互感型电感传感器
测试技术第5讲--电感式传感器

meyyq@
电感式传感器
螺旋管式自感传感器
双螺管线圈差动型,较之单螺管线圈型有较高灵敏度及线性, 被用于电感测微计,其测量范围为0—300mm,最小分辨力为 0.5mm。这种传感器的线圈接于电桥,构成两个桥臀、线圈电感 LI、L2随铁芯位移而变化。
对 有 长 差 式 线 , 沿 向 磁 强 H为 于 限 度 动 的 圈 其 轴 的 场 度 : 线 长 l: 圈 度 IW l − 2x l + 2x 2x H= − + 2 2 2 2 2 2 2l 4r + (l − 2x) r +x 4r + (l + 2x) R: 圈 平 直 线 的 均 径 I: 圈 平 电 线 的 均 流 N: 圈 数 线 匝 线 的 向 场 布 不 匀 , 确 理 上 感 推 很困 。 圈 轴 磁 分 是 均 的 精 的 论 电 值 导 难 本 程 作 细 析 课 不 详 分
meyyq@
电感式传感器
变面积式自感传感器
仅改变气隙截面积的自感传感器称为变截面积式自感 传感器。在忽略气隙边缘效应的条件下,电感的变化 由下式计算:
W2µ0 (S + ∆S) W2µ0S W2µ0∆S W2µ0S ∆S ∆S ∆L = L - L0 ≅ − = = ≅ L0 2x 2x 2x 2x S S
U0 =
2
Z
=
2 R0 + jwL0
≈
2
L0
=
2 δ0
(a)交流电桥测量电路 (b)变压器式电桥 图4- 7 自感式传感器测量电路
meyyq@
电感式传感器
自感传感器的测量电路
(2)变压器式交流电桥自感式 ) 传感器测量电路 传感器测量电路 变压器式交流电桥测量电路如图 (b)所示 当负截阻抗为无穷大 )所示, 桥路输出电压: 时, 桥路输出电压: 当传感器的衔铁处于中间位置, 当传感器的衔铁处于中间位置 电桥平衡。 有Uo=0, 电桥平衡。 当传感器衔铁上移时, 当传感器衔铁上移时 即 Z1=Z+∆Z, Z2=Z-∆Z, , 当传感器衔铁下移时, 当传感器衔铁下移时 则Z1=Z∆Z, Z2=Z+∆Z, 从上面两式可知, 从上面两式可知 衔铁上下移动 相同距离时, 相同距离时 输出电压的大小相 但方向相反, 由于是交流电压, 等, 但方向相反 由于是交流电压 输出指示无法判断位移方向, 必 输出指示无法判断位移方向 须配合相敏检波电路来解决。 须配合相敏检波电路来解决。
互感式传感器测量原理

互感式传感器测量原理互感式传感器是一种常用于测量和监测物理量的传感器。
它利用互感现象来实现测量原理。
互感现象是指当两个线圈靠近时,其中一个线圈的电流变化会导致另一个线圈中的电流发生变化。
互感式传感器的基本结构由两个线圈组成,一个称为主线圈,另一个称为辅助线圈。
主线圈中通入待测物理量所产生的电流,而辅助线圈则用来测量这个电流的变化。
主线圈和辅助线圈之间通过磁场相互耦合,当主线圈中的电流发生变化时,会在辅助线圈中感应出电动势。
互感式传感器的工作原理是基于法拉第电磁感应定律。
根据法拉第电磁感应定律,当一个线圈中的磁通量发生变化时,会在另一个线圈中感应出电动势。
互感式传感器利用这一原理,通过测量辅助线圈中感应出的电动势来间接测量主线圈中的电流变化。
互感式传感器的测量原理可以通过以下步骤来解释。
首先,主线圈中通过待测物理量产生的电流会产生一个磁场。
这个磁场会传导到辅助线圈中,并在辅助线圈中感应出电动势。
然后,通过测量辅助线圈中的电动势,可以得到主线圈中电流的变化情况。
根据测得的电动势和已知的线圈参数,可以计算出主线圈中的电流值。
互感式传感器的测量原理具有一定的优势。
首先,它具有较高的灵敏度和精度,能够实现对微小电流变化的测量。
其次,互感式传感器的结构简单、体积小,适用于各种应用场景。
此外,它具有较好的线性特性和频率响应特性,能够满足不同领域的测量需求。
互感式传感器在许多领域都得到了广泛的应用。
例如,在工业自动化领域,互感式传感器可以用来测量电流、位移、压力等物理量。
在医疗领域,它可以用来监测心电图信号、血压等生理参数。
