深入剖析压差的调节方法

深入剖析压差的调节方法
深入剖析压差的调节方法

深入剖析GMP区域调节压差的方法

网上有些文章会说明压差式靠余风量保持平衡的,这种说法是有问题的。

首先从概念上说明,风量不是一个固定的容积量,它的单位是m3/h,显然它是一个状态量。而压差的存在是因为房间内有大于/小于该房间的送风容积量,而同时存在排风量与送风量相同,才能保持一定的压力平衡。

GMP区域分为受控区域与非受控区域,受控区域中的压差是靠自动化控制的,我们一般通过控制柜的面板进行监控与调节。该自动化控制主要靠调节排风VAV阀门进行,比如:假设一生产车间的送风量为600m3/h,排风与送风量一致,原压力为+15Pa,现在要提升至25Pa,只需要将控制柜上的压力调节至+25Pa,控制系统会反馈到VAV排风阀上,该VAV会先减少排风量,排风量减少,送风量不变,会导致房间压力越来越大,这时VAV阀门会恢复至600m3/h,此时房间内的压力也会刚好达到+25Pa,送/排风量也达到平衡。

但是进入GMP区域都是由非GMP区域过渡的,这些区域一般不会使用VAV变风量调节阀,而是使用CAV定风量调节阀,这也是从成本上考虑的。换言之,没有VAV自控,那就需要通过CAV的手动控制进行调节。那么问题来了,定风量阀是需要手动调节的,假如开门或者关门打破压差平衡,那我们就需要时刻爬上去调节?很显然有其他因素影响压差的平衡,那就是漏风量。无论是GMP区域还是非GMP区域,门缝的漏风是绝对存在的。所以上述中的排风量就要包括漏风量了。那么没有VAV阀门我们也就能解决压差的问题了。

假定,换衣间的压差需要提高+5Pa,那么可以通过调增大送风口风量或减小排风口风量。此时压力会上升,随着压力的上升,单位面积内的漏风速度会上升,漏风量会增大,直到送风量与排风口+漏风口的风量相同,则该房间的压差上升并且保持平衡。当然,由于手动调节,需要多次调试才能达到满意结果。

在这次overhaul期间,我发现基本每扇门底部都有门刷,门刷不是密闭的。设计者为什么要留下门刷这块容易漏风的误区呢?有如下原因:

1.调试期间有压差测试,但是压差测试只能通过一根软气管通向门的另一侧。有了

这个底缝,压差试验就很容易解决。

2.门刷自身功能:自净开关门时产生的地面污染。

3.产生一定的漏风量,便于调节房间压差,而且可以通过漏风的气流方向能判断出

压差梯度,便于管理。

Aleaza Tan

2016.12.Aug

渗透压

排泄的概念:机体将物质代谢的终产物或机体不需要的、多余的水分、盐分及进入体内的某些药物、毒物等排出体外的过程称为排泄(excretion)。(不包括粪便) 一肾的血液循环 肾动脉血液在肾小球和髓袢处两次分成毛细血管,继而依次汇合成小叶间静脉、 弓形静脉、叶间静脉,最终汇入肾静脉。 肾动脉直接由腹主动脉垂直分出,粗而短,血流量大,血压较高; 入球小动脉口径粗于出球小动脉口径,有利于血浆成分透出肾小球进入肾小囊腔; 血液经肾小球滤过后,胶体渗透压升高,血液经过肾小球后,血流减慢,血压降低, 有利于小管液与血液之间进行物质转运(包括重吸收和分泌)。 二尿的生成 尿的生成包括三个过程:即肾小球的滤过作用,肾小管-集合管的重吸收作用, 以及肾小管-集合管的分泌作用。 (一)肾小球的滤过作用 A肾小球的滤过率:单位时间内从肾小球滤过的血浆毫升数,它反映了肾小球 滤过作用的强弱。 B影响肾小球滤过率的因素: 1.滤过膜的通透性 三层:肾小球毛细血管内皮、基膜和肾小囊脏层上皮。急性肾小球性肾炎:通透性过强2.有效滤过压 有效滤过压=肾小球毛细血管压-(血浆胶体渗透压+肾小囊内压) 3.肾血浆流量 (二)肾小管与集合管的重吸收作用 重吸收是指小管液流经肾小管和集合管时,小管液中的水分和各种溶质将全部或部分地被肾小管上皮细胞重新吸收并转运到管外返回血液的过程。 位置: 近球小管:多数物质;其它管段:少量 方式: 被动重吸收:水、尿素;主动重吸收:葡萄糖、氨基酸、Na+、蛋白质 结构基础:刷状缘、基底纹、线粒体 选择性:水分:99% 葡萄糖、蛋白质:全部 Na+、Cl-、Ca2+、Mg2+、K+:绝大部分 尿素、尿酸、SO42-、HPO3-、PO43-:大部分 肌酐:无 (三)肾小管和集合管的分泌作用(排泄作用) 此处,分泌作用指的是小管上皮细胞将新陈代谢产生的物质转运到管腔中的 过程,如H+、NH3等;排泄作用指的是小管上皮细胞将血液中某些物质 转运到管腔中的过程,如K+、肌酐、外来的药物和体内解毒产物等。 由于分泌物和排泄物都进入小管液中,事实上二者很难严格区分,所以把二者 统称为分泌,以免与总的排泄概念相混淆。

空气开关注意事项

小型断路器(空气开关)以往电气工程和家庭装潢一般使用熔断丝作为电路过载保护装置,它能达到安全的效果。但如安装不当时会造成浪费与误用。现在工程及家庭装潢中推荐使用小型断路器,因其拥有以下优点: 过载或短路后空气开关会迅速断开(分离),查明原因后可重新闭合,可以无数次地反复使用。从长远使用成本看,价格反而低于保险丝,而且方便、快捷、安全。 工作原理:小型断路器内部结构是利用双金属片热膨胀弯曲触动杠杆,使断路器脱扣起到超负载保护作用。过载保护时会有一定的时间差区别。 当短路发生时,电流流过感应线圈而产生一强大磁场,推动杠杆使断路器快速脱扣。 现在以断路器的标准工作温度为400 ,在不同的温度下额定过载脱扣电流应略作调整。如一只20A的单极断路器,在400C的额定电流为20A。当温度升至600C时可得调整系数为0.9,则断路器之额定电流为20A×0.9=18A。 上面介绍了空气开关A、B、C、D的四种特性,而我们在日常使用中多数都是采用C 类型的断路器。断路器的脱扣特性,应使得它们对电路有足够的保护,而无早或过晚的动作。C类型式的断路器是指在300C±50的条件下。 1、1.3mI(mI为额定电流),1小时之内不脱扣(即开关不断开)。然后通过1.45mI,1小时之内脱扣(即开关断开)。 2、超过:5mI、0.1秒内不脱扣。 3、超过:10mI、0.1秒内脱扣。 除了基准温度外,环境温度在-50和+400C范围内不应对断路器的脱扣特性有不合格的影响。 小型断路器拥有以下保护功能、形式和技术特性。 1过载保护。2、短路保护。3、过热保护。4、相间保护。5、欠电压保护。6、过压保

