人教版高中数学《余弦定理》教案

合集下载

余弦定理的教案

余弦定理的教案

余弦定理的教案余弦定理的教案作为一位杰出的老师,时常要开展教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。

如何把教案做到重点突出呢?以下是小编收集整理的余弦定理的教案,欢迎阅读与收藏。

余弦定理的教案1一、教材分析《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。

本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。

余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。

其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。

二、教学目标知识与技能:1、理解并掌握余弦定理和余弦定理的推论。

2、掌握余弦定理的推导、证明过程。

3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。

过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。

2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。

3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。

情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。

2、感受数学一般规律的美感,培养数学学习的兴趣。

三、教学重难点重点:余弦定理及其推论和余弦定理的运用。

难点:余弦定理的发现和推导过程以及多解情况的判断。

四、教学用具普通教学工具、多媒体工具(以上均为命题教学的准备)余弦定理的教案2一、教学内容分析人教版《普通高中课程标准实验教科书·必修(五)》(第2版)第一章《解三角形》第一单元第二课《余弦定理》。

通过利用向量的数量积方法推导余弦定理,正确理解其结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”,体会方程思想,激发学生探究数学,应用数学的潜能。

高中数学_余弦定理教学设计学情分析教材分析课后反思

高中数学_余弦定理教学设计学情分析教材分析课后反思

《余弦定理》教课方案青岛 58中张笋《余弦定理》教课方案课题余弦定理(人教 A 版必修 5 第 1.1.2 节)课型教课理念设计思想教课过程设计新讲课课时安排 1 课时学是教课的出发点、落脚点,教课的中心、重心在学而不在教,教课应当环绕学来组织、设计、展开。

鉴于学生学习的教课不单是教课实质的表现,也是学生形成学科中心修养的必定要求。

新课程的数学倡导学生着手实践,自主研究,合作沟通,深刻地理解基本结论的实质,体验数学发现和创建的历程,力争对现实世界蕴涵的一些数学模式进行思虑,作出判断;同时要讨教师从知识的教授者向讲堂的设计者、组织者、指引者、合作者转变,从讲堂的履行者向实行者、研究开发者转变。

本课全力追求新课程要求,利用师生的互动合作,提高学生的数学思想能力,发展学生的数学应企图识和创新意识,深刻地领会数学思想方法及数学的应用,激发学生研究数学、应用数学知识的潜能。

①从切近学生生活中的实质问题的解决引入问题,让学生设计方案,如何用已知的两条边及其所夹的角来表示第三条边。

②余弦定理的证明:启迪学生从不一样的角度获取余弦定理的证明,或指引学生自己研究获取定理的证明。

③应用余弦定理解斜三角形。

教课过程详细流程教课教课内容环节青岛 58 中育英湖中有一座假山,现有卷尺和测角仪两种工具,请你设计合理的方案,来丈量假山界限上两点 A 和 B 之间的距离。

方案设计学生活动教师活动设计企图学生小组讨从学生每论,研究设计天的必经方案,画在方之路—育框内,小组代英湖提出表登台展现各问题,来个小组的研究源于生活成就。

展现简图,指导并中的问题能激发学组织学生议论、展生的学习示各个小组的设计兴趣,提方案,指导学生进高学习积行可行性研究。

极性。

让在此环节中,学生学生进一可能提出多种不一样起码展现四组步领会到的设计方案,老师学生的设计方数学根源引领学生进行可行案。

于生活,性剖析,找出方案数学服务中共同需要解决的于生活。

问题。

《余弦定理》教课方案青岛 58中张笋几种可行方案归根究竟都是已知三角形两边及夹角,求第三边的问题。

人教版高中数学余弦定理教案

人教版高中数学余弦定理教案

人教版高中数学余弦定理教案第一章:余弦定理的概念与表达式1.1 引入余弦定理通过实际问题引入余弦定理的概念,让学生了解余弦定理在几何中的应用。

引导学生思考如何用余弦定理来解决三角形中的问题。

1.2 余弦定理的表述给出余弦定理的数学表达式:a^2 = b^2 + c^2 2bccosA解释余弦定理中的各个符号代表的意思,让学生理解余弦定理的构成。

1.3 余弦定理的应用通过例题讲解如何使用余弦定理来解决三角形中的问题,如求边长、角度等。

引导学生思考余弦定理在实际问题中的应用,培养学生的实际问题解决能力。

第二章:余弦定理在直角三角形中的应用2.1 直角三角形的余弦定理引入直角三角形的余弦定理:a^2 = b^2 + c^2解释直角三角形中余弦定理的特殊性,让学生理解直角三角形中的余弦定理与一般三角形不同。

2.2 直角三角形中余弦定理的应用通过例题讲解如何使用余弦定理来解决直角三角形中的问题,如求边长、角度等。

引导学生思考余弦定理在直角三角形中的应用,培养学生的实际问题解决能力。

第三章:余弦定理在非直角三角形中的应用3.1 非直角三角形的余弦定理引入非直角三角形的余弦定理:a^2 = b^2 + c^2 2bccosA解释非直角三角形中余弦定理的应用,让学生理解余弦定理在非直角三角形中的重要性。

