参数的假设检验与区间估计
区间估计和假设检验

在回归分析中,区间估计可以用来估计未知参数的取值范围,从 而更好地理解参数对结果的影响。
假设检验的应用场景
检验假设是否成立
在科学研究或实际应用中,我们经常需要通过假设检验来检验某个 假设是否成立,以做出决策或得出结论。
诊断准确性评估
在医学诊断中,假设检验常用于评估诊断方法的准确性,例如比较 新方法与金标准之间的差异。
非参数检验的优点是不受总体分布限制,适用于更广泛的情况。常见的非参数检验包括秩和检验、符 号检验等。
假设检验的步骤
选择合适的统计方法
根据假设和数据类型选择合适 的统计方法进行检验。
确定临界值
根据统计量的分布情况,确定 临界值。
提出假设
根据研究问题和数据情况,提 出一个或多个假设。
计算统计量
根据选择的统计方法计算相应 的统计量。
区间估计和假设检验
目录
• 区间估计 • 假设检验 • 区间估计与假设检验的联系 • 应用场景 • 案例分析
01
区间估计
定义
区间估计
基于样本数据,对未知参数或总体分布特征 给出可能的取值范围。
参数估计
基于样本数据,对总体参数进行估计,如均 值、方差等。
非参数估计
基于样本数据,对总体分布特征进行估计, 如分位数、中位数等。
结果具有互补性
03
区间估计和假设检验的结果可以相互补充,帮助我们更全面地
了解总体的情况。
区别
1 2 3
目的不同
区间估计的目的是估计一个参数的取值范围,而 假设检验的目的是检验一个关于总体参数的假设 是否成立。
侧重点不同
区间估计更侧重于估计总体参数的可能取值范围 ,而假设检验更侧重于对总体参数的假设进行接 受或拒绝的决策。
计量经济学----.区间估计和假设检验

即
P[ 2 t se( 2 ) 2 2 t se( 2 )] 1
2 2
8
^
^
^
^
假设检验
检验某一给定的观测是否与虚拟假设(原假设)相符, 若相符,则接受假设,反之拒绝。 当我们拒绝虚拟假设时,我们说该统计量是统计上显 著的,反之则不是统计上显著的。
的临界值 t 2 (n 2) ,则有
ˆ ˆ P{[YF t 2 SE (eF )] YF [YF t 2 SE (eF )]} 1
1 因此,一元回归时 Y 的个别值的置信度为 的 预测区间上下限为 1 ( X F X )2 ˆ ˆ YF YF t 2 1 n xi2
给定,查t分布表得t (n 2) 2 ( )若t -t 2 (n 2), 或t t 2 (n 2),则拒绝原假设 1 H 0: 2 0,接受备择假设H1: 2 0; (2)若 - t 2 (n 2) t t 2 (n 2), 则接受原假设。
30
^
^
应变量Y 区间预测的特点
1、Y 平均值的预测值与真实平均值有误差,主要是 受抽样波动影响
YF Y F t 2
^ ^
1 ( X F X )2 n xi2
Y 个别值的预测值与真实个别值的差异,不仅受抽
样波动影响,而且还受随机扰动项的影响
1 ( X F X )2 ˆ ˆ YF YF t 2 1 n xi2
^
1 ( X F X )2 ˆ SE (YF ) n xi2
Y F 服从正态分布,将其标准化,
^
当
2
2 ei2 (n 2) 代替,这时有 未知时,只得用 ˆ ˆ YF E (YF X F ) t ~ t (n 2) 1 ( X F X )2 ˆ n xi2
参数估计和假设检验

参数估计和假设检验1.参数估计参数估计是指通过样本数据来推断总体参数的过程。
总体参数是指总体的其中一种性质,比如总体均值、总体方差等。
样本数据是从总体中随机抽取的一部分数据,用来代表总体。
参数估计的目标是使用样本数据来估计总体参数的值。
常见的参数估计方法有点估计和区间估计。
(1)点估计点估计是通过一个统计量来估计总体参数的值。
常见的点估计方法有样本均值、样本方差等。
点估计的特点是简单、直观,但是估计值通常是不准确的。
这是因为样本的随机性导致样本统计量有一定的误差。
因此,点估计通常会伴随着误差界限,即估计值的置信区间。