在环境监测领域,互感式传感器可以用来监测温度、湿度、光照强度等环境参数。
互感式传感器是一种基于互感现象的传感器,利用互感现象来实现对物理量的测量和监测。
它通过测量辅助线圈中感应出的电动势来间接测量主线圈中的电流变化。
互感式传感器具有灵敏度高、精度高、结构简单、体积小等优点,广泛应用于各个领域。
互感型电流传感器工作原理

互感型电流传感器工作原理
互感型电流传感器是一种常见的电力测量仪器,它主要用于测量高电
压电流,例如变电站中的电力传输和分配系统中的电流。
互感型电流
传感器的工作原理是基于法拉第电磁感应定律,即当电流通过一个导
体时,会在周围产生一个磁场。
如果将另一个导体放在这个磁场中,
那么在第二个导体中就会感应出电动势,从而产生电流。
互感型电流传感器的结构比较简单,通常由一个铁芯和一些线圈组成。
铁芯是一个环形的磁性材料,线圈则绕在铁芯上。
当电流通过被测导
线时,它会产生一个磁场,这个磁场会穿过铁芯并感应出线圈中的电
动势。
根据法拉第电磁感应定律,电动势的大小与电流的大小成正比。
因此,通过测量线圈中的电动势,就可以确定电流的大小。
互感型电流传感器的优点是它们可以测量高电压电流,而且不需要直
接接触被测电线。
这使得它们非常适合用于高压电力系统中,因为这
些系统中的电流往往非常大,而且非常危险。
此外,互感型电流传感
器还可以提供隔离,从而保护测量设备和操作人员免受电击的危险。
总之,互感型电流传感器是一种非常重要的电力测量仪器,它们的工
作原理基于法拉第电磁感应定律。
通过测量线圈中的电动势,可以确
定电流的大小,从而实现对高压电力系统中电流的测量和监测。
电感式传感器

和Z2=Z—△Z,当ZL→∞时,电桥的输出电压为
.
.
U0
Z1
.
U
R1
.
U
Z1 2R
R(Z1
Z
2
)
.
U
U
Z(4-1-6)
Z1 Z2 R1 R2
(Z1 Z2 ) 2R
2Z
当ωL>>R’时,上式可近似为:
.
.
U0
U
L
2L
(4-1-7)
由上式可以看出:交流电桥的输出电压与传感器线圈电感的相对变化量是成正比的。
图4.2.2 差动变压器的等效电路
1-一次绕组 2、3 二次绕组 4-衔铁
.
由图4.2.2可以看出一次绕组的电流为:
.
I1
U1
R1 jL1
二次绕组的感应动势为:
.
E 21
jM1
.
I1
.
;E 22
jM 2
.
I1
.
由于二次绕组反向串接,所以输出总电动势为:
.
E2
j(M1
M2)
R1
U1 jL1
· E0
0
x
为了减小零点残余电动势可采取以下方法:
图4.2.3 差动变压器输出特性
I. 尽可能保证传感器几何尺寸、线圈电气参数玫磁路的对称。磁性材料要经过处理, 消除内部的残余应力,使其性能均匀稳定。
互感式压力传感器工作原理

互感式压力传感器工作原理
互感式压力传感器通常由一对线圈组成,其中一个被称为激励线圈,另一个被称为测量线圈。
激励线圈通常连接到一个交流电源,而测量线圈则作为一个感应器。
当激励线圈通过交流电流时,会产生一个变化的磁场。
当被测对象施加压力时,它会改变感应线圈中的电感。
这是因为外部压力会引起感应线圈附近的磁场发生变化,从而改变了感应线圈的磁通量。
由于电感和磁通量之间存在线性关系,所以外部压力的变化会导致感应线圈电感的变化。
这个变化可以通过测量线圈产生的电压来检测。
测量线圈位于感应线圈附近,当感应线圈中的电感发生变化时,测量线圈中也会感应出一个电压。
这个电压与感应线圈中的电感变化成正比。
最后,测量线圈中的电压被放大并处理以产生一个可供读取的压力信号。
这个信号可以通过一些计算或者数值处理技术来转换成实际的压力值。
总而言之,互感式压力传感器的工作原理是通过测量线圈中感应到的电感变化来检测外部压力变化,并将其转换为可供读取的压力信号。
第六章 电感式传感器

0
3
灵敏度:
L2
L0
0
1
0
0
2
0
3
K
L / L0
1 2
0
L
L1
L2
2L0
0
1
0
2
实际上由于线圈内部的磁场是不均匀的,电感量的增 量ΔL与△x存在着一定的非线性。