控制阀选择要点_选好工作压差和重视关闭压差

控制阀选择要点—选好工作压差和重视关闭压差 李宝华 摘要:工业过程控制阀是一种根据用户操作条件(过程数据)而量身定制的系列产品,有多种类型,不同的应用场合有各自适合的解决方案,合理地进行控制阀选择才能更好地发挥其在过程控制中的终端控制作用。控制阀的选择要点有流量计算、噪声预估、适用类型、阀体材料、关闭要求和阀座泄漏量、流量特性、端面连接、密封及填料、相关附件、安全应用,等等,这些要点一直备受关注。本文试对控制阀选择要点中的选型计算所依据的关键过程数据-工作压差和关闭压差进行探讨。 关键词:控制阀;选择要点;关键过程数据;工作压差;关闭压差。 引言 工业过程控制阀()是自动控制的终端控制元件,是工业现场使用最多 的执行器。控制阀组件或控制阀装置简称控制阀(又称调节阀),是一种根据用户操作条件(过程数据)而量身定制的系列产品。控制阀有多种类型,不同的应用场合有各自适合的解决方案,合理地进行控制阀选择才能更好地发挥其在过程控制中的终端控制作用。控制阀的选择主要表现在结构类型、作用方式、流量特性和流通口径等方面,其选择要点有流量计算、噪声预估、适用类型、阀体材料、关闭要求和阀座泄漏量、流量特性、端面连接、密封及填料、相关附件、安全应用,等等,这些要点一直备受关注。本文试对控制阀选择要点中的选型计算所依据的关键过程数据工作压差和关闭压差进行探讨。 控制阀的选择 控制阀的选择包括:根据工艺条件,选择合适的结构和类型;根据工艺对象的特点,选择合适的流量特性;根据工艺参数,选择阀门口径;根据工艺压力和选用阀门情况,选择合适的执行机构;根据工艺过程的要求,选择合适的辅助装置。选择的基点是控制阀的适用性和经济性,量身定制、最优组合。 控制阀的选择顺序为:确认选择条件、根据工艺条件初选阀的型式、选择和计算流量系数、选择流量特性、确定相关结构和执行机构、作用方式组合选择、确定所需的附件。 控制阀的选择的考虑因素有:被调介质的种类、温度、压力、密度、粘度、腐蚀性;控制阀入口压力范围与出口压力范围;介质的流量范围;进出口管道材质与尺寸、连接方式;执行机构的类型与要求;噪音水平;安全方面的考虑。 控制阀的选择中决定控制阀结构和类型的因素有:控制阀的压力等级、工作压差、流通能力、调节频率、控制性能、可调比、噪音、振动、气蚀、腐蚀、冲刷、可维修性、经济性。 在控制阀众多选择条件中,控制阀的工作压差和关闭压差是关键的过程数据,工作压差(或称为调节压差)主导着流量系数(流通能力)的计算选择和影响着流量特性的选择;关闭压差主导着执行机构的输出力矩(扭矩)的计算选择和影响着型式的选择,关系着控制阀的紧密关闭;此外,两者都用于确定控制阀的结构和类型。因此,在控制阀计算选择时一定要选好工作压差和重视关闭压差。 图1 控制阀的选择图2 控制阀数据表(局部)

排泄与渗透调节

排泄与渗透调节 主要内容 1、概述:排泄及其途径、排泄的意义;尿的成份及其理化特性。 2、尿的形成:肾小球滤过机能;肾小管、集合管的重吸收机能;肾小管、集合 管的分泌和排泄机能;影响滤过、重吸收和分泌的因素。 3、肾脏泌尿机能的调节:肾血流量的调节;肾小管、集合管重吸收、分泌和排泄机能的调节。 4、水生动物渗透压的调节:水生动物的水环境;渗透调节和体积调节:渗透压调节机理。 自学内容 1、排泄及其途径、排泄的意义;尿的成份及其理化特性。 2、水生动物渗透压的调节:水生动物的水环境;渗透调节和体积调节;渗透压调节机理。 基本要求 l、了解排泄在维持机体内环境相对稳定的意义。 2、了解尿的形成过程及其影响因素。 3、了解水生动物渗透压调节过程及机理。 重点、难点:1.尿的形成过程; 2.泌尿功能的调节。 概述 ※排泄(excretion):机体将物质代谢的尾产物和机体不需要的物质(包括进入体内的异物和药物、多余的水份盐类等)排出体外的过程,称为排泄。排泄与排遗区别: 生理学上将物质代谢产物,经过血液循环由排泄器官排出体外过程—排泄。 由消化道排出的食物残渣,它既未参与体内细胞代谢,又未经过血液循环—排遗 ※※排泄途径与排泄物: ⅰ.呼吸器官排出:主要是CO 2 和少量水份,以气体形式随呼气排出,鱼类等 水生动物还有NH 3、CO 2 和某些离子随鳃排出。 ⅱ.由消化道排出:排泄物混合于粪便中,如担色素及一些无机盐如钙、镁、铁等)肠膜排出)。 ⅲ.皮肤排出:水分及汗液(汗腺分泌),汗液包括水、少量尿素及无机盐。 ⅳ.肾脏排出:肾脏是最很需要的排泄器官,排泄物称尿,排泄物种类多,数量大,因此肾脏是重要的排泄器官。调节着机体水平衡,渗透压平衡与酸碱平