(2)区间估计区间估计是通过一个统计量构建总体参数的估计区间。
常见的区间估计方法有置信区间和可信区间。
置信区间是指当重复抽样时,包含真实总体参数的概率。
置信区间的计算方法是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。
可信区间是指在一次抽样中,包含真实总体参数的概率。
可信区间的计算方法同样是在样本统计量的基础上,加减一个合适的误差界限,得到一个估计区间。
参数估计的应用非常广泛,可以用于各个领域的数据分析和决策。
例如,经济学家可以通过样本数据估计失业率,政治学家可以通过样本数据估计选举结果,医学研究者可以通过样本数据估计药物的疗效等。
2.假设检验假设检验是指通过样本数据来判断总体参数的其中一种假设是否成立。
在假设检验中,我们先提出一个原假设(H0),然后使用样本数据来检验该假设的合理性。
在假设检验中,我们需要确定一个统计量,该统计量在原假设成立时,其分布是已知的。
然后,我们计算该统计量在样本数据下的取值,并通过比较该取值与已知分布的临界值,来判断原假设是否成立。
假设检验包含两种错误,即第一类错误和第二类错误。
第一类错误是指在原假设成立的情况下,拒绝原假设的错误概率。
第二类错误是指在原假设不成立的情况下,接受原假设的错误概率。
常见的假设检验方法有单样本假设检验、双样本假设检验、方差分析等。
简述假设检验与区间估计之间的关系 统计学原理

简述假设检验与区间估计之间的关系统计学原理一、简介假设检验与区间估计是统计学中两个重要的概念,它们都是基于样本数据对总体参数进行推断的方法。
假设检验主要用于判断总体参数是否符合某种特定假设,而区间估计则用于对总体参数进行范围性的估计。
本文将从统计学原理角度出发,详细介绍假设检验与区间估计之间的关系。
二、假设检验1. 假设检验的基本思想在进行假设检验时,我们首先要提出一个关于总体参数的假设(称为原假设),然后根据样本数据来判断这个假设是否成立。
具体来说,我们会根据样本数据计算出一个统计量(如t值、F值等),然后通过比较这个统计量与某个临界值(也称为拒绝域)来决定是否拒绝原假设。
2. 假设检验中的错误类型在进行假设检验时,有可能会犯两种错误:一种是将一个正确的原假设错误地拒绝了(称为第一类错误),另一种是将一个错误的原假设错误地接受了(称为第二类错误)。
通常情况下,我们会将第一类错误的概率控制在一个较小的水平(如0.05或0.01),这个水平被称为显著性水平。
3. 假设检验的步骤进行假设检验时,通常需要按照以下步骤进行:(1)提出原假设和备择假设;(2)选择适当的检验统计量,并计算出样本数据所对应的值;(3)确定显著性水平,并找到相应的拒绝域;(4)比较样本统计量与拒绝域,得出结论。
三、区间估计1. 区间估计的基本思想在进行区间估计时,我们会根据样本数据来构建一个区间,这个区间包含了总体参数真值的可能范围。
具体来说,我们会根据样本数据计算出一个点估计量(如样本均值、比例等),然后根据中心极限定理和大数定律等原理来构建置信区间。
2. 区间估计中的置信度在进行区间估计时,我们通常会给出一个置信度,表示该区间包含总体参数真值的概率。
例如,如果我们给出了一个95%置信度,则意味着在大量重复实验中,有95%的置信区间都会包含总体参数真值。
3. 区间估计的步骤进行区间估计时,通常需要按照以下步骤进行:(1)选择适当的点估计量,并计算出样本数据所对应的值;(2)确定置信度,并找到相应的置信区间;(3)解释置信区间的含义,得出结论。
概率论15区间估计与假设检验

,X , S 2分别是 样本均值和样本方差,
则有
X
S
X S
~
t n 1
n 1
n
(2)方差 2 的区间估计
10 已 知
1
2
n
(Xi
i1
)2
~ 2(n)
2的置信度为1α的置信区间是
n (Xi )2
n (Xi )2
i1
2
(n)
2
,
i 1
12
2
(n)
20 未知
(n 1)S2
解 该问题是方差未知, 对正态总体均值进行估计.
