信号发生器实验报告
实验一、信号频谱分析实验

实验一、信号频谱分析实验一、实验目的:1.熟悉典型信号的波形和频谱特征,从信号中读取所需的信息。
2.了解信号频谱分析的基本方法及仪器设备。
3为机械设备故障诊断与测试打好必备的基础二、实验设备和工具1.信号发生器及信号采集仪、信号采集分析软件。
2.计算机三、实验内容本实验利用信号发生器(任意波信号发生器(型号:YB33000))产生信号,通过数据采集仪(INV306U-1M系列数据采集仪)采集信号再通过信号采集分析软件DASP 工程版(多通道信号采集和实时分析软件)对信号进行频谱分析。
由信号发生器产生多种典型波形信号,通过对该信号进行数据采集和频谱分析,得到信号的频谱特性数据。
分析其结果及图形在计算机上显示出来,也可通过打印机打印出来。
也可利用DASP 工程版(多通道信号采集和实时分析软件)自带的信号发生器,产生多种典型波形信号,通过对该信号进行数据采集和频谱分析,得到信号的频谱特性数据。
分析其结果及图形在计算机上显示出来,也可通过打印机打印出来。
四、实验原理1.典型信号极其频谱分析的作用正弦波、方波、三角波和白噪声信号是实际工程测试中常见的典型信号,这些信号时域、频域之间的关系很明确,并且都具有一定的特性,通过对这些典型信号的频谱进行分析,对掌握信号的特性,熟悉信号的分析方法大有益处,并且这些典型信号也可以作为实际工程信号分析时的参照资料。
正弦波、方波、三角波和白噪声信号的时域描述及频域描述如下:时域描述能够提供诸如信号的强弱大小,变化快慢,不同信号波形相似程度,相互间的相位关系等。
2.频谱分析的方法:频谱是构成信号的各频率分量的集合,它完整地表示了信号的频率结构,即信号由哪些谐波组成,各谐波分量的幅值大小及初始相位,从而揭示了信号的频率信息。
信号的频谱可分为幅值谱、功率谱、对数谱等。
对信号作频谱分析的主要设备是:频谱分析仪或频谱分析软件,它把信号按数学关系作为频率的函数显示出来,其工作方式有:模拟式和数字式二种。
射频电波电路实验报告(3篇)

第1篇一、实验目的1. 理解射频电路的基本组成和原理。
2. 掌握射频电路的调试方法。
3. 培养实际操作能力,提高对射频电路问题的分析和解决能力。
二、实验原理射频电路是指工作在射频频段的电路,主要用于无线通信、雷达等领域。
射频电路的主要功能是发射和接收电磁波信号。
本实验主要涉及射频电路的组成、工作原理和调试方法。
三、实验仪器与设备1. 射频信号发生器2. 射频功率计3. 射频测试天线4. 射频电路测试板5. 数字多用表6. 连接线、测试夹具等四、实验内容1. 射频电路的组成及功能2. 射频电路的调试方法3. 射频电路的性能测试五、实验步骤1. 射频电路的组成及功能(1)观察射频电路测试板,了解其组成及功能。
(2)分析射频电路中各个元件的作用,如滤波器、放大器、混频器等。
(3)掌握射频电路的工作原理。
2. 射频电路的调试方法(1)根据实验要求,搭建射频电路。
(2)使用射频信号发生器产生测试信号。
(3)利用射频功率计测量信号功率。
(4)调整电路参数,使信号达到最佳状态。
3. 射频电路的性能测试(1)测量射频电路的增益、带宽、噪声系数等性能指标。
(2)分析测试结果,评估射频电路的性能。
六、实验结果与分析1. 射频电路的组成及功能通过观察射频电路测试板,我们了解到射频电路主要由滤波器、放大器、混频器、本振电路等组成。
滤波器用于滤除不需要的频率成分;放大器用于放大信号;混频器用于将信号转换到所需频率;本振电路用于产生本振信号。
2. 射频电路的调试方法在实验过程中,我们通过调整电路参数,使信号达到最佳状态。
具体操作如下:(1)调整滤波器,使信号频率符合要求。
(2)调整放大器,使信号功率达到预期。
(3)调整混频器,使信号频率转换正确。
3. 射频电路的性能测试通过测试,我们得到以下结果:- 增益:20dB- 带宽:100MHz- 噪声系数:2dB分析:实验结果符合预期,说明射频电路性能良好。
七、实验总结1. 通过本次实验,我们掌握了射频电路的基本组成、工作原理和调试方法。
hdb3码型变换实验实验报告