压差式流量开关安装指导书

压差式流量开关安装说明书
压差式流量开关
应用说明 本开关为单刀双掷(SPDT)的流量开关,用于检测、观察 液体流量的继动器。 压差式流量开关一般用于空气调节,供水设备等方面,用于 感应水、乙二醇流体经液流管道的液体流量变化。其典型应用是 检测冷却系统液体入口、出口之间的压差,当系统中的压差(流 量)下降到设定值时或无压差(液流)时,流量开关输出一个警 报或切断功能的警报提供给自控系统。 技术参数 型号 最大电压 最大电流 输出 设定断开值 设定复位值 最大允许静压 最大允许压差 工作介质 工作温度 重复性偏差 外壳防护等级 电缆线 连接口
WFS10013BA 250VAC
(3 )A 常开或常闭可选(SPDT) 10±1kPa 13±1kPa
10 2.0MPa 0.8MPa
水、乙二醇 -20℃~82℃ <1kPa
IP54
×2;长度 1000mm 高压侧接口:G1/4” 低压侧接口:7/16”-20UNF (1/4” SAE)
0.75mm
2
图 1 压差式流量开关外形图
图 2 纳子
图3
1/4”SAE
外丝-G1/2”内丝接头 (包括 1 个纳子)
附件及选配件 纳子 1 个,见图 2; 1/4”SAE -G1/2”外丝接头 1 个,见图 3; G1/4”内丝-G1/2”外丝接头及配套密封垫片 1 个,见图 4
图 4 G1/4”
内丝-G1/2”外丝接头
1
压差式流量开关安装说明书

安装位置 安装位置 合适的流量开关测压位置非常重要,有利于保证压差测量值 的准确性,选择测压位置应考虑一下几方面: 应尽量靠近换热器的进出水水管的上部作为测压口, 不允许 从水管下部取压,避免垃圾进入测压管,进出水管两个测压 口之间的距离应尽可能短; 流量开关测压口与换热器之间不要有阀门等关断水流的装 置,以免影响其准确性; 流量开关的“+”端为 G1/4”外管螺纹必须接壳管换热器的 进水端,“-”端为 7/16”-20UNF 带喇叭口外管螺纹(通常 称 1/4”SAE)必须接壳管换热器的出水端; 两个测压口之间需要铜管连接,请考虑铜管走向,尽量躲开 可能出现人为损坏的位置,安装示意图见图 5。 如果冷水机组安装在室外, 压差开关的安装位置对于冬天需 要放水的换热器(单冷机组),最好稍高于换热器的进水口 这样可以排出压差开关一侧的水。
、G1/4”内丝-G1/2”外丝接头及配套密封垫片选入换热器进水管 1/2”内丝接头上,然后将压差流量开关的“+”端拧入 G1/4” 内丝口; 3、将 1/4”SAE -G1/2”外丝接头选入出水管 1/2”内丝接头上; 4、选择合适长度的?6 紫铜管,并在铜管外套上橡塑保温管,将 铜管一端保持圆度并去除毛刺,将 1/4”纳子套入铜管,使用 专用铜管扩口工具(见图 6)进行扩喇叭口; 5、 将扩好喇叭口带纳子的铜管拧入压差式流量开关的“-”端, 将另外一端作同样处理拧入出水管测压口上,将铜管整理美 观,必要时将铜管进行固定,以防碰坏; 6、 将压差式流量开关的铜质壳体使用橡塑保温进行保温,以免 产生凝结水。 注意: 注意:螺纹连接需缠绕生料带, 螺纹连接需缠绕生料带,以免发生泄漏
2
! 在任何情况下请不要尝试拆开压差开关铜外壳!
压差式流量开关 法兰 焊接点 进水管 4 6.35铜管 压差开关"-"端 3 纳子 5 1/2"外丝-1/4"内丝接头 压差开关"+"端 1 1/2"内丝水管焊接 在主进出水管上 进水管
接线 1、压差式流量开关具有两根电线接常开端 NO 输出。如需要常 闭端输出可以打开压差式流量开关的接线盒,将接在 NO 端的 电线拔下插在 NC 端即可。内部接线图见图 7。 2、将压差式流量开关的输出线接到机组的控制回路中,流量开 关输出触点允许通过电流阻性负载为 10A,感性负载为 3A。
图 6 扩喇叭口示意图
壳管换热器
法兰 焊接点 出水管
4 3 2 1
1
6.35铜管 纳子 1/2"外丝-7/16"外丝喇叭接口 "内丝水管焊接在主 进出水管上
2
图 7 压差流量开关接线图 应用于冷水机组的调试和问题处理 图 5 壳管式换热器用压差流量开关安装示意图 1、 调试前请确认冷水机组水系统内已注满水并且已排除空气。 安装 2、 当水泵开机而压差流量开关不能复位时,请检查压差式流量 1、选择好合适的安装位置后,在换热器的进、出水管上各打孔 开关“+”端、“-”是否连接正确,取压管内空气是否排尽。 并焊接 1/2”内丝接头,内丝接头焊接的一端需伸出管壁不少 3、 多台冷水机组并联时,必须保证压差开关的测压口与换热器 于 15mm,以避免管道的污水进入取压口; 的进出口之间不再有阀门等断流装置。 注意: 注意:安装前必须阅读压差式流量开关安装说明书, 安装前必须阅读压差式流量开关安装说明书,并请参照要求安装, 并请参照要求安装,如有疑问, 如有疑问,请与当地最近的约克维修中心联系
2
出水管
压差式流量开关安装说明书

调节阀压差的确定

调节阀压差的确定 一、概述 在化工过程控制系统中,带调节阀的控制回路随处可见。在确定调节阀压差的过程中,必须考虑系统对调节阀操作性能的影响,否则,即使计算出的调节阀压差再精确,最终确定的调节阀也是无法满足过程控制要求的。 从自动控制的角度来讲,调节阀应该具有较大的压差。这样选出来的调节阀,其实际工 有人会问,一般控制条件在流程确定之后即要提出,而管道专业的配管图往往滞后,而且配管时还需要调节阀的有关尺寸,怎样在提调节阀控制条件时先进行管系的水力学计算呢?怎样进行管系的水力学计算,再结合系统前后总压差,最终在合理范围内确定调节阀压差,这就是本文要解决的问题。 二、调节阀的有关概念 为了让大家对调节阀压差确定过程有一个清楚的认识,我们需要重温一下与调节阀有关的一些基本概念。 1、调节阀的工作原理 如图1所示,根据柏努力方程,流体流经调节阀前后1-1和2-2截面间的能量守恒关系如下式所示。 ) 1(222 2 222111------+++=++f h g U rg P H g U rg P H