(X t (n 1) S
2
n
,
X t (n 1) S
2
) n
x 3056.67 s* 375.31 n 12 t0.025 (11) 2.201
所求区间估计为(2812.21, 3295.13).
设 X1, X 2,, X n 是总体X ~ N , 2 的样本
即 X 0 0
Z 是 衡 量H0 真 伪 的 标 准 . 2
n
如 例1中, 0.005 Z 1.96 n 6
2
0 1 x 19.503 0 20
x 0 0
0.7351.96
n
故认为 机床生产正常,即该天加工的零件直径
平均是20mm.
综述假设检验方法的基本思想是:由 样本出发,在 H 0 为真的前提下通过对被 检参数的点估计量,结合统计量的分布,构 造统计量(枢轴函数),由此结合实际,并利 用上α分位点确定小概率事件,便得检验
其中例1为参数检验,例2为非参 数检验.
二 假设检验的基本思想
例1 用机床加工圆形零件,正常情况下 零件的直径X服从正态分布N(20,1)(单 位:mm), 某日开工后为检查机床是否 正常,随机抽取6个,测得直径分别为
区间估计与假设检验的联系与区别讲义资料

区间估计与假设检验的联系与区别讲义资料
区间估计与假设检验是统计推断的两种常见方法。
它们虽然都属于推断统计,但也有明显的不同之处。
区间估计的主要目的是估计总体参数的值,也可以称作参数估计。
根据样本信息,我们可以得出一个可能的参数值范围,也就是置信区间,从而得到一个可靠的估计区间。
估计是不断变化的,每一次统计分析给出的参数估计值都可能有所变化,从而慢慢趋近真实值。
假设检验即“判断”,是统计学中比较常用的检验方法,目的是确定两个总体之间的差异是由随机因素造成的,还是由特定的因素(如环境因素)造成的。
假设检验涉及两个立场:备择假设和原假设。
假设检验的结果由抽样分布决定,不同的抽样分布对应不同的结论,比如有抽样分布下假设检验结果可能是拒绝备择假设,也可能是接受备择假设。
从概念上讲,区间估计技术计算的是一个参数的值的估计,而假设检验是用于检查参数的方法,它只检验两个总体是否具有显著的性质差异,而不会真正测量它们的差异。
总的来说,区间估计通过单组数据范围尽可能准确地估计参数的取值范围,而假设检验则是针对任何特定统计主题,利用数据样本来检验其是否与假设相符。
两者都具有自己的优点和不足,可以结合使用来为抽样荟萃而得出结论,从而更准确地了解样本的真实情况。
区间估计与假设检验的联系与区别

区间估计与假设检验 的联系与区别
11406
a
1
区间估计
参数估计:指的是用样本中的数据估计总体分布 的某个或某几个参数
参数估计的方法:点估计和区间估计。
点估计:用估计量的某个取值直接作为总体参数 的估计值。点估计的缺陷是没法给出估计的可靠 性,也没法说出点估计值与总体参数真实值接近 的程度。
区间估计:在点估计的基础上给出总体参数估计 的一个估计区间,该区间通常是由样本统计量加 减估计误差得到的。在区间估计中,由样本估计 量构造出的总体参数在一定置信水平下的估计区 间称为置信区间。
主要区别: a、参数估计是以样本资料估计总体参数的真 值,假设检验是以样本资料检验对总体参数 的先前假设是否成立; b、区间估计求得的是求以样本估计值为中心 的双侧置信区间,假设检验既有双侧检验, 也有单侧检验; c、区间估计立足于大概率,假设检验立足于 小概率。
a
6
拒绝域。 4.比较并作出统计推断。
a
4
区间估计与假设检验的联系
主要联系: a、都是根据样本信息推断总体参数; b、都以抽样分布为理论依据,建立在概率 论基础之上的推断,都具有一定的可信程 度和风险; c、二者可相互转换,区间估计问题可以转 换成假设问题,假设问的区别
a
2
区间估计
总体均值的区间估计 (1)大样本的估计方法:总体方差已知,用z
分布。 (2)小样本(样本数小于30)的估计方法:总
体方差未知 , t分布。 总体比率的区间估计 z分布 总体方差的区间估计 χ^2分布
参数估计和假设检验

参数估计和假设检验参数估计和假设检验是统计学中常用的两种方法,用于根据样本数据对总体的特征进行推断和判断。
