M 鱼类的渗透压调节

M    鱼类的渗透压调节
M    鱼类的渗透压调节

鱼类的渗透压调节

Q:为什么海水鱼的肉吃起来不咸,而海蜇皮吃起来是咸的?

海洋动物有着自己特殊的性能、构造或者器官平衡、稀释甚至排出海水所带来的盐分,举例来说:海洋鱼类。

生活在海洋中的鱼类,都有各自的“海水淡化器”,能将喝进去的咸水中的盐分及时排出体外,真正进入体内的却是淡水,它们的肉当然就不咸了。这种“海水淡化器”,硬骨鱼类和软骨鱼类又有所不同。

海洋中的硬骨鱼类具有很强的排盐能力,有专门排盐的器官,这些器官长在鱼的鳃片中,由“泌氯细胞”组成。“泌氯细胞”能够分泌出氯化物,好比是鱼身上的一个“淡水车间”,能使进入鱼体的海水淡化,而且效率相当高,即使世界上最先进的“海水淡化器”也望尘莫及。它们为了弥补水分的流失,就采取多喝水、少泌尿的办法来维持体内的低渗压。

海洋中的软骨鱼类(如鲨鱼)的“海水淡化器”又是另一个样子,它没有“泌氯细胞”,而是利用体内尿素的作用来排除盐分。它们体内尿素的含量比其他水生动物几乎高出100倍以上,这些尿素不仅能使软骨鱼类保持体液的高渗压,减少盐分的渗透,而且还可以加速体内盐分的排泄。所以尿素堪称软骨鱼类的“救命良药”。

海鱼是通过“电渗膜法”淡化海水。海鱼的表皮粘膜、口腔粘膜和内腔粘膜,都是一种半渗透膜,当鱼喝进海水时,被口腔粘膜和内腔粘膜隔离在腔内,通过呼吸时的压差使分子渗透过粘膜进入体内,而盐水分无法通过,被排出体外。如果有少量盐分进入体内时,鱼体还可通过自身的生物电作用,将水分子中的氯化钠电离,形成正负离子后渗出粘膜外。现在人类生产的海水淡化器就是科学家根据海洋鱼类的“电渗膜法”原理研究出来的。

淡水鱼类

通常淡水鱼类和海水鱼类体液的含盐浓度相差不大,均约以7mosm/kg[渗透毫摩尔/公斤(升)水=22.4十大气压]表示淡水鱼血液的渗透压范围是265 ~325 mosm/kg.而淡水的盐水浓度在3 一以下(渗透压小于5 mosm/kg),对淡水鱼类体液来说是低渗的,因此就有通过渗透吸水的倾向。如果水分不受限制或无补偿地向内扩散就会把体液稀释到不再具有必要的生理功能的状态,有^称这种状态为内溺死(internal drowning)。此时,鱼类主要由肾脏来完成渗透调节作用淡水鱼类肾脏内肾小球的数量远远多于海水鱼类,通过窳多数量肾小球的滤过作用,增大泌尿量来排除体内多余水分,如鲤鱼的肾小球数量多达24 310个。葡萄糖和一些无机盐分别在近端小管和远端小管被重新吸收,膀胱也能吸收部分离子,这样生成的尿很稀(渗透浓度约为30~40 mos~l/kg).由尿排泄所丧失的盐分很少。尿流量随种类、温度而不同。据测定,一般在加~150mI /kg。如鲤鱼为5mI /kg.h、鲫鱼达330mL /kg。通过大量地排泄浓度很低,近乎清水的尿液来排除体内多余水分,随大流量尿液丢失的部分盐类主要通过食物摄取和鳃的主动吸收来平衡。

2海水鱼类

一般海水鱼类的渗透浓度维持在380-470 mosm/kg,小于海水的渗透浓度(含盐浓度约为40‰.渗透浓度高选800~1 200 mosm/kg)。海水对于海洋鱼类的体液来说是高渗的,因此为了维持体内的水分和盐类平衡。海洋鱼类需要不同于淡水鱼类的渗透调节机制,板鳃鱼类的渗透调节通过保留尿素和少量其它含氮化台物来保持血液的渗透浓度。典型海洋板鳃鱼类的血液中约含2 ~2 5 的尿素,三甲胺氧化物(TMAO)是另一种含氨代谢物,血液中的含量约为70 mmol/L,对血液摩尔渗透压浓度来说仅次于尿素。这样,板螅鱼类总摩尔渗透压浓度要高于海水,倾向于通过体表扩散暧水。水分主要通过鳃进人,进水量增加后稀释了血液的浓度,排尿量随之增加,因而尿素流失也多当血液内尿素含量降低列一定程度时,进水量又减少.排尿量相应递减,尿素含量叉逐渐升高所以尿素是海洋板鳃鱼类保持体内水盐动态平衡的主要因子。海洋板鳃鱼类的体液比介质的盐浓度低,所以盐类主要通过扩散进入和食物摄^,其排泄主要通过二条途径:二价离子(如镁、磷酸盐)主要通过尿排泄,钠、少量的钾和钙、镁通过直肠腺排出,另外鳃也能排出少量的钠,对于盐度较低水域或淡水中的板鳃鱼类(如锯鳐、亚马逊河的江虹),主要是通过降低血液中氯化物、尿素和TMAO的含量来进行渗透调节。

海水硬骨鱼类由于体液渗透压浓度低于介质渗透压浓度,所以倾向于不断地从鱼体内向外扩散而大量失水,大多数种类除了从食物内莸取水分外,主要通过大量地吞饮海水来进行补偿。补偿量随种类的不同而异,对于同一种类则随水体台盐度的增高而增大。据测定,海水硬骨鱼类每天吞饮的海水量可达到体重的7 ~35 ,吞饮的海水大部分通过肠道吸收并渗人血液中。随海水一同吸^的多亲盐分(主要为Na 、K 和cl等一价离子)则由鳃上的泌盐细胞排出。另外,海洋硬骨鱼类肾脏内肾小球的数量要远少于淡水鱼类,有些海水种类甚至完全消失。这样,肾脏的珏尿量大大减少,肾脏失水降至最低。肾小球的滤出液中,太部分水分被肾小管重新吸收。海洋硬骨鱼类的尿流量较小.一般每天约为体重的1 ~2 。如杜父鱼由肾脏分泌的屎液量仅为0 13~0.96 ml /kg。

淡水鱼在海水中是脱水而死的。而海水鱼在淡水中是被撑死的。

盐度溶解于水中的各种盐类,主要通过水的渗透压影响鱼类的生活,这关系到鱼类的分布、洄游、生长、发育和繁殖等很多方面。

1、按照生活于不同盐度的水域对鱼类的划分

从纯淡水直到盐度为47‰的海水,都有鱼类的分布。按生活水域的盐度,可将鱼类划分成四类。

* 海水鱼类它们适应于盐度较高的海水水域。通常海水的盐度为16‰—47‰之间,如黑线银鲛。

* 咸淡水鱼类它们适应于河口咸淡水水域,水的盐度在0.5‰—16‰之间。

* 淡水鱼类它们适应于淡水水域,水的盐度低而稳定,在0.02‰—0.5‰之间。

* 过河口鱼类它们对盐度的适应有阶段性,属这一类型的鱼类又可分为两种情况:▲溯河鱼类:一生的大部分时间在高盐度的海水中生活,在生殖时期由海水经过河口区进入淡水水域产卵,如大麻哈鱼、鲥鱼等。

