Mb/mm2的额定比特密度要高出80%。一些并非出自东芝公司的报告暗示,该公司将会跨过65nm工艺,直接转到50-60nm线宽的16Gb闪存。当然,在成功实现低于65nm线宽的工艺,仍有一些技术障碍有待克服。 闪存器件的工艺缩放并非易事,过去业界曾多次出现过闪存走向终结的预言。然而国际半导体技术路线图(ITRS)显示,在32nm工艺节点出现之前,在所有赌注似乎仍然都压在闪存而非任何新型替换品上。 有必要使在每个单元中所存储的比特数翻番,使得浮动栅技术继续前进,而这很可能推动闪存首个替代物面市,诸如相变存储器(PCM)。但是目 前闪存供应商首先必须克服现有的缩放挑战,其中包括这样一些关键领域:单元校准(cell alignment)、隧道氧化层、多晶硅层间介电质(interpoly dielectirc)、相邻单元耦合和高压晶体管设计。 缩放挑战 随着芯片尺寸缩小,改进图层之间的校准颇受关注。更小的芯片需要更低的操作电压,反过来也推动了更薄隧道电介质的需求,以将电荷传输至浮动栅或传输出浮动栅,但问题是,电介层较薄的话,可靠性就较低。 在先进的工艺尺寸中,一个浮动栅的活动区域对存储单元晶体管的影响较小,但从控制到浮动栅的耦合比例需要保持恒定。所以,需要更薄的多晶硅层间介电质(IPD)。 在有两种介电质情况下,介电常数更高(higher-k)的材料能减少有效电荷厚度,同时具有更大的物理厚度,并能维护更高的可靠性。然而,采用新型材料会给自身带来挑战,存储单元封装得更加紧密,会增加风险,导致一个浮动栅上的电荷会影响相邻存储单元的操作。 最后,闪存的操作依赖于较高电压来写入或擦除存储单元。需要在给定硅片面积条件且无损存储单元效率的条件下,设计和应用能够转换电压的控制晶体管。 东芝的新型芯片集成了很多有趣的特性。当然,基本的存储单元结构已经缩降至90nm以下。东芝在90nm工艺上引入了完全自校准存储单元, 并且继续用于70nm工艺。隧道和多晶硅层间介电质同样降低了。为了减少干扰,对浮动栅的高度也作了优化。MLC技术在这方面需要更多关注,因为要从存储 单元中读出4个状态,所以感应(sensing)边界更小。 在存储列阵方面,东芝转而采用新型的沟槽蚀刻工艺处理来实现浅槽隔离(STI)。70nm工艺中更小的间距要求东芝使用两个沟槽深度。存 储阵列深度对隔离性能的要求较低,以便闪存单元能够排列得更加密集。控制晶体管——特别是那些用于控制写入/删除电压的晶体管,需要更好的电压隔离特性。 所以,他们要更深一些。 沟槽填充方式也发生了改变;现在使用一种新型沉积材料进行两步处理。在90nm工艺中,采用钨(tungsten)触点来代替多晶硅。也许最显著的一个创新是采用了一种新颖的电容器结构。 所有这些改进加在一起,相当于一个大小仅为0.020μm2的物理单元,换言之,保存1个比特信息仅需0.010μm2。相比较而言,三星的73nm技术保存1个比特信息则需要0.021μm2,而三星的65nm 4Gb器件保存1比特信息预计要0.017μm2。 体系架构上的改进 东芝的70nm NAND闪存还包括一些架构上的改变,包括焊盘布局和排列结构的调整,旨在减小裸片面积。东芝的焊盘设计是单面的,也就是说所有的焊盘都位于芯片的一边。 这与其它大多数NAND闪存大相径庭,后者上下两面都分布着焊盘。 焊盘全部移到裸片的一边就不再需要两面都设计焊盘条,芯片尺寸随之减小。为了获得单面布局的最大好处,对阵列结构作一些变动,从而能有效地访问芯片的上部或在芯片的边上远离焊盘的存储单元,并为其供电。为了更大程度地减小芯片尺寸,东芝还将改变了其冗余管理方案。 在单个存储地址存储2个比特的信息,要求感应电路能够分辨出四个电压等级的差别。自然地,要读取存储单元信息的感应放大器需要进行优化,从而为与单层感应相比所存在的较低的噪声裕量提供补偿。接下来的事情,就是为四个不同等级的电荷编程。 东芝选择了步步为营的方法,其中包括运行一系列“即编程即验证”的循环,直到获得期望的程序状态。 我们的分析检查了用来写入四个状态的时序和电压。 实际上,该方法是东芝的闪存合作伙伴Sandisk所开发出来的,并授权东芝采用其专利编程方法。东芝与Sandisk在MLC芯片的研发和生产上已经合作多年。毫不奇怪,两家公司都积极申请与MLC技术相关的方法、电路和结构方面的专利。 然而,我们却惊奇地发现,三星在MLC领域的专利申请也相当积极。2002年三星和Sandisk 之间达成了一项交叉授权协议,双方在2009年之前不会提起任何专利争端。不过,如果三星被卷入MLC价格战,问题也许会再次提上日程。 也许仅是巧合,ITRS计划转向每单元4比特存储的时间也是2009年。既然有关MLC知识产权的争端还没有最后掀起,那么现在还很难说谁更强。 尽管有这些比较,三星始终还是NAND闪存市场的佼佼者,并且极具竞争力。虽然东芝依靠在MLC技术上的积累,东芝获得了些许优势,但三星已被证明是一个斗志顽强、勇往直前的对手。让我们拭目以待:在未来几年中,为了追赶MLC技术,三星会不懈努力。 三星和东芝还承受着后来者的压力,如Hynix公司,后者于2004年2月开始发售其首批NAND产品,就非常成功地从DRAM转向到闪 存。2005年Hynix利润增加了525%,并且与两个领军公司争夺市场份额。同时,英特尔与美光的合资又诞生了一个强有力的市场竞争者,而英飞凌也开 始显示出令人鼓舞的利润增长。 这些公司使得NAND市场的竞争更加激烈;但是至少在目前,三星和东芝仍然是市场和技术的领先者。 对于我们消费者而言,最关心的就是产品的质量问题,因此,网上流传很多说法,好像只有