由于H 1=H 2,U 1=U 2,则有: 在流体阻力计算时,还有: 则有: 2 1当调节阀单位相对开度变化引起的相对流量变化是一个常数时,称调节阀具有直线流量特性。其数学表达式为: 其积分式为: 代入边界条件l=0时, Q=Qmin; l=lmax 时, Q=Qmin 。得: )2(2 1-------= rg P P h f 2)10(max max ------=l l kd Q Q d )11(max max -------+=常数l l k Q Q max min 1Q Q k - =max min Q Q = 常数

渗透压

植物细胞对水分的吸收 ----渗透作用我们都知道植物细胞对水分的吸收分为:扩散、集流和渗透作用。扩散是物质依浓度梯度向下移动,集流是物质依压力梯度向下移动,那么在渗透作用里物质是怎么移动呢? 我们来看两个实验,实验一:假定一只烧杯,用分别透膜分隔成两部分,将纯水放在透膜的一侧,糖溶液放在另一侧,要等量注入,注意观察,几分钟后你会发现,纯水一侧水面逐渐下降,而另一侧液面则漫慢上升。直到透膜两侧液面最后达到移动平衡为止。 实验二:是一个十分有趣的“人造细胞”试验。如果向黄血盐[K4Fe(CN)6]溶液中投入一小块硫酸铜的晶体,其上立即形成一层棕红色的亚铁氰化铜[Cu2Fe(CN)6]沉淀(这种沉淀是一种半透膜,只有水能透过)。会发现在黄血盐溶液中CuSO4被一层半透膜包裹着。一会儿,将发现包裹渐渐增大;就像细胞“长大”一样,直到半透膜内外的溶液浓度都相等为止。 渗透是指溶剂分子通过半透膜而移动的现象,我们先来讨论自由能和水势的概念。 在以上两个例子中都发生了水分的运动,要运动就需要能量,物质只能自发地从高活度(浓度)区域向低活度的区域移动,水也是一样,溶液中水的活度比纯水中水的活度小,浓溶液中水的活度较稀,溶液中水的活度小,纯水中水的活度最大,因此,纯水或稀溶液中的水就会自发地向浓度较高的溶液中移动,这是由溶液中的能量梯度决定的,水的这

种能用于作功的能量大小的度量,就是水势。 图a 图b 用一面只允许溶剂分子通过而不允许溶质分子通过的半透膜M 将纯溶剂A与溶液B分隔(见上图a、b),则溶剂分子就从A通过M进入B中,使溶液B体积扩大,液面上升,达到平衡后,液面才停止上升。这时,M两侧的液体压强差为P=PB-PA=ρghe。式中he为平衡时B液面上升高度,P称为该溶液的渗透压。教科书对渗透现象的解释是:A 中溶剂分子数密度大于B中的溶剂分子数密度,故单位时间内由A经M进入B的溶剂分子数就大于由B经M进入A的溶剂分子数。净效果就是A中溶剂分子进入B中,形成渗透,直至平衡。这种对渗透现象原因的解释简单形象,易于为学生理解接受,但并不妥当。按照这一解释,渗透现象中除了溶剂分子进入B,使整个渗透体系的重力势能增大之外,系统无其他能量变化。这就违背了能量守恒定律,容易对学生产生误导。 解释(一),根据热力学原理,系统中物质的总能量可分为束缚能和自由能(free energy)两部分。束缚能是不能用于做功的能量,而自由能是在温度恒定的条件下可用于做功的能量。实际水分在细胞内的运动是由各个细胞内水分的自由能存在差别而引起的。而我们将

病理生理--体液容量及渗透压的调节

病理生理--体液容量及渗透压的调节 细胞外液容量和渗透压的相对稳定是通过神经-内分泌系统的调节实现的。 1.渴感、抗利尿激素、醛固酮的作用 渗透压感受器主要分布在视上核和颈内动脉附近。正常渗透压感受器阈值为280mmol/L.当成 人细胞外液渗透压有1%~2%变动时,就可以影响抗利尿激素(antidiuretichormone,ADH)释放。精神紧张、疼痛、创伤以及某些药物和体液因子,如氯磺丙脲、长春新碱、环磷酰胺、血管紧张素Ⅱ等也能促进ADH分泌或增强ADH的作用。在细胞外液容量有较大幅度改变时,血容量和血压的变化(非渗透性剌激)可通过左心房和胸腔大静脉处的容量感受器和颈动脉窦、主动脉弓的压力感受器而影响ADH的分泌。 当细胞外液渗压升高时,则剌激下丘脑的视上核及颈内动脉的渗透压感受器和侧面的口渴中枢,也可反射性引起口渴的感觉,从而引起ADH释放及口渴。口渴主动饮水而补充水的不足;ADH可加强肾远曲小管和集合管对水的重吸收,减少水的排出;同时抑制醛固酮的分泌,减弱肾小管对Na+的重吸收,增加Na+的排出,降低了Na+在细胞外液的浓度。上述调节结果使体内水的容量增加,血浆渗透压恢复正常。若血浆渗透压降低则引起相反的反应,抑制渴感、ADH的释放和促进醛固酮分泌。 实验证明,细胞外液容量的变化可以影响机体对渗透压变化的敏感性。许多血容量减少的疾病,其促使ADH分泌的作用远超过血浆晶体渗透压降低对ADH分泌的抑制,说明机体优先维持正常的血容量。 2.心房肽的作用 心房肽(atriopeptin)是影响水Na+代谢的重要因素。心房肽或称心房利钠肽(ANP)是一 组由心房肌细胞产生的多肽,约由21~33个氨基酸组成。当心房扩展、血容量增加、血Na+增 高或血管紧张素增多时,将剌激心房肌细胞合成释放ANP.ANP释放入血影响水钠代谢的机制:①减少肾素的分泌;②抑制醛固酮的分泌;③对抗血管紧张素的缩血管效应;④拮抗醛固酮的滞 Na+作用。因此,有人认为体内可能有一个ANP系统与肾素血管紧张素-醛固酮系统一起担负着调节水钠代谢的作用。 3.水通道蛋白的作用 水通道蛋白(aquaporins,AQP)也是影响水Na+代谢的另一重要因素。AQP是一组构成水通道与水通透性有关的细胞膜转运蛋白,广泛存在于动物、植物及微生物界。目前在哺乳动物组织监定的AQP有8种(AQP0、AQP1、、AQP2、AQP3、AQP4、AQP5、AQP6、AQP7),统称为Aquaporins (AQPs),每种AQP有其特异性的组织分布。不同的AQP在肾和其它器官的水吸收和分泌过程中有着不同的作用和调节机制。水通过水通道转运与简单扩散不同,其渗透通透性远大于扩散通透性。水利用水通道蛋白可以向高渗方向移动,这一过程很快,不需要门控等调节。在生理情况下,基本上处于激活状态,且不受质膜分子组成及温度等的影响。 ①AQP1:位于红细胞膜上,生理状态下有利于红细胞在渗透压变化的情况下,如通过髓质高渗区时得以生存;也存在于淋巴管、毛细血管和小 静脉内皮细胞中,对水分迅速进入淋巴管和血管床,调控细胞间液体量、毛细血管流体静压和血浆胶体渗透压起着重要作用;也位于近曲小管享氏袢降支管腔膜和基膜以及降支直小血管管腔膜上和基膜,对水的运输和通透发挥调节作用。 ②AQP2:位于集合管,约有10%的肾小球滤过液流经集合管时在AQP2的参与下被重吸收,在 肾浓缩机制中起重要作用。当AQP2发生功能缺陷时,将导致尿崩症。 ③AQP3位于肾集合管、膀胱、皮肤、巩膜和胃肠道粘膜。AQP3不仅能转运水,而且也能转运尿素和甘油,对尿液浓缩起重要作用。拮抗AQP3可产生利尿反应。 :位于集合管主细胞基质侧,可能提供水流出通道。也分布于渴中枢,可能参与AQP4④