▲降海鱼类:一生的大部分时间在淡水中生活,至生殖时期由江河下游至河口区,而后进入海中产卵,如鳗鲡。

2、按照对盐度幅度的忍受能力对鱼类的划分

* 狭盐性鱼类

对于水的盐度要求较严格,只能耐受有限范围的盐度变化。海水鱼和淡水鱼都属狭盐性鱼类。

* 广盐性鱼类

对于水中盐度变化的适应能力强,能忍受的盐度幅度较广。咸淡水和过河口鱼类属广盐性鱼类。当盐度缓慢变化时,广盐性鱼类表现出很高的耐性。如凤鲚。

一般说来,地球上海水的含盐浓度为16—47(一般为35),而淡水的含盐浓度只有0.01-0.5,两者相差悬殊。

海水硬骨鱼鱼体组织的含盐浓度比外界海水的含盐浓度要低得多,由于海水中有大量盐分,故比重高、密度大。根据渗透压原理,海水鱼鱼体组织中的水力,将不断地从鳃和体表向外渗出。为了保持体内水分平衡,海水鱼便不得不吞食大量海水,以弥补体内的失水。然而,由于大口大口地吞食海水,进入鱼体内的盐分也大大增加了,这样,海水鱼除了从肾脏排除掉一部分盐分外,主要还是依靠鳃组织中的“泌氯细胞”来完成排盐任务。

鲨鱼、鳐等软骨鱼类采用的方式则有所不同。它们不像硬骨鱼那样喝海水,而是有一套保持体内外渗透压平衡的高超本领。在它们的血液中含有很多尿素,因此体内液体的浓度反而比海水高,这样就迫使它们以排尿的方式排除渗入体内多余的水分。有时我们在吃鲨鱼的时候总会觉得有一般刺鼻的怪味,其原因就是鲨鱼的体内含有尿素。尿素不仅能维持软骨鱼内体液的高渗压,减少盐分的渗入,而且还能起到加速盐分排出的作用。

淡水鱼与海水鱼大不一样,淡水鱼鱼体组织的含盐浓度比外界谈水的含盐浓度要高,也就是说,淡水的含盐浓度低、比重低、密度小,根据渗透压原理,外界淡水将不断地大量进入鱼体,为此,淡水鱼只有通过肾脏,将过多的水分排出体外。

洄游鱼类的渗透压调节

(1)由淡水进入海水

鱼类由淡水进入海水后由排水保盐状态转入排盐保水状态。因此,在淡水中的渗透压调节机制被抑制,而在海水中的渗透压调节机制被启动。

①大量饮水。

②鳃主动向海水排出离子。

③肾小球的滤过率减少,肾小管吸水能力增大,尿量减少。

④血浆的皮质醇浓度升高,提高了鳃上ATP酶活性和由鳃排出的Na+增加

(2) 由海水进入淡水:

由排盐保水状态转入排水保盐状态,海水中的渗透压调节机制受到抑制,而淡水中的渗透压调节机制被激活,从而维持体内高的渗透压。

①停止吞饮水,Ca2+、Mg2+、SO42-吸收和排出减少,

②神经垂体激素使肾小球滤过率增大,肾小管对水的吸收降低,吸盐加强,排出大量稀薄的尿。

③肾上腺素、催乳素分泌增加明显减少鳃对Na+ 、Cl-的排出量

④启动了离子主动转运系统包括Na+/NH4+,Na+/H+和Cl-/HCO3-的转运交换,从低渗水环境中吸收Na+和Cl-。

谷冈教授的渗透压发电原理图:主要利用浓缩海水与处理后污水的渗透压进行发电。使用透水但不透盐分的“半透膜”隔开淡水和盐水后,高浓度的盐水将向淡水一侧渗透。渗透压是指此时产生的水压。渗透压发电就是利用这种水压产生水流,通过带动涡轮转动进行发电的方式。海水淡化时产生的浓缩海水的盐浓度大约是普通海水2倍。直接将之排入海中会对生态系统造成破坏。因此,现在是将之与污水处理设施处理污水产生的淡水混合,使其浓度与海水达到一致后排入大海。与有效利用浓缩海水相比,谷冈教授更为关注的是“混合”。谷冈教授说:“单是把浓缩海水与淡水混合在一起实在可惜。我想利用半透膜把二者隔开,使之产生渗透压,这样一来就能够获得电能。”当然,存在着效率转化的问题。

1、单纯利用半透膜隔开浓缩海水和淡水并不能使渗透压保持恒定。

因为随着淡水流入浓缩海水的水槽,浓缩海水的盐浓度将随之降低,导致渗透压降低。要保持渗透压恒定,就需要像水电站不断通水一样,持续供应浓缩海水和淡水。而此时的重点是应该以多大的压力供应浓缩海水。按照谷冈教授的计算,随着浓缩海水一侧压力的增大,发电量将持续增加,刚好在30个大气压时达到最大发电量。研究表明,如果继续提高压力,发电量将转为减少,当浓缩海水的压力达到60个大气压后,发电量将归零。因为浓缩海水的压力一旦高于渗透压,流入浓缩海水水槽中的淡水量就会受到抑制,带动涡轮的水量就会减少。

这意味着,如果能够以30个大气压持续供应浓缩海水,就能实现发电量的最大化。

2、提高发电量的课题还是在于半透膜。

3、而且,该发电系统利用的是淡水和污水处理水。因此,污水处理水中含有的微小垃圾、浮游生物、细菌、藻类会附着在半透膜上,导致渗透压降低。但去除污水处理水的杂质需要耗费电能。这难免成为本末倒置。

渗透压

排泄的概念:机体将物质代谢的终产物或机体不需要的、多余的水分、盐分及进入体内的某些药物、毒物等排出体外的过程称为排泄(excretion)。(不包括粪便) 一肾的血液循环 肾动脉血液在肾小球和髓袢处两次分成毛细血管,继而依次汇合成小叶间静脉、 弓形静脉、叶间静脉,最终汇入肾静脉。 肾动脉直接由腹主动脉垂直分出,粗而短,血流量大,血压较高; 入球小动脉口径粗于出球小动脉口径,有利于血浆成分透出肾小球进入肾小囊腔; 血液经肾小球滤过后,胶体渗透压升高,血液经过肾小球后,血流减慢,血压降低, 有利于小管液与血液之间进行物质转运(包括重吸收和分泌)。 二尿的生成 尿的生成包括三个过程:即肾小球的滤过作用,肾小管-集合管的重吸收作用, 以及肾小管-集合管的分泌作用。 (一)肾小球的滤过作用 A肾小球的滤过率:单位时间内从肾小球滤过的血浆毫升数,它反映了肾小球 滤过作用的强弱。 B影响肾小球滤过率的因素: 1.滤过膜的通透性 三层:肾小球毛细血管内皮、基膜和肾小囊脏层上皮。急性肾小球性肾炎:通透性过强2.有效滤过压 有效滤过压=肾小球毛细血管压-(血浆胶体渗透压+肾小囊内压) 3.肾血浆流量 (二)肾小管与集合管的重吸收作用 重吸收是指小管液流经肾小管和集合管时,小管液中的水分和各种溶质将全部或部分地被肾小管上皮细胞重新吸收并转运到管外返回血液的过程。 位置: 近球小管:多数物质;其它管段:少量 方式: 被动重吸收:水、尿素;主动重吸收:葡萄糖、氨基酸、Na+、蛋白质 结构基础:刷状缘、基底纹、线粒体 选择性:水分:99% 葡萄糖、蛋白质:全部 Na+、Cl-、Ca2+、Mg2+、K+:绝大部分 尿素、尿酸、SO42-、HPO3-、PO43-:大部分 肌酐:无 (三)肾小管和集合管的分泌作用(排泄作用) 此处,分泌作用指的是小管上皮细胞将新陈代谢产生的物质转运到管腔中的 过程,如H+、NH3等;排泄作用指的是小管上皮细胞将血液中某些物质 转运到管腔中的过程,如K+、肌酐、外来的药物和体内解毒产物等。 由于分泌物和排泄物都进入小管液中,事实上二者很难严格区分,所以把二者 统称为分泌,以免与总的排泄概念相混淆。