参数估计是通过样本数据估计总体参数值的方法,而假设检验则是基于样本数据对总体参数假设进行判断的方法。
下面将详细介绍这两种方法以及它们的应用。
1.参数估计参数是指总体特征的度量,比如总体均值、总体方差等。
在实际应用中,我们往往无法得到总体数据,只能通过抽样得到样本数据。
参数估计的目标是利用样本数据去估计总体参数的值。
最常用的参数估计方法是点估计和区间估计:-点估计是使用样本统计量来估计总体参数的值,常用的样本统计量有样本均值、样本方差等。
-区间估计是利用样本数据构建一个置信区间,用来估计总体参数的取值范围。
置信区间的计算方法通常是基于样本统计量的分布进行计算。
在进行参数估计时,需要注意以下几个要点:-选择适当的样本容量和抽样方法,确保样本具有代表性,并满足参数估计的要求。
-选择适当的样本统计量进行参数估计,并对其进行合理的解释与限制。
-利用抽样分布特性和统计理论,计算参数估计的标准误差和置信区间,对参数估计结果进行解释和判断。
2.假设检验假设检验是基于样本数据对总体参数假设进行判断的方法。
在实际问题中,我们常常需要根据样本数据来判断一些总体参数是否达到一些要求或存在其中一种关系。
假设检验的基本步骤:-建立原假设(H0)和备择假设(H1)。
原假设通常是对总体参数取值的一种假设,备择假设则是原假设的对立假设。
-选择适当的统计量用来检验假设,并计算样本统计量的检验统计量。
-根据样本数据计算得出的检验统计量,利用抽样分布特性和统计理论计算P值。
-根据P值与事先设置的显著性水平进行比较,如果P值小于显著性水平,则拒绝原假设;反之,接受原假设。
在进行假设检验时,需要注意以下几个要点:-显著性水平的选择:显著性水平(α)是进行假设检验过程中设置的一个临界值,它反映了能够容忍的错误发生的概率。
常用的显著性水平有0.05和0.01-选择适当的统计量与检验方法:根据问题的性质和数据类型选择适当的统计量和检验方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
假设:男生千米跑成绩没有发生改变,还是3分50秒
随机抽取10个男生,均值3分30秒,方差20秒,这是个 小概率事件(小于等于0.05),而它现在一次试验就发生 了,产生矛盾!
假设不成立(拒绝假设)
注:以上就是小概率反证法!
2. 假设检验的基本思想
基础:小概率事件原理,即一般认为小概率事件在 一次随机抽样中不会发生。
三、正态总体的区间估计
的置信度为1 的置信区间(1, 2)是指: P(1 2 ) 1
X 0
u )
2
n
n
n
取k u
2n
所以本检验的拒绝域为
u 检验法
u 检验法 (2 已知)
原假设 备择假设 检验统计量及其
H0
H1
H0为真时的分布
0 0
拒绝域
0 < 0
0 > 0
t 检验法 (2 未知)
原假设 备择假设 检验统计量及其
H0
H1 H0为真时的分布
0 0
现 故接受原假设, 即否定厂方断言.
由例3可见: 对问题的提法不 同(把哪个假设作为原假设),统计 检验的结果也会不同.
上述两种解法的立场不同,因此 得到不同的结论.
第一种假设是不轻易否定厂方的结论; 第二种假设是不轻易相信厂方的结论.
由于假设检验是控制犯第一类错 误的概率, 使得拒绝原假设 H0 的决策 变得比较慎重(拒绝H0 是有理由的), 也 就是 H0 得到特别的保护. 因而, 通常把 有把握的, 经验的结论作为原假设, 或者尽量使后果严重的错误成为第一 类错误.
4.2.2 参数的假设检 验与区间估计
一、假设检验的基本概念
若对参数 一无所知
用参数估计 的方法处理
若对 参数 有所 了解
但有怀 疑猜测 需要证 实之时
用假设 检验的 方法来 处理
1.生活中隐含的假设检验问题
例1 某学校某年级男生千米跑成绩均值为 3分50秒,两个月前来了一名新的长跑教 练,经过两个月的教学训练之后,从中随 机抽测了10名男生的千米跑成绩,得到其 样本均值为3分30秒,标准差为20秒,这 时需要检验的问题是,新教练的训练方法 是否使男生千米跑的成绩发生了改变?