hdb3码型变换实验实验报告
HDB3码型变换实验实验报告
实验目的:
通过实验掌握HDB3码型变换的原理和方法,了解其在数字通信中的应用。
实验设备:
1. 信号发生器
2. 示波器
3. HDB3编码解码器
实验原理:
HDB3码(High Density Bipolar of Order 3)是一种常用的数字信号编码方式,
它通过对传输的二进制数据进行编码,实现了数据的高密度传输和抗干扰能力。
HDB3码的编码规则是在传输的数据中插入特定的控制比特,通过对控制比特
的处理,实现了数据的传输和恢复。
实验步骤:
1. 将信号发生器的输出连接到HDB3编码解码器的输入端,将HDB3编码解码
器的输出连接到示波器。
2. 设置信号发生器的输出频率和幅度,生成一个二进制数据序列。
3. 将生成的二进制数据序列输入到HDB3编码解码器中,观察编码后的信号波形。
4. 调整信号发生器的频率和幅度,再次观察编码后的信号波形。
5. 通过对比编码前后的信号波形,分析HDB3码型变换的效果和特点。
实验结果:
经过实验,我们观察到HDB3码型变换后的信号波形具有较高的密度和较好的抗干扰能力。
在不同频率和幅度下,HDB3码型变换都能有效地保持数据的传输质量。
通过对比实验结果,我们进一步了解了HDB3码型变换在数字通信中的重要性和应用价值。
结论:
HDB3码型变换实验通过实际操作和观察,使我们更加深入地理解了数字信号编码的原理和方法。
掌握了HDB3码型变换的应用技巧,为我们今后在数字通信领域的工作提供了重要的参考和指导。
模电实验波形发生器实验报告

模电实验波形发生器实验报告模电实验波形发生器实验报告实验名称:模拟电路波形发生器设计与制作实验目的:1.了解正弦波、方波、三角波等基本波形的特性及产生方法;2.掌握模拟电路的基本设计方法和制作技巧;3.加深对电路中各元件的认识和使用方法;4.提高实际操作能力和动手能力。
实验原理:波形发生器是一种模拟电路,在信号发生领域具有广泛的应用。
常见的波形发生器包括正弦波发生器、方波发生器、三角波发生器等。
正弦波发生器:正弦波发生器是一种周期性信号发生器,通过正弦波振荡电路产生高精度的正弦波信号。
常见的正弦波振荡电路有RC,LC和晶体振荡管等。
我们使用的正弦波发生器为Wien桥电路。
方波发生器:方波发生器属于非线性信号发生器,根据输入信号的不同,可以分为单稳态脉冲发生器、双稳态脉冲发生器和多谐振荡器等。
我们使用的方波发生器为双稳态脉冲发生器。
三角波发生器:三角波发生器是一种周期信号发生器,通过将一个线性变化的信号幅度反向后输入到一个比例放大电路中,就可以得到三角波信号。
我们使用的三角波发生器为斜率发生器。
实验步骤:1.按照电路原理图连接电路;2.打开电源,调节电压并测量电压值;3.调节电位器,观察波形在示波器上的变化;4.分别测量各波形的频率和幅值,并记录实验数据;5.将实验结果进行比较分析。
重点技术:1.电路连接技巧;2.相关工具的正确使用方法;3.电路元器件的选择和使用;4.测量和计算实验数据的方法。
注意事项:1.实验中使用电源时应注意电压值和电流值,避免短路和电源过载现象的发生;2.连接电路时应注意电路的接线和连接端子的位置,避免短路和错误连接的情况;3.在实验中应注意对电路元器件的选择和使用,确保电路的正常工作;4.测量和计算实验数据时应认真仔细,避免计算错误和实验数据异常的情况。
实验结论:通过本次实验,我们成功设计和制作了正弦波发生器、方波发生器和三角波发生器。
在实验过程中,我们掌握了模拟电路的基本设计方法和制作技巧,加深了对电路中各元件的认识和使用方法,并提高了实际操作能力和动手能力。
通信原理实验报告答案