果蔬中常用植物生长调节剂分析方法研究进展

果蔬中常用植物生长调节剂分析方法研究进展 摘要:植物生长调节剂是一类具有植物激素活性的人工合成农药,可用于调节 果蔬的生长和贮藏。近年来,植物生长调节剂在果蔬生产中的使用越来越多,而 产生的安全事件不断增多。果蔬中植物生长调节剂的残留问题已经引起社会的广 泛关注,痕量植物生长调节剂残留的分析技术也在不断发展。文中概述了国内外 检测果蔬中植物生长调节剂残留的主要分析方法及其优缺点,包括气相色谱(GC)、高效液相色(HPLC)、质谱联用技术、酶联免疫吸附测定(ELISA)、 毛细管电泳(CE)及其他分析法,并对其发展趋势进行了展望。 关键词:水果蔬菜;植物生长调节剂;分析方法 一、果蔬中常用的调节剂 调节剂按其功能可分为五类:生长素类、细胞分裂类、赤霉素类、催熟剂类 以及生长抑制剂类。当前,在果蔬生产中使用比较多的有:赤霉素、氯吡脲、乙 烯利、矮壮素、多效唑等,它们大多属低毒类农药,也有少数微毒或者无毒,然 而某些调节剂或其水解产物具有潜在的致癌、致畸或者导致突变作用(例如:丁 酰肼的水解产物不对称二甲基肼具有致畸作用)也应得到应有的重视。 二、果蔬中常用调节剂的分析方法 2.1气相色谱(GC)分析法 目前GC 技术主要应用于乙烯利的检测,也可用于丁酰肼等调节剂的分析, 但需要进行衍生化反应,前面的处理过程较为繁琐。由于大部分的调节剂相对分 子质量较大、极性较强、不易气化或者受热易分解,所以,GC 技术在调节剂的残留分析中应用不多,虽然衍生化处理后可以采用GC 分析某些调节剂,但衍生化 过程通常都会耗时费力,不符合实际检测中简单、快速的要求,更不适用于大批 量样品的分析。而乙烯利等少数调节剂虽然其特殊性质采用GC 分析操作比较简便,但是灵敏度还有待进一步提高。 2.2高效液相色谱(HPLC)分析法 与GC 相比,HPLC 可用于检测果蔬中大多数调节剂的残留,正常情况下无需 衍生化反应,前面处理过程比较简单,可是,在分析基质比较复杂的样品时,其 选择性与灵敏度不及GC。Newsome 等采用高压离子交换液相色谱法分析了马来 酰肼及其β-D- 葡糖苷。样品采用甲醇提取,在马铃薯、大头菜、甜菜及胡萝卜中 的平均加标回收率为87%。而Kobayashi 等改用水提取,建立了测定农产品中马 来酰肼残留的HPLC法,方法的回收率为92.6%~104.9%,LOD 为0.5μg/g。虽然HPLC分析马来酰肼与美国官方分析化学师协会(AOAC)采用的蒸馏-分光光度法 相比更加快速、灵敏、准确,但样品中干扰杂质的分离相对困难。所以潘广文等 建立了马铃薯、洋葱、大蒜中马来酰肼的高效离子排斥色谱(HPIEC)法,该方法不但样品处理步骤简单,分析周期短并且不受杂质干扰。固相萃取(SPE)是HPLC 分析中最常用的前处理技术:Hu Jiye 等采用酸化乙腈提取、氨基柱净化、丙酮洗脱后以HPLC-UV(紫外检测器)分析了西瓜中氯吡脲的残留;而Kobayashi 等改用丙酮提取,Chem Elut柱和Oasis HLB 以及Bond Elut PSA 迷你柱双柱净化后,也用HPLC 分析了农产品中氯吡脲的残留;Zhang Hua等又以乙酸乙酯提取,ENVI-18 柱净化后采用反相高效液相色谱法(RP-HPLC)分析了果蔬中氯吡脲的残留。 虽然SPE 技术对微量以及痕量目标化合物的提取、分离能力较为强,但其操作比 较繁琐、耗时,并且成本较高,不适合大批量样品的快速筛查。所以,胡江涛等 以分散固相萃取-高效液相色谱(DSPE-HPLC)快速分析了猕猴桃中氯吡脲残的残

排泄与渗透调节

排泄与渗透调节 主要内容 1、概述:排泄及其途径、排泄的意义;尿的成份及其理化特性。 2、尿的形成:肾小球滤过机能;肾小管、集合管的重吸收机能;肾小管、集合 管的分泌和排泄机能;影响滤过、重吸收和分泌的因素。 3、肾脏泌尿机能的调节:肾血流量的调节;肾小管、集合管重吸收、分泌和排泄机能的调节。 4、水生动物渗透压的调节:水生动物的水环境;渗透调节和体积调节:渗透压调节机理。 自学内容 1、排泄及其途径、排泄的意义;尿的成份及其理化特性。 2、水生动物渗透压的调节:水生动物的水环境;渗透调节和体积调节;渗透压调节机理。 基本要求 l、了解排泄在维持机体内环境相对稳定的意义。 2、了解尿的形成过程及其影响因素。 3、了解水生动物渗透压调节过程及机理。 重点、难点:1.尿的形成过程; 2.泌尿功能的调节。 概述 ※排泄(excretion):机体将物质代谢的尾产物和机体不需要的物质(包括进入体内的异物和药物、多余的水份盐类等)排出体外的过程,称为排泄。排泄与排遗区别: 生理学上将物质代谢产物,经过血液循环由排泄器官排出体外过程—排泄。 由消化道排出的食物残渣,它既未参与体内细胞代谢,又未经过血液循环—排遗 ※※排泄途径与排泄物: ⅰ.呼吸器官排出:主要是CO 2 和少量水份,以气体形式随呼气排出,鱼类等 水生动物还有NH 3、CO 2 和某些离子随鳃排出。 ⅱ.由消化道排出:排泄物混合于粪便中,如担色素及一些无机盐如钙、镁、铁等)肠膜排出)。 ⅲ.皮肤排出:水分及汗液(汗腺分泌),汗液包括水、少量尿素及无机盐。 ⅳ.肾脏排出:肾脏是最很需要的排泄器官,排泄物称尿,排泄物种类多,数量大,因此肾脏是重要的排泄器官。调节着机体水平衡,渗透压平衡与酸碱平

药剂学课后习题答案

第1章绪论 1、区分药物、药品、剂型、制剂的概念。 ⑴药剂学:Pharmaceutics是研究药物制剂的处方设计、基本理论、制备工艺、质量控制和合理使用等内容的综合性应用技术科学。 ⑵药物剂型:dosage form 为了符合疾病诊断、治疗、预防等需要而制备的给药形式。 ⑶药物制剂:Pharmaceultical preparations 剂型中的具体药品。 2、药剂学研究的主要内容。 ⑴基本任务:将药物制成适合临床应用的的剂型,并能批量生产出安全、有效、稳定的制剂。 ⑵具体任务:1、制剂学基本理论;2、新剂型研究与开发;3、新技术;4、中药新剂型/生物制药剂型;5、设备研究与开发 3、药剂学有哪些分支学科? 物理药剂学、工业药剂学、药用高分子材料学、生物药剂学、药物动力学、临床药剂学。 4、我国的第一部药典是什么时候出版发行?1953 5、 GMP:《药品生产质量管理规范》,good manufacturing practice GLP:《药物非临床研究质量管理规范》,good laboratory practice GCP:《药物临床试验管理规范》,good clinical practice OTC:可在柜台上买到的药物,over the counter 6、处方:系医疗或生产部门用于药剂调制一种书面文件。 .处方药:必须凭执业(或助理)医师的处方调配、购买,并在医生指导下使用的药品。 非处方药:可在柜台上买到的药物—over the counter 第9章液体制剂 1、液体制剂的特点和质量要求: ①特点:(1)药物以分子或微粒分散在介质中,吸收快药效快。(2)给药途径多,如口服、注射、黏膜、腔道。(3)易于分剂量。老少患者皆宜。(4)可减少某些药物的刺激性。 ②不足:(1)携带不便,(2)有的稳定性差。 ③质量要求:⑴均匀相液体制剂应是澄明溶液;⑵非均匀相液体制剂