气压自动开关GYD系列

气压自动开关系列 产品详细说明 品牌:东计型号:GYD20-16 额定电压:380(V)额定电流:16(A)最大工作压力:1.5MPA (Pa)产品认证:3C 当空气压缩机工作时,压缩空气从储气罐进入气压自动开关。气压自动开关的闭合与断开是按预先设定的压力而动作。空气压缩机正常运转时,开关处于闭合状态,当储气罐存气压力达到预定压力的上限时,压缩空气经橡皮顶动顶针,通过跳桥使跳簧带动跳板,从而使胶木座内动触头分离开,达到切断控制电路,使电动机停止转动。当储气罐气压降至所标压力的下限时,重新起跳,使电路接通周而复始工作,气压自动开关上设有放空阀,当跳板跳动时,压下顶杆,使放空阀打开达到排气目的,为第二次工作时减轻电动机起动负荷。二、适用范围 GYD系列气压自动开关,适用于装载电动机功率5.5KW及以下的微型空气压缩机,作控制电动机的起动,运转和停止之用、该开关智能电子电动机保护器(磁力起动器)或其他合适的断电器联接后,也可适用于排气量1m3/min及以下微型空气压缩机。 三、技术数据 四、主要技术指标和有关参数 性能数据型号额定 电流 (A) 额定 电压 (V) 额定 压力 (MPa) 压力调 节 范围 (MPa) 压力差 (MPa) 进气 接头 螺纹 排气 接头 螺纹 GYD20-16/A 16 380 0.7 0.3~0.7 0.3±0.05 G3/8" M10×1 GYD20-16/B 16 380 1.0 0.4~1.0 0.3±0.05 G3/8" M10×1 GYD20-16/C 16 380 1.5 0.6~1.5 0.3±0.05 G3/8" M10×1 GYD5-6.3/A 6.3 380 0.7 0.3~0.7 0.2~0.3 G3/8" M10×1 GYD5-6.3/B 6.3 380 1.0 0.4~1.0 0.25±0.35 G3/8" M10×1

溶液渗透压

溶液渗透压:取决于溶液中溶质颗粒数目的多少。 血浆渗透压大约为300mmol/L. 血浆渗透压由晶体渗透压和胶体渗透压组成 1,晶体渗透压是组成血浆渗透压的主要组成部分,占80%。主要来自钠和氯离子。 2,胶体渗透压是由血浆中的蛋白质组成,由于血浆中的蛋白质较少,所以形成渗透压小。其中白蛋白占胶体渗透压的75%-80% 血液渗透压对调节血管内外水的平衡和维护正常的血浆容量起重要的作用。 血浆的渗透压主要来自溶解于其中的晶体物质。 血浆晶体渗透压(晶体物质所形成的渗透压): 主要保持细胞内外水的平衡和细胞的正常体积 血浆胶体渗透压(蛋白质所形成的渗透压): 主要调节血管内外水的平衡和维持正常血浆容量 在医疗工作中,不仅大量补液时要注意溶液的渗透压,就是小剂量注射时,也要考虑注射液的渗透压。但临床上也有用高渗溶液的,如渗透压比血浆高10倍的2.78mol·L-1葡萄糖溶液。因对急需增加血液中葡萄糖的患者,如用等渗溶液,注射液体积太大,所需注射时间太长,反而不易收效。需要注意,用高渗溶液作静脉注射时,用量不能太大,注射速度不可太快,否则易造成局部高渗引起红细胞皱缩。当高渗溶液缓缓注入体内时,可被大量体液稀释成等渗溶液。对于剂量较小浓度较稀的溶液,大多是将剂量较小的药物溶于水中,并添加氯化钠、葡萄糖等调制成等溶液,亦可直接将药物溶于生理盐水或0.278mol·L-1葡萄糖溶液中使用,以免引起红细胞破裂。 渗透压是调节细胞内外体液环境稳定的重要因素之一,其高低变化可以直接影响机体的生理功能和代谢活动。 若血浆渗透压低于正常值,有可能会引起组织水肿。 血浆渗透压偏低可能是营养不良所造成的,所以平时饮食应注意多摄取营养,不可偏食厌食。关于血浆渗透压的叙述中正确的是:B.血浆渗透压主要来自血浆中的电解质 血浆渗透压(1)概念:渗透压指的是溶质分子通过半透膜的一种吸水力量,其大小取决于溶质颗粒数目的多少,而与溶质的分子量、半径等特性无关。由于血浆中晶体溶质数目远远大于胶体数目,所以血浆渗透压主要由晶体渗透压构成。血浆胶体渗透压主要由蛋白质分子构成,其中,血浆白蛋白分子量较小,数目较多(白蛋白>球蛋白>纤维蛋白原),决定血浆胶体渗透压的大小。 (2)渗透压的作用 晶体渗透压——维持细胞内外水平衡