为提高灵敏度和线性度,螺线管型自感式传感器常 采用差动结构。
6.1 自感式传感器
广西大学电气工程学院
双螺管型差动型
L1
L2
u
x
特性曲线
等效电路
将传感器两线圈接于电桥 的相邻桥臂时,其输出灵 敏度可提高一倍,并改善 了非线性特性,还能减少 干扰影响。
• 对电源采取稳压、稳频、屏蔽、加滤波电容等 措施,可减弱或消除电源的影响。
• 铁芯磁感应强度的工作点一定要选在磁化曲线 的线性段,以免在电源电压波动时,铁芯磁感 应强度进入饱和区而使导磁率发生很大变动。
6.1 自感式传感器
零点残余电压及其补偿
在电桥预平衡时,无法实 现平衡,最后总要存在着 某个输出值ΔU0,这称为 零点残余电压
应在设计制造时采取措施, 保证两电感线圈的对称。
减少电源中的谐波成分 在测量电桥中接入可调电
位器 采用相敏整流电路
广西大学电气工程学院
理想状态
ΔU0
实际状态
uo
理想状态
实际状态
第六章 电感式传感器
广西大学电气工程学院
差动变压器电感式传感器(互感式) 教学PPT课件

阅读并分析:P70
(1)零点残余电压是什么意思? (2)零点残余电压产生的原因? (3)零点参与电压的消除方法?
4.2.2 螺旋管式差动变压器
1、结构
阅读并回答:P67
(1)结构组成中包含了什么? (2)一次线圈和二次线圈是如何布局的?
1-初级线圈 2、3-次级线圈 4-铁芯
2、等效电路
阅读并回答:P71
阅读并回答:P72-P73
(1)两个二次线圈的输出信号做了什么处理? (2)当两个二次线圈的同名端a,c都为+极性 时,电容C1上的极性哪个为正? (3)当两个二次线圈的同名端a,c都为-极性 时,电容C1上的极性哪个为正?
从电路结构可知,不论两个次级线圈的输出瞬时电压极性
如何,流经电容C1的电流方向总是从2到4,流经电容C2的电流
方向总是从6到8, 故整流电路的输出电压为
Uo U24 U68
➢ 当衔铁在零位时,因为U24=U68,所以Uo=0; ➢ 当衔铁在零位以上时,因为U24 > U68 ,则Uo>0; ➢ 当衔铁在零位以下时, 则有U24< U68,则Uo<0。 Uo的正负表示衔铁位移的方向。
判断位移的大小和方向 ➢ 相敏检波电路
差动变压器的分类
阅读并回答:P67 (1)差压变压器的结构有几种什么形式? (2)实际应用最多的是哪一种?
差动变压器的应用?
4.2.1 变隙式差动变压器
1、结构
阅读并回答:P67
(1)结构组成中包含了什么? (2)一次线圈是如何连接的? 二次线圈是如何连接的?
【提问】差动变压器与差动式变磁阻传感器区别?
(1)衔铁上移时,互感系数M1和M2如何变化? (2)衔铁上移时,二次绕组1和二次绕组2的感应电动势如何变化?
传感器原理及其应用_第3章_电感式传感器

2
P
r
x
为简化分析,设螺管线圈的长径 比 l / r 1 ,则可认为螺管线 圈内磁场强度分布均匀,线圈 中心处的磁场强度为:
B
x
2 2 N NBS 0 N r L0 I I l
IN H l 则空心螺管线圈的电感为:
第3章 电感式传感器
当线圈插有铁芯时,由于铁芯是铁磁性材料,使插入部分的磁 阻下降,故磁感强度B增大,电感值增加。
如果铁芯长度 l e 小于线圈长度l,则线圈电感为
L
0N [lr ( r 1)l e re ]
2 2 2
l2
第3章 电感式传感器 当l e增加 l e 时,线圈电感增大ΔL,则
L L
电感变化量为
0N [lr ( r 1)(l e l e )re ]
0 N 2 S N2 N2 线圈自感L为: L 2 Rm 2 0 S
分类:
变气隙厚度δ的电感式传感器; 变气隙面积S的电感式传感器;
变铁芯磁导率μ的电感式传感器;
第3章 电感式传感器
自感式电感传感器常见的形式
变气隙式
变截面式
螺线管式
1—线圈coil ;2—铁芯Magnetic core ;3—衔铁Moving core
,上式展开成泰勒级数: 1
非线性误差为
0
2
0
100%
0
第3章 电感式传感器