渗透压

植物细胞对水分的吸收 ----渗透作用我们都知道植物细胞对水分的吸收分为:扩散、集流和渗透作用。扩散是物质依浓度梯度向下移动,集流是物质依压力梯度向下移动,那么在渗透作用里物质是怎么移动呢? 我们来看两个实验,实验一:假定一只烧杯,用分别透膜分隔成两部分,将纯水放在透膜的一侧,糖溶液放在另一侧,要等量注入,注意观察,几分钟后你会发现,纯水一侧水面逐渐下降,而另一侧液面则漫慢上升。直到透膜两侧液面最后达到移动平衡为止。 实验二:是一个十分有趣的“人造细胞”试验。如果向黄血盐[K4Fe(CN)6]溶液中投入一小块硫酸铜的晶体,其上立即形成一层棕红色的亚铁氰化铜[Cu2Fe(CN)6]沉淀(这种沉淀是一种半透膜,只有水能透过)。会发现在黄血盐溶液中CuSO4被一层半透膜包裹着。一会儿,将发现包裹渐渐增大;就像细胞“长大”一样,直到半透膜内外的溶液浓度都相等为止。 渗透是指溶剂分子通过半透膜而移动的现象,我们先来讨论自由能和水势的概念。 在以上两个例子中都发生了水分的运动,要运动就需要能量,物质只能自发地从高活度(浓度)区域向低活度的区域移动,水也是一样,溶液中水的活度比纯水中水的活度小,浓溶液中水的活度较稀,溶液中水的活度小,纯水中水的活度最大,因此,纯水或稀溶液中的水就会自发地向浓度较高的溶液中移动,这是由溶液中的能量梯度决定的,水的这

种能用于作功的能量大小的度量,就是水势。 图a 图b 用一面只允许溶剂分子通过而不允许溶质分子通过的半透膜M 将纯溶剂A与溶液B分隔(见上图a、b),则溶剂分子就从A通过M进入B中,使溶液B体积扩大,液面上升,达到平衡后,液面才停止上升。这时,M两侧的液体压强差为P=PB-PA=ρghe。式中he为平衡时B液面上升高度,P称为该溶液的渗透压。教科书对渗透现象的解释是:A 中溶剂分子数密度大于B中的溶剂分子数密度,故单位时间内由A经M进入B的溶剂分子数就大于由B经M进入A的溶剂分子数。净效果就是A中溶剂分子进入B中,形成渗透,直至平衡。这种对渗透现象原因的解释简单形象,易于为学生理解接受,但并不妥当。按照这一解释,渗透现象中除了溶剂分子进入B,使整个渗透体系的重力势能增大之外,系统无其他能量变化。这就违背了能量守恒定律,容易对学生产生误导。 解释(一),根据热力学原理,系统中物质的总能量可分为束缚能和自由能(free energy)两部分。束缚能是不能用于做功的能量,而自由能是在温度恒定的条件下可用于做功的能量。实际水分在细胞内的运动是由各个细胞内水分的自由能存在差别而引起的。而我们将

药学专业药剂学

药学专业药剂学(1)综合练习 一、简要说明下列概念、名词或术语(每小题3分.共15分l 1.溶胶剂 2.合荆 3.流通蒸汽灭菌法 4.注射剂 5.冷冻干燥 二、填空题(每空1分.共20分) 1.影响乳剂制备的因素有——、——与 2.药物及药物制剂是一种特殊的商品,对其最基本的要求是——、——、 3.散剂的质量检查包括——、——和 4.___ 和___ 是评价注射用油的重要指标。除注射用水和油外,常用的其他注射用溶剂有——、——和——等. 5-药剂学的基本任务包括:研究药剂学的——、开发——、开发新型的——、整理与开发——、研究和开发新型的—— 三、单项选择题(每小题2分。共20分) 1.以下哪一条不符合散剂制备方法的一般规律( ) A.组分数量差异大者,采用等量递加混合法 B.组分堆密度差异大时,堆密度小者先放人混合容器中,再放人堆密度大者 C含低共熔组分时,应避免共熔 D.剂量小的毒剧药,应制成倍散 2.关于吐温80的错误表述是( ) A.吐温80是非离子表面活性剂 B.吐温80可作为O/w型乳剂的乳化剂 c.吐温80有起昙现象 D.吐温80的溶血性较强 3.氯化钠等渗当量是指( )

A.与100克药物成等渗的氯化钠重量B.与10克药物成等渗的氯化钠重量c.与l克药物成等渗的氯化钠重量D.与1克氯化钠成等渗的药物重量4.下列哪一组温度与时间可除去热源( ) A.18(FC,1小时以上/5.200"Cl:2上,30分钟 C.160~170"C,2~4小时D.250"C,30分钟以上 5.影响药物溶解度的错误表述是( ) A.温度B.溶剂的极性 c.药物的晶型D.溶剂量 6.关于散剂的描述哪种是正确的( ) A.散剂为一种药物粉碎制成的粉末状制剂 R一般药物的CHR越大,越不易吸湿 c.水溶性药物的临界相对湿度具有加和性 D.水不溶性药物的I临界相对湿度具有加和性 7.以下哪种材料不用于制备肠溶胶囊剂( ) A.虫胶B.醋酸纤维素酞酸酯 c.丙烯酸树脂L D.羟丙基甲基纤维素 8.单糖浆可作( ) A.乳化剂B.助悬剂 C.二者均可D.二者均不可 9.下列物质中不能制备成高分子溶液的是( ) A.聚维酮碘B.甲基纤维素 C胃蛋白酶D枸橼酸 10.下列物质中不用作矫味剂的是( ) A.着色剂B.泡腾剂 C芳香剂D.胶浆剂 四、简答题(共30分) 分析下列处方,并简述制备工艺与注意事项。 l_鱼肝油乳剂(15分) ┏━━━━━━┳━━━━┓ ┃鱼肝油┃500ml ┃ ┣━━━━━━╋━━━━┫

常用植物生长调节剂及其应用

常用植物生长调节剂及其应用 山东丁世民刘玉娥 在植物栽培中,您可能使用过植物生长调节剂,但对每种调节剂的调节机理及具体用法,可能就了解不多了。这里介绍几种常用的植物生长调节剂及应用实例,或许对您有所帮助。 萘乙酸(α-萘乙酸、NAA、α-naphthaleneacetic acid) 属于广谱型植物生长调节剂,能促进细胞分裂与扩大,诱导形成不定根,提高坐果率,防止落果,改变雌、雄花比例,延长休眠,维持顶端优势等;对人畜低毒。常见剂型为70%钠盐原粉: 在园林花卉中的具体应用实例有: ①促进生根将侧柏插枝用200~400毫克/千克萘乙酸浸12小时;仙客来用1~10毫克/千克萘乙酸浸球茎6~12 小时。 ②减少落果菊花在短日照处理后6~9天,用50~100毫克/千克萘乙酸喷洒叶片,每30天1次;叶子花、香豌豆、兰花用50毫克/千克萘乙酸在蕾期喷洒离层部。 ③减少落果用10毫克/千克萘乙酸在花谢后7天喷洒文竹,10~15天后再喷1次。 赤霉素(赤霉酸、九二○、gibberellicacid) 广谱型植物生长调节剂,能促进植物生长发育,提高产量,改善品质;迅速打破种子、块茎、鳞茎等器官的休眠,促进发芽;减少蕾、花及果实的脱落,使2年生的植物在当年开花。常见剂型有:85%结晶粉、4%乳油。 在园林植物中的具体应用实例如表1、表2。 表1 赤霉素打破休眠、促进萌发应用实例 表2 赤霉素促进开花应用实例