空调冷冻水系统压差调节阀的选择计算

空调冷冻水系统压差调节阀的选择计算在中央空调管路中,对于冷水机组来说冷冻水流量的减小是相当危险的。在蒸发器设计中,通常一个恒定的水流量(或较小范围的波动)对于保证蒸发器管内水流速的均匀是重要的,如果流量减小,必然造成水流速不均匀,尤其是在一些转变(如封头)处更容易使流速减慢甚至殂成不流动的“死水”由于蒸发温度极低在蒸发器不断制冷的过程中,低流速水或“死水”极容易产生冻结的情况,从而对冷水机组造成破坏。因此,冷水机能的流量我们要求基本恒定的。但从另一方面,从末端设备的使用要求来看,用户则要求水系统作变化量运行以改变供冷(热)量的多少。这两者构成了一对矛盾,解决此矛盾最常用的方法是在供回水管上设置压差旁通阀,压差旁通阀工作原理是:在系统处于设计状态下,所有设备都满负荷运行时,压差旁通阀开度为零(无旁通水流量),这时压差控制器两端接口处的压力差(又称用户侧供,回水压差)P0即是控制器的设定压差值。当末端负荷变小后,末端的两通阀关小,供回水压差P0将会提高而超过设定值,在压差控制器的作用下,压差旁通阀将自动打开,由于压差旁通阀与用户侧水系统并联,它的开度加大将使供回水压差P0减小直至达到P0时才停止,部分水从旁通阀流过而直接进入回水管,与用户侧回水混合后进入水泵和冷水机组,这样通过冷水机组的水量是不变化的。水泵的运行有个高工作效率点,流量的变化使电机在高效率点处左右移动,但最终的结果,只要管路特性不变化,水泵会自动调节到高效率工作点,我们可以通过调节管路特性去改变水泵的工作效率点,这样也就是说,在流量的变化的时候,水泵要不断的改变自己的运行状态,这导致了电流不段的变化(变大或者变小),这对电机的运行都是有害的,变频泵的电机容易烧毁也就是这个结果,因此,在一般的情况下,最好能使水泵在一个稳定的状态运行,这就要求我们用旁通,无论上面的负荷怎样变化,水泵都能在稳定的流量下运行,而不会导致电机的电流不段变化,使电机的寿命降低! 为保证空调冷冻水系统中冷水机组的流量基本恒定;冷冻水泵运行工况稳定,一般采用的方法是:负荷侧设计为变流量,控制末端设备的水流量,即采用电动二通阀作为末端设备的调节装置以控制流入末端设备的冷冻水流量。在冷源侧设置压差旁通控制装置以保证冷源部分冷冻水流量保持恒定,但是在实际工程中,由于设计人员往往忽视了调节阀选择计算的重要性,在设计过程中,一般只是简单的在冷水机组与用户侧设置了旁通管,其旁通管管径的确定以及旁通调节阀的选择未经详细计算,这样做在实际运行中冷水机组流量的稳定性往往与设计有较大差距,旁通装置一般无法达到预期的效果,为将来的运行管理带来了不必要的麻烦,本文就压差调节阀的选择计算方法并结合实际工程作一简要分析。 一、压差调节装置的工作原理 压差调节装置由压差控制器、电动执行机构、调节阀、测压管以及旁通管道等组成,其工作原理是压差控制器通过测压管对空调系统的供回水管的压差进行检测,根据其结果与设定压差值的比较,输出控制信号由电动执行机构通过控制阀杆的行程或转角改变调节阀的开度,从而控制供水管与回水管之间旁通管道的冷冻水流量,最终保证系统的压差恒定在设定的压差值。当系统运行压差高于设定压差时,压差控制器输出信号,使电动调节阀打开或开度加大,旁通管路水量增加,使系统压差趋于设定值;当系统压差低于设定压差时,电动调节阀开度减小,旁通流量减小,使系统压差维持在设定值。 二、选择调节阀应考虑的因素

M 鱼类的渗透压调节

鱼类的渗透压调节 Q:为什么海水鱼的肉吃起来不咸,而海蜇皮吃起来是咸的? 海洋动物有着自己特殊的性能、构造或者器官平衡、稀释甚至排出海水所带来的盐分,举例来说:海洋鱼类。 生活在海洋中的鱼类,都有各自的“海水淡化器”,能将喝进去的咸水中的盐分及时排出体外,真正进入体内的却是淡水,它们的肉当然就不咸了。这种“海水淡化器”,硬骨鱼类和软骨鱼类又有所不同。 海洋中的硬骨鱼类具有很强的排盐能力,有专门排盐的器官,这些器官长在鱼的鳃片中,由“泌氯细胞”组成。“泌氯细胞”能够分泌出氯化物,好比是鱼身上的一个“淡水车间”,能使进入鱼体的海水淡化,而且效率相当高,即使世界上最先进的“海水淡化器”也望尘莫及。它们为了弥补水分的流失,就采取多喝水、少泌尿的办法来维持体内的低渗压。 海洋中的软骨鱼类(如鲨鱼)的“海水淡化器”又是另一个样子,它没有“泌氯细胞”,而是利用体内尿素的作用来排除盐分。它们体内尿素的含量比其他水生动物几乎高出100倍以上,这些尿素不仅能使软骨鱼类保持体液的高渗压,减少盐分的渗透,而且还可以加速体内盐分的排泄。所以尿素堪称软骨鱼类的“救命良药”。 海鱼是通过“电渗膜法”淡化海水。海鱼的表皮粘膜、口腔粘膜和内腔粘膜,都是一种半渗透膜,当鱼喝进海水时,被口腔粘膜和内腔粘膜隔离在腔内,通过呼吸时的压差使分子渗透过粘膜进入体内,而盐水分无法通过,被排出体外。如果有少量盐分进入体内时,鱼体还可通过自身的生物电作用,将水分子中的氯化钠电离,形成正负离子后渗出粘膜外。现在人类生产的海水淡化器就是科学家根据海洋鱼类的“电渗膜法”原理研究出来的。 淡水鱼类 通常淡水鱼类和海水鱼类体液的含盐浓度相差不大,均约以7mosm/kg[渗透毫摩尔/公斤(升)水=22.4十大气压]表示淡水鱼血液的渗透压范围是265 ~325 mosm/kg.而淡水的盐水浓度在3 一以下(渗透压小于5 mosm/kg),对淡水鱼类体液来说是低渗的,因此就有通过渗透吸水的倾向。如果水分不受限制或无补偿地向内扩散就会把体液稀释到不再具有必要的生理功能的状态,有^称这种状态为内溺死(internal drowning)。此时,鱼类主要由肾脏来完成渗透调节作用淡水鱼类肾脏内肾小球的数量远远多于海水鱼类,通过窳多数量肾小球的滤过作用,增大泌尿量来排除体内多余水分,如鲤鱼的肾小球数量多达24 310个。葡萄糖和一些无机盐分别在近端小管和远端小管被重新吸收,膀胱也能吸收部分离子,这样生成的尿很稀(渗透浓度约为30~40 mos~l/kg).由尿排泄所丧失的盐分很少。尿流量随种类、温度而不同。据测定,一般在加~150mI /kg。如鲤鱼为5mI /kg.h、鲫鱼达330mL /kg。通过大量地排泄浓度很低,近乎清水的尿液来排除体内多余水分,随大流量尿液丢失的部分盐类主要通过食物摄取和鳃的主动吸收来平衡。