通信原理实验报告答案通信原理实验报告CPLD可编程数字信号发生器实验一、实验目的1、熟悉各种时钟信号的特点及波形。
2、熟悉各种数字信号的特点及波形。
二、实验内容1、熟悉CPLD可编程信号发生器各测量点波形。
2、测量并分析各测量点波形及数据。
三、实验仪器1、通信原理0 号模块一块2、示波器一台四、实验原理1、CPLD数字信号发生器,包括以下五个部分:①时钟信号产生电路;②伪随机码产生电路;③帧同步信号产生电路;④NRZ码复用电路及码选信号产生电路;⑤终端接收解复用电路。
2、24位NRZ码产生电路本单元产生NRZ信号,信号速率可根据输入时钟不同自行选择,帧结构如下图所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16路为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号。
LED亮状态表示1码,熄状态表示0码。
五、实验框图六、实验步骤1、观测时钟信号输出波形。
信号源输出两组时钟信号,对应输出点为“CLK1”和“CLK2”,拨码开关S4的作用是改变第一组时钟“CLK1”的输出频率,拨码开关S5的作用是改变第二组时钟“CLK2”的输出频率。
拨码开关拨上为1,拨下为0,拨码开关和时钟的对应关系如下表所示按如下方式连接示波器和测试点:启动仿真开关,开启各模块的电源开关。
1)根据表1-2改变S4,用示波器观测第一组时钟信号“CLK1”的输出波形;2)根据表1-2改变S5,用示波器观测第二组时钟信号“CLK2”的输出波形。
2、用示波器观测帧同步信号输出波形。
信号源提供脉冲编码调制的帧同步信号,在点“FS”输出,一般时钟设置为 2.048M、256K,在后面的实验中有用到。
按如下方式连接示波器和测试点:启动仿真开关,开启各模块的电源开关。
将拨码开关S4分别设置为“0100”、“0111”或别的数字,用示波器观测“FS”的输出波形。
3、用示波器观测伪随机信号输出波形伪随机信号码型为111100010011010,码速率和第一组时钟速率相同,由S4控制。
实验信号发生器和示波器的使用

实验五信号发生器和示波器的使用1. 实验目的(1)学习信号发生器和示波器的基本使用方法。
(2)利用信号发生器和示波器观测电器元件的特性。
2. 实验说明信号发生器和示波器是在电工测量技术、电路理论研究和电子工程技术中应用最为广泛的电子仪器。
1) 信号发生器信号发生器主要作为研究电路的频率特性和其他特性时所需要的激励源,最常见的是正弦信号发生器和多用信号源,它的输出频率、输出电压和输出功率都是厂家根据它的用途提前设定或者是在客户要求的范围内可调的。
本实验室采用的是TFG5001V 1MHz型谐波信号发生器——暨厂家按本实验室的要求所订制的一种多用信号发生器,它既可以产生正弦波、方波还可以产生合成后的多次谐波,并且使用菜单键代替了传统的可调旋钮和按键,使用更加方便。
2) 示波器示波器的最大特点是能将抽象的电信号和电信号的产生过程转变成具体的可见的图像,以便于人们对信号和电路特性进行定性分析和定量测量。
示波器的种类繁多,功能各异,从使用功能上大致可分为两大类,一类是通用电子示波器,另一类是专用示波器,其中前者最为常见应用最为广泛。
本实验室采用的是DF4313D 10MHz通用型双踪电子示波器,它具有两个独立的输入通道—Y1、Y2,可以同时观测两个被测信号的波形,两个通道输入波形的振幅、水平方向和垂直方向的位移都是分别可调的,但是被测信号的频率调节旋钮是共用的。
3) 示波器在观测电路元件的波形时,是利用测试夹子并联在待侧元件两端使用的(如同电压表一样)。
若需观测电路中电流的波形时,则取采样电阻两端电压信号即可,因为电阻两端电压与通过其中的电流是同相位的关系。
3. 实验内容与步骤1)用示波器观测并记录信号发生器输出的正弦波、方波,要求频率:100~1000Hz,电压:1~2V,正弦波和方波各记录一个完整的波形。
2)用两只不同阻值的电阻组成一个串联电路如图4-1(a)所示,输入端加以正弦信号,频率100~1000Hz,电压1~2V,用示波器同时观测并记录两个电阻上的电压波形。
信号实验报告

第一部分正文实验一常用信号观察一、实验目的:1.了解常用波形的输出和特点;2.了解相应信号的参数;3.了解示波器与函数发生器的使用;4.了解常用信号波形的输出与特点。
二、实验原理:描述信号的方法有很多可以是数学表达式(时间的函数),也可以是函数图形(即为信号的波形)。
信号的产生方式有多种,可以是模拟量输出,也可以是数字量输出。
本实验由数字信号发生器产生,是数字量输出,具体原理为数字芯片将数字量通过A/D 转换输出,可以输出广泛频率范围内的正弦波、方波、三角波、锯齿波等等。
示波器可以暂态显示所观察到的信号波形,并具有信号频率、峰值测量等功能。
三、实验内容:1.由数字信号发生器产生正弦波、三角波、方波以及锯齿波并输入示波器观察其波形。
2.使用示波器读取信号的频率与幅值。
四、实验设备:1.函数信号发生器一台2.数字示波器一台。
五、实验步骤:1.接通函数发生器的电源,连接示波器。
2.利用函数发生器产生各种基本信号波形,并将波形结果导入计算机中,保存图像,写出各种信号的数学表达式。
六、实验结果:根据实验测量的数据,绘制各个信号的波形图,并写出相应的数学函数表达式。
该试验包括交流:① 该正弦信号的数学表达式为:)1001sin(4t y π=图1-1输入正弦波(Hz 504,V ±) ② 该方波的数学表达式为: )]02.001.0()02.0([4∑∞-∞=----=k k t u k t u y图1-2 输入方波(Hz 504,V ±) ③ 该三角波的数学表达式为:∑∞-∞=-------+-----=k k t u k t u k t k t u k t u k t y )]}02.002.0()02.001.0()][02.0(02.0[800)]02.001.0()02.0()[02.0(800{图1-3 输入三角波(Hz 504,V ±) ④ 该锯齿波的数学表达式为:∑∞-∞=-----=k k t u k t u k t y )]}02.002.0()02.0()[02.0(400{图1-4 输入锯齿波(Hz 504,V ±) 实验的一些问题:数字信号发生器的示值与示波器测量有一定的误差。
测控仪器电路实验报告(3篇)