丁酰联(二甲基琥珀酰阱、调节剂九九五、B9、daminozide) 属于生长抑制剂,可抑制内源激素赤霉素的生物合成、从而抑制新枝生长、缩短节间、增加叶片厚度及叶绿素含量,防止落花,促进坐果,诱导不定根形成,刺激根系生长,提高抗寒力。常用剂型有:85%、90%可溶性粉剂,4%乳油。 在园林植物中的具体应用实例为有: ①促进生根如麝香石竹、大丽花,可用5000毫克/千克丁酰肼处理插枝,快蘸5秒;一品红,可用2500毫克/千克丁酰肼处理插枝,快蘸15秒。 ②促进开花用5000毫克/千克丁酰肼对叶子花进行叶面喷洒,同时进行8小时短日照处理;用2500毫克/千克丁酰肼在杜鹃发新枝时进行叶面喷洒,同时进行8小时短日照处理。 ③延迟开花用1000毫克/千克丁酰肼在杜鹃开花前1~2个月喷洒蕾部。 ④延长花期用2500毫克/千克丁酰肼处理菊花,在短日照开始后3周叶面喷洒1次,5周后再喷1次。 ⑤矮化作用用2500毫克/千克丁酰肼处理菊花,在花芽分化期进行叶面喷洒;用2500~5000毫克/千克丁酰肼对矮牵牛进行叶面喷洒。 多效唑(高效唑、氯丁唑、PP333,PaclobutrMol) 为内源激素赤霉素的合成抑制剂,能抑制植物的纵向伸长,使分蘖或分枝增多,茎变粗,植株矮化紧凑。它主要通过根系吸收,叶吸收量少,作用较小,但能增产。经过多效唑处理的菊花、月季、天竺葵、一品红以及一些花灌木,株形明显受到调整,更具观赏价值。常见的剂型为15%可湿性粉剂。 在园林植物中的具体应用实例有: ①矮牵牛将15%多效唑可湿性粉剂稀释后进行土壤浇灌,每盆1~2毫.克(有效含量)。

工业药剂学练习题

名称解释: 1.工业药剂学 2. 药物剂型 3.辅料 4.热原 5.置换价 6.片剂 7.表面活性剂 8.等渗溶液 9.热原 10.乳剂 11.临界胶团浓度CMC 12.昙点 13.注射用水 14.含量均匀度 15.等张溶液 16.增溶剂 17.崩解时限 18.等量递加法 19.无菌操作法 20.灭菌 21.药典 22. HLB值 23.有限溶胀 24.助溶剂 25.絮凝剂 1.输液灌封后,一般灭菌过程应在_______小时内完成。 2.片剂的辅料可分为_____________、_____________、_____________、_____________四大类。 3.常用的渗透压调节剂用量计算方法有_____________和____________。 4.药品生产质量管理规范简称_____________,非处方药简称为_____________。 5.软材过筛制粒时对软材的要求为_________________________。 6作为粘合剂的淀粉浆有两种制法,一种是____________,第二种是____________。 7.混悬剂的稳定剂包括_____________、_____________、_____________和_____________等。 8.高分子溶液的制备一般经过_____________ 、_____________ 两个过程。 9.用40%司盘60(HLB4.7)和60%吐温60(HLB14.9)组成的混合表面活性剂HLB

值为___________,该混合物可用作_____________型乳化剂。 10注射剂的pH值要求一般控制范围在_____________。 11制备空胶囊的主要材料是_____________。 12湿法制粒压片适用于_____________的药物。 13药剂学是研究药物制剂的_____________、_____________、_____________、_____________、_____________等的综合性应用技术科学。 14.栓剂按作用可分为两种:一种是发挥_____________作用,一种发挥_____________作用。 15.热原的基本性质有耐热性、_____________、_____________和_____________等。 16. 乳剂的类型主要是由乳化剂决定,亲水性性强的乳化剂易形成_____________型乳剂,亲油性性强的乳化剂易形成_____________ 乳剂。17.《中国药典》二部收载的溶出度测定的方法有_____________和_____________。 18.热原检查方法有_______________和__________________。 19. 制备散剂,当药物比例相差悬殊时,一般采用_____________法混合。 20.栓剂的制备方法主要有_____________和_____________ 两种。 21.粉针剂的制备方法有_____________和_____________。 22溶液剂的制备方法分为溶解法和_____________。 23.常用的软膏基质可分为_____________、_____________、和_____________三种类型。 24.《中国药典》二部收载的溶出度测定的方法有_____________和_____________。 25.药物降解的两个主要途径为_____________和____________。 26加入适当的电解质,使微粒间的ζ电位降低到一定程度,微粒形成絮状聚集体的过程称为_________。O/W型乳剂转成W/O型乳剂,或者相反的变化称为_________。乳剂在放置过程中出现分散相粒子上浮或下沉,这个现象称为_________。 27混悬剂的稳定剂包括_____________、_____________、_____________和

病理生理--体液容量及渗透压的调节

病理生理--体液容量及渗透压的调节 细胞外液容量和渗透压的相对稳定是通过神经-内分泌系统的调节实现的。 1.渴感、抗利尿激素、醛固酮的作用 渗透压感受器主要分布在视上核和颈内动脉附近。正常渗透压感受器阈值为280mmol/L.当成 人细胞外液渗透压有1%~2%变动时,就可以影响抗利尿激素(antidiuretichormone,ADH)释放。精神紧张、疼痛、创伤以及某些药物和体液因子,如氯磺丙脲、长春新碱、环磷酰胺、血管紧张素Ⅱ等也能促进ADH分泌或增强ADH的作用。在细胞外液容量有较大幅度改变时,血容量和血压的变化(非渗透性剌激)可通过左心房和胸腔大静脉处的容量感受器和颈动脉窦、主动脉弓的压力感受器而影响ADH的分泌。 当细胞外液渗压升高时,则剌激下丘脑的视上核及颈内动脉的渗透压感受器和侧面的口渴中枢,也可反射性引起口渴的感觉,从而引起ADH释放及口渴。口渴主动饮水而补充水的不足;ADH可加强肾远曲小管和集合管对水的重吸收,减少水的排出;同时抑制醛固酮的分泌,减弱肾小管对Na+的重吸收,增加Na+的排出,降低了Na+在细胞外液的浓度。上述调节结果使体内水的容量增加,血浆渗透压恢复正常。若血浆渗透压降低则引起相反的反应,抑制渴感、ADH的释放和促进醛固酮分泌。 实验证明,细胞外液容量的变化可以影响机体对渗透压变化的敏感性。许多血容量减少的疾病,其促使ADH分泌的作用远超过血浆晶体渗透压降低对ADH分泌的抑制,说明机体优先维持正常的血容量。 2.心房肽的作用 心房肽(atriopeptin)是影响水Na+代谢的重要因素。心房肽或称心房利钠肽(ANP)是一 组由心房肌细胞产生的多肽,约由21~33个氨基酸组成。当心房扩展、血容量增加、血Na+增 高或血管紧张素增多时,将剌激心房肌细胞合成释放ANP.ANP释放入血影响水钠代谢的机制:①减少肾素的分泌;②抑制醛固酮的分泌;③对抗血管紧张素的缩血管效应;④拮抗醛固酮的滞 Na+作用。因此,有人认为体内可能有一个ANP系统与肾素血管紧张素-醛固酮系统一起担负着调节水钠代谢的作用。 3.水通道蛋白的作用 水通道蛋白(aquaporins,AQP)也是影响水Na+代谢的另一重要因素。AQP是一组构成水通道与水通透性有关的细胞膜转运蛋白,广泛存在于动物、植物及微生物界。目前在哺乳动物组织监定的AQP有8种(AQP0、AQP1、、AQP2、AQP3、AQP4、AQP5、AQP6、AQP7),统称为Aquaporins (AQPs),每种AQP有其特异性的组织分布。不同的AQP在肾和其它器官的水吸收和分泌过程中有着不同的作用和调节机制。水通过水通道转运与简单扩散不同,其渗透通透性远大于扩散通透性。水利用水通道蛋白可以向高渗方向移动,这一过程很快,不需要门控等调节。在生理情况下,基本上处于激活状态,且不受质膜分子组成及温度等的影响。 ①AQP1:位于红细胞膜上,生理状态下有利于红细胞在渗透压变化的情况下,如通过髓质高渗区时得以生存;也存在于淋巴管、毛细血管和小 静脉内皮细胞中,对水分迅速进入淋巴管和血管床,调控细胞间液体量、毛细血管流体静压和血浆胶体渗透压起着重要作用;也位于近曲小管享氏袢降支管腔膜和基膜以及降支直小血管管腔膜上和基膜,对水的运输和通透发挥调节作用。 ②AQP2:位于集合管,约有10%的肾小球滤过液流经集合管时在AQP2的参与下被重吸收,在 肾浓缩机制中起重要作用。当AQP2发生功能缺陷时,将导致尿崩症。 ③AQP3位于肾集合管、膀胱、皮肤、巩膜和胃肠道粘膜。AQP3不仅能转运水,而且也能转运尿素和甘油,对尿液浓缩起重要作用。拮抗AQP3可产生利尿反应。 :位于集合管主细胞基质侧,可能提供水流出通道。也分布于渴中枢,可能参与AQP4④