动态压差平衡型电动调节阀

动态压差平衡型电动调节阀 张家口帝达购物中心使用了宏田公司的蒸发式中央空调后,与原来集中式单风道系统比较(以每天运行12小时计):整个系统每天消耗电能约2856KW/h,消耗水量为24.5吨/天,每年运行按3个月计,共 计消耗电能25.7万KW.h左右,消耗水2682吨,每年的维修费用约1-2万元。该购物中心的工作人员讲,使用过去的系统,一直不能达到理想效果,夏季场内闷热难耐,几次改造均不理想。使用宏田的蒸发 式中央空调系统后,保留了原来的两台离心风机,改变了风道的用途,出口温度在18到21度之间,相对湿度60%左右,总运行动力为81KW,比原来减少142.5KW(还不包括停用每层角落7.5匹的分体空调

一、材质: 阀体球墨铸铁电动执行器外壳铝合金 阀套不锈钢阀芯黄铜 二、动态平衡电动调节阀技术参数: 产品型号阀门形式规格 压差范围 (KPa) 流量范围 (m0/h) 工作 压力 流量 误差 流体 温度A/D-EDRV1 二通 DN2530-3000.2-2.9 PN165% 0-100 ℃A/D-EDRV2DN3230-3000.5-4-7 A/D-EDRV3DN4030-3001-7-7 A/D-EDRV4DN5030-3002-12.1 A/D-EDRV8DN6530-3003-20.4 A/D-EDRV9DN8030-3005-30.8 A/D-EDRV10DN1OO30-30010-45.3 A/D-EDRV11DN12530-30015-70-7 A/D-EDRV12DN15030-30020-101.8 A/D-EDRV13DN20033-300 5.0-360 A/D-EDRV14DN25022-210 4.O-460 ※注: A-EDRV动态平衡电动调节阀配直行程电动执行器 D-EDRV动态平衡电动调节阀配角行程电动执行器三、动态平衡电动调节阀尺寸参数: 产品型号 阀门形 式 规格 外形及安装尺寸 (mm) L H1H2 D(φ)法 兰 G螺纹A/D-EDRV1 二通 丝口 DN2516026570G1 A/D-EDRV2DN3218027570G1-1/4 A/D-EDRV3DN4030029090G1-1/2 A/D-EDRV4DN5030029090G2 A/D-EDRV5 二通 法兰 DN32160220701OO A/D-EDRV6DN40200235110110 A/D-EDRV7DN50215230115125 A/D-EDRV8DN65230238120145 A/D-EDRV9DN80275275146160

水及渗透压调节

第一章水及渗透压调节 第一节概述 一般认为生物起源于海洋,现有的少物都离不开水。一般动物体内的含水量约占动物体重的50~70%,有的(如水母)甚至达体重的98%。水是细胞内各种活性物质的溶剂,是原生质内各个生化反应的基础。原生质是水状液或溶胶状液体,称细胞内液。单细胞生物直接生活于水环境中,多细胞生物的大部分细胞不与外界接触,但这些细胞仍旧生活于液体中,这些液体称细胞外液(细胞间隙液和血浆)。细胞通过细胞外液进行物质和能量的交换,因此,细胞外液就构成机体的内环境。 一、外界水环境 地球表面约2/3被水覆盖,其中大部分是海洋,而淡水湖泊和河流的面积不到海洋的1%,其体积只等于海洋的0.01%左右。无论海水或淡水,其中都含有溶解的物质,这些物质包括盐类、气体、少量的有机化合物及各种污染物。 (一)咸水水中含盐的多少称盐度(salinity),用1,000克水中含盐类的克数表示(‰)。海洋海水的含 盐量(盐度)在32—41‰之间,大多数海水的盐度为34—37‰;平均为35‰。赤道上的海面由于蒸发强,故盐度最高,但深处的盐度比较恒定。 海水的主要离子是Na+和Cl-,此外还含Ca2+、Mg2+、K+、SO42—和HCO3-(表1—1)。虽然海洋内各地区的含盐量不完全相同,但所含的离子是大致相同的。 内陆咸水的盐度差异很大,各种离子的比例也各不相同,有的盐湖的盐度可超过200‰中东的死海和美国的大盐湖都为盐类所饱和,大盐湖的岸上有Nacl结晶。死海中的离子主要是Mg2+和Cl-,也有CaSO4结晶出来。在死海中除少数微生物外,基本上没有其它生物,美国的大盐湖中还有少数动物,如咸虾及昆虫水蝇的幼虫,但没有鱼类。 (二)淡水淡水内溶质含量的变化很大,盐度的上限为0.5‰,一般湖水和河水的盐度为0.1‰左右。 雨水中也有少量的盐类(这些盐类是由于海水蒸发时带来的),当雨水流过地表面时,其成分又发生了变化。假苦水流经硬而不溶解的岩石(如花岗岩),不再溶解其它物质,称为软水,反之,水若从多孔的石灰岩中渗出或流过,其中溶解着比较多的钙盐,称为硬水、淡水中所含盐类的总量可以从每升不到0.1毫摩尔(mmol)到超过10毫摩尔,而且各种离子的含量变化很大。 (三)半咸水在江河入海的地方,水内的盐度逐渐变化,水的含盐量在淡水与海水之间,称为半咸水 (brackish water)。因此,半咸水的盐度可以由0.5‰(淡水盐度的上限)至30‰(海水盐度的下限)。此外,有的内陆海、咸沼泽和经雨水稀释的海岸上的湖水池塘也属于半咸水。我国青海湖的水是半咸水,其盐度为12—13‰,内有裸鲤、条鳅等鱼类,还有藻类、轮虫、甲壳动物、昆虫等生物。 半咸水是把海产动物与淡水动物隔开的屏障。大多数动物只能在盐度变化不大的环境中生活,这样的动物称狭盐性动物(stenohaline animals)。因此,一殷情况下,海洋中的动物不进入淡水,淡水中的动物也不进入海洋。但有些动物可以经受较大的盐度变化,可以进入半咸水内,甚至可以在淡水和海水之间洄游,