①差动式自感传感器的灵敏度 比单线圈传感器提高一倍 ②差动式自感传感器非线性失 真小,如当Δδ/δ=10%时 , 单线圈γ<10%;而差动式的 γ <1% ③采用差动式传感器,还能抵 消温度变化、电源波动、外界 干扰、电磁吸力等因素对传感 器的影响
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.2 位移传感器
一、电感式位移传感器
电感式传感器是基于电磁感应原理,将被测物理量转 换为电感量的变化。 1、自感型电感式传感器 可变磁阻式电感传感器、电涡流式传感器
2、互感型电感传感器
1、自感型电感式传感器
1)可变磁阻式电感传感器
自感L可表示为:
灵敏度:
可变磁阻式传感器的典型结构:可变导磁面积型、差动型、单螺管线圈 型、双螺管线圈差动型。
当给滑尺的正余弦绕组同时加励磁电压,则在定尺上感应的总电动势为:
e eA eB KU A cos KU B sin
五、光电编码器
这种码盘有两个通道与B(即两组透光和不透光部分),其相 位差90°,相对于一定的转角得到一定的脉冲,将脉冲信号送 入计数器。则计数器的计数值就反映了码盘转过的角度。
电容传感器为电桥的一部分。由电容变化转换为电桥的电压输 出,经放大、相敏检波、滤波后,再推动显示、记录仪器。
2)谐振电路
电容传感器的电容作为谐振回路调谐电容的一部分。谐振回路通过 电感藕合,从稳定的高频振荡器取得振荡电压。当传感器电容发生 变化时,谐振回路的阻抗将发生相应的变化,而这个变化被转换为 电压或电流,再经过放大、检波即可得到相应的输出。
3)运算放大器电路
前面已经叙述到,变极距型电容式传感器的极距变化与电容变化 量成非线性关系。这一缺点使电容式传感器的应用受到了一定的 限制。采用比例运算放大器电路,可以使输出电压约与位移的关 系转换为线性关系。如图所示,反馈回路中的Cx为极距变化型电 容式传感器的输入电路,采用固定电容C0,u0为稳定的工作电压。 由于放大器的高输入阻抗和高增益特性,比例器的运算关系为
如果将δ固定,变化 空气隙导磁截面积 S0时,自感L与S0 呈线性关系
双螺管线圈差动型,较之单 螺管线圈型有较高灵敏度及 线性,被用于电感测微计上, 其测量范围为0~300μm, 最小分辨力为0.5μm。
2)电涡流式电感传感器
高频反射式涡流传感器:高频(>1MHz)激励电流,产生的高频磁场作 用于金属板的表面,在金属板表面将形成涡电流。 若只改变距离δ而保持其他系数不变,则可将位移的变化转换为线圈 自感的变化。
其灵敏度为:
dC 0 r 2 K 常数 da 2
3、介质变化型电容式传感器的变换原理
这种传感器大多用于测量电介质的厚度(图a)、位移(图b)、液位 (图c),还可根据极板间介质的介电常数随温度、湿度、容量改 变而改变来测量温度、湿度、容量(图d)等。
4、电容式传感器的测量电路
1)电桥电路
温度传感器
压力传感器
角位移传感器
扭矩传感器
位移传感器
按传感器工作的物理原理分为:电阻式、电感式、电容式、 光电式等等。纤式位移传感器
激光位移传感器
超声波位移传感器传感器
二、传感器的特性
1、静态响应特性
当被测量的数值处在稳定状态时,传感器的输出-输入特性。 包括:非线性度、迟滞、灵敏度、精度、分辨力、测量范围、死区。
5.5、力、压力和扭矩传感器
一、工作原理
首先由弹性元件将力、力矩、压力等被测量转换成位移 或应变,然后再通过转换元件将相应的位移或应变转换 成电信号输出。
E P EA
R G R l , G 1 2 l
二、弹性元件
梁式弹性元件
受径向载荷
铰链弯曲式弹性元件
应变式力传感器的测量范围很大,可以从5N~10MN以上, 测量精度可以达到0.03%~2%。
360 / m
0
360 n n m
5.3 速度传感器
一、直流测速发电机
用于自动控制中测量转速或速度负反馈校正元件。分为永 磁式和电磁式,常用的是永磁式。
测速发电机的输出电压:
测速发电机的输出特性:
二、码盘式转速转感器
60 N n Zt
5.4加速度传感器
一、电阻应变式
非线性度
迟滞
灵敏度
2、 动态特性 动态特性反映了被测量快速变化的性能,可以利用 系统的传递函数、频率响应来描述。