常见植物生长调节剂的复配方法

常见植物生长调节剂的复配方法 1、促进坐果剂:作用是提高单性结实率,提高水果单重,促进坐果、加快果实的膨大速度、增加果实的大小。其类型分别有赤霉素+细胞激动素、赤霉素+生长素+6-BA、赤霉素+萘氧乙酸+二苯脲、赤霉素+卡那霉素、赤霉素+芸苔素内酯、赤霉素+萘氧乙酸+微肥元素等。 2、生根剂:主要促进秧苗移栽之后的生根、缓苗,或者苗木的扦插等。其类型分别有生长素+土菌消、生长素+邻苯二酚、吲哚乙酸+萘乙酸、生长素+糖精、脱落酸+生长素、黄腐酸+吲哚丁酸等。 3、抑制性坐果剂、谷物增产剂:作用是控制旺长,提高坐果率。其类型分别有矮壮素+氯化胆碱、矮壮素+乙稀利、乙稀利+脱落酸、矮壮素+乙稀利+硫酸铜、矮壮素+嘧啶醇、矮壮素+赤霉素、脱落酸+赤霉素等。 4、打破休眠促长剂:作用是打破休眠促进发芽。其类型有赤霉素+硫脲、硝酸钾+硫脲、苄氨基嘌呤+萘乙酸+烟酸、赤霉素+KCl、赤霉素+Fospinol 等。 5、干燥脱叶剂:主要用于芝麻、棉花等,在机械采收前干燥、脱叶,其作用不仅是干燥脱叶的效果,还要有增加产量的效果。其类型有乙稀利+百草苦、噻唑隆+甲胺磷、噻唑隆+碳酸钾、乙稀利+过硫酸胺、噻唑隆+敌草隆、乙稀利+草多索+放线菌酮等。 6、催熟着色改善品质剂:有加快果实成熟、使色泽鲜艳、增加果实的甜度等作用。其类型有乙稀利+促烯佳、乙稀利+环糊精复合物、乙稀利+2,4,5-涕丙酸、敌草隆+柠檬酸、苄氨基嘌呤+春雷霉素等。

7、蔬果、摘果剂:在苹果、柑橘快成熟前应用,促使柑橘果梗基部的离层形成,从而导致果实与枝条的分离。其类型有:萘乙酰胺+乙稀利、二硝基邻甲酚+萘乙酰胺+乙稀利、萘乙酰胺+西维因、二硝基邻甲酚+萘乙酰胺+西维因、萘乙酸+西维因等。 8、促进花芽发育、开花及性比率:使果实作物由营养生长转化为生殖生长,促进开花。其类型有萘乙酸+苄氨基嘌呤、苄氨基嘌呤+赤霉素、赤霉素+硫带硫酸银、乙稀利+重铬酸钾等。 9、抑芽剂:在烟草上抑制腋芽的萌发,在贮藏期抑制马铃薯的发芽等作用。其类型有青鲜素+抑芽敏、氯苯胺灵+苯胺灵、蔗糖脂肪酸酯+青鲜素等。 10促长增产剂:提高植株对N、P、K的吸收,增加产量的作用。其类型有吲哚乙酸+萘乙酸、吲哚乙酸+萘乙酸+2,4-D+赤霉素、助壮素+细胞激动素+类生长素、双氧水+木醋酸等。 11、抗逆剂(抗旱、抗低温、抗病等):增加营养元素的吸收、促进幼苗的生长、增加干物质总量、提高抗寒性、抗旱性、抗病、抗虫能力。其类型有抗激动素+脱落酸、细胞激动素+生长素+赤霉素、乙稀利+赤霉素、水杨酸+基因活性剂等。

药物制剂技术复习整理

1.剂型:将原料药和辅料等经过加工制成具有一定规格、一定形状而有效成分不变的,以便于使用贮存的形式。 2.制剂:剂型中的任何一个具体品种,适合于临床需要并符合质量标准的药剂。 3.药物分类:A按形态分:液体、固体、半固体、气体剂型四种。B按分散系统分类:真容液型、胶体溶液型、乳浊液型、混悬液型、气体分散型、固体分散型C按给药途径分类:经胃肠道给药、不经胃肠道给药((1)注射给药如静脉注射、肌内注射、皮下注射和皮内注射等。(2)呼吸道给药如吸入剂、喷雾剂、气雾剂等。(3)皮肤给药如外用溶液剂、洗剂、搽剂、软膏剂、糊剂、贴剂等。(4)粘膜给药如滴眼剂、滴鼻剂、含漱剂、舌下片剂、栓剂、膜剂等。一般把直肠给药也归于粘膜给药一类,如灌肠剂、栓剂、直肠用胶囊栓等。[1])D按制法分类:浸出制剂、无菌制剂 4.半成品:是指各类制剂过程中制得的,需要进一步加工制造的物料。(是指经过一定生产过程并已检验合格交付半成品仓库保管,但尚未制造完工成为产成品,仍需进一步加工的中间产品。) 5.批量:是指在一次或相同操作条件下,连续制成的质量均一的药品的量。 6.药物制剂稳定性的要求:安全、有效、稳定(化学、物理、生物稳定性) 7.有效期:药效损失10%所需要的时间 8.界面:两个或多个不同物质之间的分界面。 9.相:是指体系中物理和化学性质均匀的部分。 10.表面张力:是指一种使表面分子具有向内运动的趋势并使表面自动收缩至最小面积的力。(液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力.. 11.表面活性剂:能使液体的表面张力显著下降,并具有增溶、乳化、润湿、去污、杀菌、消泡和起泡的作用。 12.通过化学键将两个或两个以上的同一或几乎同一的表面活性剂单体,在亲水头基或靠近亲水头基附近用联接基团将这两亲成份联接在一起,形成的一种表面活性剂称为双子表面活性剂。该类表面活性剂有阴离子型、非离子型、阳离子型、两性离子型及阴- 非离子型、阳- 非离子型等。 13.制药的一般过程:粉碎、过筛、混合、制软材、制湿颗粒、干燥、整片、压片、片剂(重点) 14.药材粉碎的目的:1增加表面积,促进溶解,提高生物利用度;2便于适应多种给药途径的应用;3减小粒度,增加表面积。(重点) 15.粉碎度:又称粉碎比,通常用粉碎前的药物平均直径d与粉碎后的药物平均直径d1相比。N=d/d1 16.水飞法:(···)温度<80℃湿度5% 17.粉末分级表:最粗粉、粗粉、中粉、细粉、最细粉、极细粉 18.干燥的方法:自然、气流、减压、喷雾、沸腾、红外线、冷冻 19.制药用水:饮用水、纯化水、注射用水、灭菌注射用水 20.原水的预处理:原水、过滤、阳床、脱气塔、阴床、混合床、纯化水 21.液体制剂:液体制剂是指药物分散在液体分散介质中组成的内服或外用的液态制剂。液体制剂也是其他剂型(如注射剂、软胶囊、软膏剂、栓剂、气雾剂等)的基础剂型,在这些剂型中,普遍使用液体制剂的基本原理,因此液体制剂在药剂学上的应用具有普遍意义。液体剂型分类: 1. 根据药物分散情况分类均相液体制剂、非均型液体制剂 2. 根据分散相质点的大