上例中的备择假设是双侧的.若关心的是 每包重量是否提高了.此时可作如下的右 边假设检验:
H0 : ≤ 105; H1 : > 105
假设检验步骤
1. 根据实际问题所关心的内容,建立H0与H1 2. 在H0为真时,选择合适的统计量W
3.给定显著性水平,确定拒绝域 4. 根据样本值计算,并作出相应的判断.
二、正态总体的检验
拒绝域的推导
给定显著性水平与样本值(x1,x2,…,xn )
设 X ~N ( 2),2 已知,需检验: H0 : 0 ; H1 : 0
构造统计量
P(拒绝H0|H0为真) P ( X 0 k 0 ) PH0 ( X 0 k )
PH0 (
X 0
k
) PH0 (
故
X 1.5
105 /3
取较大值是小概率小事概率件事.件因此,
可以确定一个常数c
使得P
X 105 1.5 / 3
c
显
取 0.05 ,则
c
u
2
u0.025
1.96
著 水 平
则 X 105 1.96 为检验的拒绝域
1.5 / 3
X 105 1.96 为检验的接受域 (实
1.5 / 3
际上没理由拒绝),
拒绝域
0 < 0 0 > 0
例3 某厂生产小型马达, 说明书上写着: 这种小型马达在正常负载下平均消耗电 流不会超过0.8 安培.
现随机抽取16台马达试验, 求得平均 消耗电流为0.92安培, 消耗电流的标准 差为0.32安培.
假设马达所消耗的电流服从正态分
布, 取显著性水平为 = 0.05, 问根据这
该机工作正常,否则认为不正常.检验机器是否正常工作。
为此提出如下假设:
H0 : = 105
称为原假设或零假设
原假设的对立面:
H1 : 105
称为备择假设
假设检验 必须在原假设与备择假设
的任务
之间作一选择
若原假设正确, 则 X ~ N(105 ,1.52 / 9 )
因而 E( X )统计10量5,,即记为Xu 偏离105不应该太远,
个样本, 能否否定厂方的断言?
解 根据题意待检假设可设为
H0 : 0.8 ; H1 : > 0.8 未知, 故选检验统计量:
查表得 t0.05(15) = 1.753, 故拒绝域为
现 故接受原假设, 即不能否定厂方断言.
解二 H0 : 0.8 ; H1 : < 0.8
选用统计量:
查表得 t0.05(15) = 1.753, 故拒绝域
所作判断 真实情况
接受 H0
拒绝 H0
H0 为真
正确 第一类错误
(弃真)
H0 为假
第二类错误
(取伪)
正确
犯第一类错误的概率通常记为 犯第二类错误的概率通常记为
任何检验方法都不能完全排除犯错 误的可能性.理想的检验方法应使犯两类 错误的概率都很小,但在样本容量给定的 情形下,不可能使两者都很小,降低一个, 往往使另一个增大.
假设检验的指导思想是控制犯第一类
错误的概率不超过, 然后,若有必要,通 过增大样本容量的方法来减少 .
上例中,犯第一类错误的概率
P(拒绝H0|H0为真)
P
X 105 1.5 / 3
c
所以,拒绝 H0 的概率为, 又称为显 著性水平, 越大,犯第一类错误的概
率越大.
注 备择假设可以是单侧,也可以双侧.
小概率事件:飞机失事
基本思想:先建立一个关于样本所属总体的假设, 考察在假设条件下随机样本的特征信息是否属小概 率事件,若为小概率事件,则怀疑假设成立有悖于 该样本所提供特征信息,因此拒绝假设。(小概率 反证法)
3. 一个参数假设检验的例子
例2 某自动装包机在正常工作时,每包重量X 服从
N(105,1.52 ).今从一批产品中随机地检测9包,平均值 为106.1.认为均方差保持不变,若E(X)==105,则认为
现 X 105 106.1105 2.2
1.5 / 3
1.5 / 3
落入拒绝域,则拒绝原假设
H0: = 105
说明总体均值发生了显著性变化!
由上例可见,在给定的前提下, 接受还是拒绝原假设完全取决于样本 值, 因此所作检验可能导致以下两类 错误的产生:
第一类错误 第二类错误
弃真错误 取伪错误
假设检验的两类错误