1)时域指标
•调整时间 •峰值时间 •最大超调量
•振荡次数
•延迟时间 •上升时间
2)频域指标 可以用幅频特性和相频特性描述
两种典型的输入响应:
二阶系统的脉冲输入和响应
二阶系统的阶跃输入和响应
电阻应变式加速度计原理结构如图所示。它由重块、悬臂梁、应 变片和阻尼液体等构成。当有加速度时,重块受力,悬臂梁弯曲, 按梁上固定的应变片之变形便可测出力的大小,在已知质量的情 况下即可算出被测加速度。
二、压电式
将传感器固定在被测物体上,感受该物体的振动,惯性质量块产 生惯性力,使压电元件产生变形,压电元件产生的变形和由此产 生的电荷与加速度成正比。
0 s dC 2 d
传感器的灵敏度为:
K
s dC C 02 d
2、面积变化型电容式传感器
动板与定板之间相互覆盖的面积引起电容量变化。当覆盖面积 对应的中心角为a、极板半径为r时,覆盖面积为:
0 ar 2 C 2
电容量为:
ar 2 S 2
5.6 位置传感器
一、分类
位置传感器和位移传感器不一样,它所测量的不是一段距离 的变化量,而是通过检测,确定是否已到某一位置。 位置传感器分为接触式和非接触式两种。
二、接触式位置传感器
所谓接触式传感器就是能获取两个物体是否已接触信 息的一种传感器。
三、非接触式位置传感器
而非接触式(接近式)传感器是用来判别在某一范围内 是否有某一物体的一种传感器。
二、电容式位移传感器
电容式传感器是将被测物理量的位移转换为电容量的变 化,再通过配套的测量电路,将电容的变化转换为电信 号输出。
0 s C
式中: ε0——真空的介电常数; s ——极板的遮盖面积; ε——极板间相对介电系数; δ——两平行极板间的距离。
1、极距变化型电容式传感器
如果两极板相互覆盖面积及极间介质不变,当两极板 在被测参数作用下发生位移,引起电容量的变化为:
三、光栅数字传感器
1、工作原理
光栅是在透明的玻璃上,均匀 地刻出许多明暗相间的条纹, 或在金属镜面上均匀地刻化出 许多间隔相等的条纹,通常线 条和间隙和宽度是相等的。 测量装置中由标尺光栅和指示 光栅组成,两者的光刻密度相 同,但体长相差很多。
把指示光栅平行地放在标尺光栅上面,并且使它们的刻线 相互倾斜一个很小的角度,这时在指示光栅上就出现几条 较粗的明暗条纹,称为莫尔条纹。它们是沿着与光栅条纹 几乎成垂直的方向排列。
第五章 传感器与检测系统
本章的学习内容:
5.1 传感器的分类及特性 5.2 位移传感器 5.3 速度传感器 5.4 加速度传感器 5.5 力、压力和扭矩传感器 5.6 位置传感器
5.1传感器的分类及特性
一、机械量传感器分类
传感器通常是非电物理量转换为与之有确定对应关系 的电量输出的器件或装置。
按被测物理量分为:位移传感器、速度传感器、加速度传 感、力传感器、温度传感器等。
B ab
bc W sin( / 2)
2、测量系统
光栅移动时产生的莫尔条纹明暗信号可用光电元件接受,如图中 的是四块光电池,光电池产生的信号,相位彼此差90º ,对这些 信号进行适当的处理后,即可变成光栅位移量的测量脉冲。
四、感应同步器
感应同步器是一种应用电磁感应原理来测量位移的高精度检测元件,有 直线式和圆盘式两类。
超声波传感器结构
CCD图像传感器
低频透射式涡流传感器:发射线圈ω1和接收线圈ω2分别置于被测金属 板材料G的上、下方。当低频(音频范围)电压e1加到线圈ω1的两端后, 所产生磁力线的一部分透过金属板材料G,使线圈ω2产生感应电动势e2, 且e2随材料厚度h的增加按负指数规律减少。
2、互感型电感传感器
差动变压器式电感传感器:传感器由线圈、铁芯和活动衔铁三部分组成。 当初级线圈输入交流激励电压时,次级线圈将产生感应电动势e1和e2。 传感器的输出电压为两者之差,即ey=e1-e2。ev的大小随活动衔铁的 位置而变。当活动衔铁位置居中时,e1=e2,ey=0;当活动衔铁向上移 时,即e1>e2,ey>0;当活动衔铁向下移时,e1<e2,ey<0。活动衔铁 的位置往复变化,其输出电压也随之变化。