空气开关的规格及意义

空气开关的规格及意义 空气开关的型号: C65N 1P-:C1A C2A C4A C6A C10A C16A C20A C25A C32A C40A C50A C63A C65N 2P-:C1A C2A C4A C6A C10A C16A C20A C25A C32A C40A C50A C63A C65N 3P-:C1A C2A C4A C6A C10A C16A C20A C25A C32A C40A C50A C63A C65N 4P-:C1A C2A C4A C6A C10A C16A C20A C25A C32A C40A C50A C63A C65N 1P-:D1A D2A D4A D6A D10A D16A D20A D25A D32A D40A D50A D63A C65N 2P-:D1A D2A D4A D6A D10A D16A D20A D25A D32A D40A D50A D63A C65N 3P-:D1A D2A D4A D6A D10A D16A D20A D25A D32A D40A D50A D63A 型号上升一般是6,10,16,20,25,32,40,50,63,80,100,125,150,225,400。 D代表动力,C代表照明。 目前家庭使用DZ系列的空气开关(带漏电保护的小型断路器),常见的有以下型号/规格:C16、 C25、C32、C40、C60、C80、C100、C120等规格,其中C表示脱扣电流,即起跳电流,例如C32表示起跳电流为32安,一般安装6500W热水器要用C32,安装7500W、8500W热水器要用C40的空开。 工业上常见的型号有:动力电路用DW和DZ型分20,32,50,63,80,100,125,160,250,400,600,800,1000...(单位A)。 空开的额定电流有几安培至几百安培如10安的和600安的,但是普通的DZ47-63系列的最大电流63安,分为5 10 16(15) 20 25 32(30) 40 50 60(63)好像还有3安和2.5安的。 短路分断电流一般c型6000安,d系列4000安 例:DZ10-100/330 Ie=60A 说明: DZ--“自动”的反拼音,10--设计序号,100--是它的壳架等级,3--表示极数即三相,3--脱扣形式(0--无脱扣器,1--热脱扣器式,2--电磁脱扣器式,3--复式),0--有无辅助触头(0--无辅助触头,2--有辅助触头),Ie=60A--过电流调节 额定电流。 要点:1、空气开关额定电压大于等于线路额定电压;2、空气开关额定电流和过电流脱扣器的额定电流大于等于线路计算负荷电流。 例:DZ47-60A C25: DZ47---系列微型断路器(还有很多系列,基本都是厂家命名的) LE-----带漏电脱扣功能 60-----框架等级为60A C------瞬时脱扣过流倍数按照明类,如5~7或7~10倍,D为动力型10~14倍 空气开关是用来保护电线及防止火灾,所以是要根据电线的大小选配的而不是根据电器的功率选配的。如果空气开关选用太大就不用保护电线,当电线超载空气开关仍不会跳,就会为家庭安全带来隐患。所以应该先检查电线的大小,如果电线允许更大的空气开关则可以换大一点的空气开关。1.5平方线配C10的开关,2.5平方线配C16或20的开关,4平方线配C25的开关,6平方线配C32的开关。如果电线太小,应给大功率的电器配专用线。

大学动物生理学第七章排泄与渗透压调节

CABEB ADEDB A 第七章排泄与渗透压调节 一、选择题 1、原尿成分与血浆相比不同的是()。 A.葡萄糖含量 B.钾离子含量 C.蛋白质的含量 D.钠离子的含量 2.“Cl-转移”指的是血浆中的Cl-与红细胞哪种离子交换()。A.HCO B.H+ C.OH- D以上都不是。 3.狭盐性海水软骨鱼保持体内水分动态平衡的主要因子是()。 A.氧化三甲胺 B.尿素 C.氨 D.无机盐 4.血液流经肾小球时,促进血浆滤出的直接动力是()。 A.全身动脉血压 B.肾动脉血压 C.入球小动脉血压 D.肾小球毛细血管血压 E.出球小动脉血压 5.在正常情况下,肾小球滤过率的直接调节者是()。 A、肾小球毛细血管血流量 B、肾小管毛细血管血压 C、肾小球囊内压 D、血浆胶体渗透压 E、肾血浆流量 6. 由肾小球滤过NaCl和水绝大部分在何处重吸收()。 A. 近球小管 B. 远近球小管 C. 集合管 D. 髓袢升支粗段 E. 髓袢升支细段 7. 目前认为致密斑的主要功能是()。 A. 直接释放肾素颗粒,调节泌尿机能 B. 直接感受入球小动脉的血压变化 C. 引起入球小动脉收缩 D. 感受流经远曲小管的NaCl浓度变化 E. 以上均不是 8. 血液流经肾小球时,促进血血浆滤出的直接动力是()。 A. 全身动脉血压 B. 肾动脉血压 C. 入球小动脉血压 D. 肾小球毛细血管血压 E. 出球小动脉血压 9. 毁损视上核后,动物的尿液将发生如下变化()。 A. 尿量增加,渗透压升高 B. 尿量减少,渗透压升高 C. 尿量减少,渗透压降低 D. 尿量增加,渗透压降低 10. 远曲小管和集合管对Na +的重吸收主要受( )的调节。 A. ADH B. 醛固酮 C. 糖皮质激素 D. 肾上腺素 11. 大量饮清水后尿量增多,主要由于()。 A. ADH分泌减少 B. 醛固酮分泌减少 C. 肾小球滤过率增加 D. 血浆胶体渗透压降低

相关文档
最新文档