溶液渗透压

溶液渗透压:取决于溶液中溶质颗粒数目的多少。 血浆渗透压大约为300mmol/L. 血浆渗透压由晶体渗透压和胶体渗透压组成 1,晶体渗透压是组成血浆渗透压的主要组成部分,占80%。主要来自钠和氯离子。 2,胶体渗透压是由血浆中的蛋白质组成,由于血浆中的蛋白质较少,所以形成渗透压小。其中白蛋白占胶体渗透压的75%-80% 血液渗透压对调节血管内外水的平衡和维护正常的血浆容量起重要的作用。 血浆的渗透压主要来自溶解于其中的晶体物质。 血浆晶体渗透压(晶体物质所形成的渗透压): 主要保持细胞内外水的平衡和细胞的正常体积 血浆胶体渗透压(蛋白质所形成的渗透压): 主要调节血管内外水的平衡和维持正常血浆容量 在医疗工作中,不仅大量补液时要注意溶液的渗透压,就是小剂量注射时,也要考虑注射液的渗透压。但临床上也有用高渗溶液的,如渗透压比血浆高10倍的2.78mol·L-1葡萄糖溶液。因对急需增加血液中葡萄糖的患者,如用等渗溶液,注射液体积太大,所需注射时间太长,反而不易收效。需要注意,用高渗溶液作静脉注射时,用量不能太大,注射速度不可太快,否则易造成局部高渗引起红细胞皱缩。当高渗溶液缓缓注入体内时,可被大量体液稀释成等渗溶液。对于剂量较小浓度较稀的溶液,大多是将剂量较小的药物溶于水中,并添加氯化钠、葡萄糖等调制成等溶液,亦可直接将药物溶于生理盐水或0.278mol·L-1葡萄糖溶液中使用,以免引起红细胞破裂。 渗透压是调节细胞内外体液环境稳定的重要因素之一,其高低变化可以直接影响机体的生理功能和代谢活动。 若血浆渗透压低于正常值,有可能会引起组织水肿。 血浆渗透压偏低可能是营养不良所造成的,所以平时饮食应注意多摄取营养,不可偏食厌食。关于血浆渗透压的叙述中正确的是:B.血浆渗透压主要来自血浆中的电解质 血浆渗透压(1)概念:渗透压指的是溶质分子通过半透膜的一种吸水力量,其大小取决于溶质颗粒数目的多少,而与溶质的分子量、半径等特性无关。由于血浆中晶体溶质数目远远大于胶体数目,所以血浆渗透压主要由晶体渗透压构成。血浆胶体渗透压主要由蛋白质分子构成,其中,血浆白蛋白分子量较小,数目较多(白蛋白>球蛋白>纤维蛋白原),决定血浆胶体渗透压的大小。 (2)渗透压的作用 晶体渗透压——维持细胞内外水平衡

常用植物生长调节剂

常用植物生长调节剂 一、植物生长促进剂 分子式:C10H9O2N 分子量:175.19 性质:纯品无色.见光氧化成玫瑰红,活性降低。在酸性介质中不稳定,PH低于2时很快失活,不溶于水, 易溶于热水,乙醇,乙醚和丙酮等有机溶剂。它的钠盐和钾盐易溶于水,较稳定。 用途:植物组织培养 2、吲哚丁酸,IBA 分子式:C12H13NO3 分子量:203.2 性质:白色或微黄色。不溶于水,溶于乙醇、丙酮等有机溶剂。 用途:诱导插枝生根。作用特别强,诱导的不定根多而细长。 3、萘乙酸,NAA相似的有萘丁酸、萘丙酸 分子式:C12H10O2 分子量:186.2 性质:无色无味结晶,性质稳定,遇湿气易潮解,见光易变色。不溶于水,易溶于乙醇,丙酮等有机溶剂。钠盐溶于水。 用途:促进植物代谢,如开花、生根、早熟和增产等,用途广泛。 4、萘氧乙酸,NOA 分子式:C12H10O3 分子量:202 性质:纯品白色结晶。难溶于冷水,微溶于热水,易溶于乙醇、乙醚、醋酸等。用途:与NAA相似。 5 、2,4-二氯苯氧乙酸,2,4-D,2,4-滴 分子式:C8H6O3C12 分子量:221 性质:白色或浅棕色结晶,不吸湿,常温下性质稳定。难溶于水,溶于乙醇,乙醚,丙酮等。它的胺盐和钠盐溶于水。 用途:植物组织培养,防止落花落果,诱导无籽,果实保鲜,高浓度可杀死多种阔叶杂草。 6、防落素,PCPA 4-CPA,促生灵,番茄灵,对氯苯氧乙酸 分子式:C6H7O3C1 分子量:186.6 性质:纯品为白色结晶,性质稳定。微溶于水,易溶于醇、酯等有机溶剂。 用途:促进植物生长;防止落花落果,诱导无籽果实;提早成熟;增加产量;改善品质等。常用于番茄保果。 7、增产灵,4-碘苯氧乙酸。相似的有4-溴苯氧乙酸,又称增产素 分子式:C8H7O3I 分子量:278 性质:针状或磷片状结晶,性质稳定。微溶于水或乙醇,遇碱生成盐。 用途:促进植物生长;防止落花落果,提早成熟和增加产量等。 & 甲萘威,西维因,N-甲基-1-萘基氨基甲酸酯 分子式:C12H11O2N 分子量:201.2 性质:纯品为白色结晶,工业品灰色或粉红色。微溶于水,易溶于乙醇、甲醇、丙酮等有机溶剂。遇碱(P H大于10 )迅速分解失效。 用途:干扰生长素运输,使生长较弱的幼果得不到充足养分而脱落,用于苹果的疏果剂。同时它也是一种高效低毒沙虫剂。 9 、2,4,5-T,2, 4,5-三氯苯氧乙酸 分子式:C8H5O3C13 分子量:255.5