第1篇一、实验目的1. 熟悉测控仪器的基本原理和组成。
2. 掌握常用测控仪器的操作方法和应用。
3. 通过实验,加深对测控电路的理解,提高动手能力和分析问题能力。
二、实验原理测控仪器电路实验主要涉及以下几种仪器:信号发生器、示波器、交流毫伏表、数字万用表、晶体管毫伏表、直流稳压电源等。
这些仪器在电子测量和实验中发挥着重要作用。
1. 信号发生器:能够产生正弦波、方波、三角波等信号,用于测试电路性能和调整电路参数。
2. 示波器:用于观察和分析信号波形,测量信号的幅度、频率、相位等参数。
3. 交流毫伏表:用于测量正弦交流电压的有效值,广泛应用于信号检测和电路调试。
4. 数字万用表:具有测量电压、电流、电阻、电容等多种功能,是电子实验中常用的测量工具。
5. 晶体管毫伏表:用于测量正弦信号的有效值,适用于低频信号测量。
6. 直流稳压电源:为电路提供稳定的直流电源,保证电路正常工作。
三、实验器材1. 信号发生器2. 示波器3. 交流毫伏表4. 数字万用表5. 晶体管毫伏表6. 直流稳压电源7. 测控电路实验箱8. 电阻、电容、二极管等元器件四、实验内容1. 信号发生器使用- 连接信号发生器,输出正弦波信号。
- 调整频率和幅度,观察示波器显示的波形。
- 测量输出信号的频率和幅度。
2. 示波器使用- 连接示波器,观察信号发生器输出的正弦波信号。
- 调整示波器的垂直和水平扫描,使波形清晰。
- 测量信号的幅度、频率和相位。
3. 交流毫伏表使用- 连接交流毫伏表,测量信号发生器输出的正弦波信号的有效值。
- 比较交流毫伏表和示波器测量的结果。
4. 数字万用表使用- 使用数字万用表测量电阻、电容、二极管等元器件的参数。
- 分析测量结果,判断元器件的质量。
5. 晶体管毫伏表使用- 连接晶体管毫伏表,测量信号发生器输出的正弦波信号的有效值。
- 比较晶体管毫伏表和示波器测量的结果。
6. 直流稳压电源使用- 连接直流稳压电源,为电路提供稳定的直流电源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性电子电路实验
信号发生器
专业:
班级:
姓名:
学号:
实验原理:
一、方案比较网上方案:
参考电路:
方案比较:
与网上方案相比,提供的参考电路有如下几个优点:①比较简单方便,比较两张电路图,可以明显看出参考电路比较简洁,所用的原件比较少,不容易出错,便于检查,而且比较便宜。
②网上方案所用的是ua747和ua741是通用的运放器,精度不高,性能不是很好。
而参考电路用的是TL084精度高,输入电阻很大,并且运行速度很快。
③网上方案用到了选择开关来选择接入的电路,使实验变得不方便。
而参考电路属于全自动,并不需要更多操作。
④网上方案在三角波——正弦波转换电路利用了场效应管3DJ13A而参考电路只用了TL084和电阻、电容,是一种技术上的进步。
二、电路图:
参数设计:
R1=10K R2=22K R3=1K R4=2K R5=1K R6=1K R7=10K R8=2K R9=10K R P1=10K R P2=10K C1=10nF C2=10nF 稳压管
三、电路仿真结果方波:
三角波及正弦波:
四、硬件实物图
五、调试结果:频率大约在500Hz~5KHz
六、实验总结
本次实验,参考了老师给的参考资料和网上资料,使用了Multisim仿真软件进行仿真,仿真出来的结果非常符合要求,非常理想。
但是在实物焊接后,因元器件和人工的原因,出现了误差,比较容易出现失真,误差比较大。
七、体会和建议
1、要熟练掌握仿真软件的使用和对电路图的理解,这样才能比较容易的理解这个实验,不容易出现失误。
2、仿真结果没有出现理想的波形图,要检查电路,对电路的节点也要检测。
要有耐心。
3、电路排线要尽可能的少,这样对于后续的电路检测有很大的帮助。