M 鱼类的渗透压调节

鱼类的渗透压调节 Q:为什么海水鱼的肉吃起来不咸,而海蜇皮吃起来是咸的? 海洋动物有着自己特殊的性能、构造或者器官平衡、稀释甚至排出海水所带来的盐分,举例来说:海洋鱼类。 生活在海洋中的鱼类,都有各自的“海水淡化器”,能将喝进去的咸水中的盐分及时排出体外,真正进入体内的却是淡水,它们的肉当然就不咸了。这种“海水淡化器”,硬骨鱼类和软骨鱼类又有所不同。 海洋中的硬骨鱼类具有很强的排盐能力,有专门排盐的器官,这些器官长在鱼的鳃片中,由“泌氯细胞”组成。“泌氯细胞”能够分泌出氯化物,好比是鱼身上的一个“淡水车间”,能使进入鱼体的海水淡化,而且效率相当高,即使世界上最先进的“海水淡化器”也望尘莫及。它们为了弥补水分的流失,就采取多喝水、少泌尿的办法来维持体内的低渗压。 海洋中的软骨鱼类(如鲨鱼)的“海水淡化器”又是另一个样子,它没有“泌氯细胞”,而是利用体内尿素的作用来排除盐分。它们体内尿素的含量比其他水生动物几乎高出100倍以上,这些尿素不仅能使软骨鱼类保持体液的高渗压,减少盐分的渗透,而且还可以加速体内盐分的排泄。所以尿素堪称软骨鱼类的“救命良药”。 海鱼是通过“电渗膜法”淡化海水。海鱼的表皮粘膜、口腔粘膜和内腔粘膜,都是一种半渗透膜,当鱼喝进海水时,被口腔粘膜和内腔粘膜隔离在腔内,通过呼吸时的压差使分子渗透过粘膜进入体内,而盐水分无法通过,被排出体外。如果有少量盐分进入体内时,鱼体还可通过自身的生物电作用,将水分子中的氯化钠电离,形成正负离子后渗出粘膜外。现在人类生产的海水淡化器就是科学家根据海洋鱼类的“电渗膜法”原理研究出来的。 淡水鱼类 通常淡水鱼类和海水鱼类体液的含盐浓度相差不大,均约以7mosm/kg[渗透毫摩尔/公斤(升)水=22.4十大气压]表示淡水鱼血液的渗透压范围是265 ~325 mosm/kg.而淡水的盐水浓度在3 一以下(渗透压小于5 mosm/kg),对淡水鱼类体液来说是低渗的,因此就有通过渗透吸水的倾向。如果水分不受限制或无补偿地向内扩散就会把体液稀释到不再具有必要的生理功能的状态,有^称这种状态为内溺死(internal drowning)。此时,鱼类主要由肾脏来完成渗透调节作用淡水鱼类肾脏内肾小球的数量远远多于海水鱼类,通过窳多数量肾小球的滤过作用,增大泌尿量来排除体内多余水分,如鲤鱼的肾小球数量多达24 310个。葡萄糖和一些无机盐分别在近端小管和远端小管被重新吸收,膀胱也能吸收部分离子,这样生成的尿很稀(渗透浓度约为30~40 mos~l/kg).由尿排泄所丧失的盐分很少。尿流量随种类、温度而不同。据测定,一般在加~150mI /kg。如鲤鱼为5mI /kg.h、鲫鱼达330mL /kg。通过大量地排泄浓度很低,近乎清水的尿液来排除体内多余水分,随大流量尿液丢失的部分盐类主要通过食物摄取和鳃的主动吸收来平衡。

甘露醇等作为渗透压调节剂输液制剂专题讨论会会议纪要

发布日期20030521 栏目化药药物评价>>综合评价 标题"甘露醇等作为渗透压调节剂输液制剂专题讨论会会议纪要" 作者审评四部 部门 正文内容 甘露醇等作为渗透压调节剂输液制剂专题讨论会 会议纪要 时间: 二○○三年四月二十一日 地点:中国科技会堂 主持:(略) 参会人员:(略) 一、会议背景: 近一年以来,药审中心在审评工作中陆续遇到抗生素类、心血管类及其他类药物用甘露醇、山梨醇、木糖醇等制成的输液制剂,按输液、水针、粉针 相互改变的药品免临床直接申报生产,这些品种的粉针、水针剂或葡萄糖、 氯化钠注射剂已批生产。 申报单位开发以上品种的理由多种,如所研制的药物与葡萄糖有配伍禁忌;与葡萄糖及氯化钠均存在配伍禁忌,或配伍后不稳定;或对药物有关物

质测定有干扰;葡萄糖及氯化钠的大输液已批准生产,而药物与甘露醇或山梨醇或木糖醇等配伍稳定、无相互作用。 此类品种主要问题在于立题,一般输液制剂均用葡萄糖或氯化钠作为渗透压调节剂。研制单位认为等渗的甘露醇、山梨醇、木糖醇无副作用,可用作渗透压调节剂,但无充足的资料支持。而此类品种申报有增加趋势。 二、会议讨论情况和结论: 1、甘露醇等在药剂学上的作用为支撑剂,一般不作为渗透压调节剂使用。5%甘露醇属于渗透性利尿药,有甘露醇的临床适应症和禁忌症以及注意事项, 所以不宜作为输液的渗透压调节剂。 2、5%、10%、15%、20%浓度的甘露醇,说明书中适应证均为渗透性利尿 剂,各种浓度制剂的不良反应描述均相同。 3、山梨醇、甘露醇都有利尿作用,可促进水、钠、氯、钾等排泄,因而与某些药物合用制成大输液不清楚是否会因其利尿作用而改变原有药物的体内代谢过程,进而影响到药物的疗效或安全性。 4、等渗的甘露醇等对肾脏的影响以及与药物的相互影响缺乏文献和试验基础,在批准该类制剂前应该有动物毒理研究的资料,提示该类物质对动物肾脏酶以及肾组织的影响,临床也需要有药代动力学和药物相互作用研究的资 料。 5、木糖醇虽有不依赖胰岛素代谢的特点,但其可转变为果糖,果糖经无氧酵解代谢,可引起高乳酸血症、乳酸中毒和高尿酸血症,也可能引起肾脏损害。 6、葡萄糖、氯化钠是每天摄食的基本物质,安全性可靠,一般情况下用作输

植物生长调节剂复配大全

植物生长调节剂复配 大全

植物生长调节剂复配大全 植物生长调节剂可促进作物生长、提高作物的座果率等,同时还能与多种农药品种进行复配, 常用的植物生长调节剂的复配可分为:植物生长调节剂之间混复配、植物生长调节剂与杀菌剂复配、植物生长调节剂与肥料复配等,下面让我们一起来了解下吧。 一、植物生长调节剂之间复配 以前大家认为植物生长调节剂具有专用性,不能复配使用,而现代植物生理学研究证明:不同的植物生长调节剂复配使用后,将产生意想不到的好效果。生长促进剂与生长抑制剂复配使用后发现,对一些植物可抑制营养生长而促进生殖生长,在植物控制旺长、抗倒伏的同时,使果实膨大,提高产量改善品质。 1、复硝酚钠萘乙酸钠 它是一种省工、低成本、高效、优质的新型复合植物生长调节剂。复硝酚钠作为一种综合调节作物生长平衡的调节剂,可全面促进作物生长,而与萘乙酸钠复配,一方面强化萘乙酸钠的生根作用,另一方面又增强复硝酚钠生根速效性,二者共同促进,使生根效果更快,吸收营养更强劲,更全面,加速促进作物伸张健壮,不倒伏,节间粗壮,分枝、分蘖增多,抗病,抗倒伏。 2、DA-6 乙烯利(或复硝酚钠乙烯利) 它是一种复合型玉米专用的矮化、健壮、防倒型调节剂。单用乙烯利,表现为有矮化作用,且叶片增宽、叶色深绿、叶片向上、次生根增多,但易出现叶片早衰现象。 3、复硝酚钠赤霉素 复硝酚钠与赤霉素同作为速效性调节剂,均能在施用后短时间内发生作用,使作物显示出很好生长效果,而复硝酚钠与赤霉素复配使用,据中牟县枣树科学研究所应用中威春雨1号(正宗复硝酚钠)研究表明,在加合二者效果的同时,复硝酚钠的持效性特点,能补赤霉素的这一缺陷,同时通过综合调控生长平衡,避免赤霉素使用过量造成对植株体的伤害,从而使枣树显着增产,品质也明显提高。 4、萘乙酸钠吲哚丁酸盐 它是世界上应用最为广泛的复合生根剂,在果树、林木、蔬菜、花卉及一些观赏植物上推广应用广泛。该混剂可经由根、叶、发芽的种子吸收,刺激根部内鞘部位细胞分裂生长,使侧根生长快而多,提高植株吸收养分和水分能力,达到植株整体生长健壮。 由于该剂在促进植物扦插生根中往往出现增效或加合作用,从而使一些难以生根的植物也能插枝生根。

相关文档
最新文档