3.2 非直角三角形中余弦定理的应用通过例题讲解如何使用余弦定理来解决非直角三角形中的问题,如求边长、角度等。

引导学生思考余弦定理在非直角三角形中的应用,培养学生的实际问题解决能力。

第四章:余弦定理在实际问题中的应用4.1 实际问题的引入通过实际问题引入余弦定理在实际中的应用,让学生了解余弦定理在现实生活中的重要性。

引导学生思考如何将实际问题转化为余弦定理问题。

4.2 实际问题中余弦定理的应用通过例题讲解如何使用余弦定理来解决实际问题,如测量三角形的边长、角度等。

引导学生思考余弦定理在实际问题中的应用,培养学生的实际问题解决能力。

高中数学《余弦定理》教案

高中数学《余弦定理》教案

高中数学《余弦定理》教案第一章:导入与概念介绍1.1 导入教师通过一个实际问题引入余弦定理的概念,例如在直角三角形中,斜边与两个直角边的关系。

引导学生思考如何用数学表达式来描述这个关系。

1.2 余弦定理的概念教师介绍余弦定理的定义,即在三角形中,任意一边的平方等于其他两边平方和与这两边乘积的余弦的两倍之和。

用数学表达式表示为:a^2 = b^2 + c^2 2bccosA。

第二章:证明与推导2.1 余弦定理的证明教师引导学生思考如何证明余弦定理。

通过画图和几何推理,引导学生理解并证明余弦定理。

可以使用三角形的正弦定理和余弦定理的平方关系来证明。

2.2 余弦定理的推导教师引导学生利用余弦定理推导出其他相关的定理,例如正弦定理。

引导学生理解余弦定理与其他定理之间的关系。

第三章:余弦定理的应用3.1 求解三角形的问题教师通过例题展示如何使用余弦定理求解三角形的问题。

引导学生运用余弦定理计算三角形的边长和角度。

3.2 求解三角形的面积教师引导学生利用余弦定理推导出三角形的面积公式,并引导学生运用该公式计算三角形的面积。

第四章:余弦定理的拓展4.1 余弦定理在几何中的应用教师引导学生思考余弦定理在几何中的应用,例如求解三角形的面积、角度等问题。

4.2 余弦定理在物理中的应用教师引导学生思考余弦定理在物理中的应用,例如振动问题、波动问题等。

第五章:巩固与练习5.1 巩固知识教师通过例题和练习题帮助学生巩固余弦定理的理解和应用。

引导学生运用余弦定理解决不同类型的问题。

5.2 练习题教师布置一些练习题,让学生独立完成,巩固对余弦定理的理解和应用。

第六章:解三角形问题6.1 解三角形的概念教师介绍解三角形的概念,即通过已知的三角形一边和两个角,求解其他两边和角度。

引导学生理解解三角形的重要性。

6.2 利用余弦定理解三角形教师通过例题展示如何利用余弦定理解三角形问题。

引导学生运用余弦定理计算三角形的边长和角度。

第七章:余弦定理与向量7.1 向量与余弦定理的关系教师介绍向量与余弦定理的关系,即向量的点积与余弦定理的关系。

9.1.2余弦定理-人教B版高中数学必修第四册(2019版)教案

9.1.2余弦定理-人教B版高中数学必修第四册(2019版)教案

9.1.2 余弦定理-人教B版高中数学必修第四册(2019版)教案一、教学目标1.掌握余弦定理的形式及证明方法;2.熟悉余弦定理在数学和实际问题中的应用;3.锻炼解决实际问题、独立思考和团队合作的综合能力。

二、教学内容1. 余弦定理的形式及证明方法1.定义余弦定理;2.推导余弦定理的证明方法;3.利用余弦定理求解三角形的边长和角度。

2. 余弦定理在数学和实际问题中的应用1.利用余弦定理求解实际问题;2.讨论余弦定理的局限性和适用条件。

三、教学重点、难点教学重点:1.熟练掌握余弦定理的形式及证明方法;2.熟悉余弦定理在数学和实际问题中的应用。

教学难点:1.利用余弦定理求解实际问题;2.理解余弦定理的适用条件。

1. 演示法采用演示法,通过绘图和实例讲解余弦定理的定义、证明方法和应用,并展示求解问题的过程和方法。

2. 课堂讨论法鼓励学生课前阅读相关知识,并在课上结合例题讨论余弦定理的具体应用,激发学生探究、研究的兴趣。

3. 小组讨论法将学生分组,自主探究余弦定理在实际问题中的应用,并通过小组讨论的方式交流和展示研究成果,锻炼学生的团队协作和表达能力。

五、教学步骤1. 自主学习让学生在课前自主学习余弦定理相关知识,独立思考余弦定理的应用。

2. 讲解通过教师的讲解,介绍余弦定理的定义、证明方法和应用,并讨论其适用条件。

3. 练习在教师的指导下,让学生通过练习巩固余弦定理的应用和证明方法。

4. 小组讨论将学生分组,自主探究余弦定理在实际问题中的应用,并通过小组讨论的方式交流和展示研究成果。

六、教学评估1.通过练习和小组讨论,检测学生对余弦定理的掌握情况;2.通过问答和课堂演示,评估学生解决实际问题和团队合作能力。

1.人教B版高中数学必修第四册(2019版);2.数学实物教具。

八、教学反思1.此次教学,通过小组讨论和课堂演示的方式,促进了学生之间的交流和合作;2.但需要进一步优化教学策略,让学生更加深入地理解余弦定理的定义和使用方法。

(完整版)《余弦定理》教案完美版

(完整版)《余弦定理》教案完美版

《余弦定理》教案(一)教学目标1.知识与技能:掌握余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题.2.过程与方法:利用向量的数量积推出余弦定理及其推论,并通过实践演算掌握运用余弦定理解决两类基本的解三角形问题,3.情态与价值:培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.(二)教学重、难点重点:余弦定理的发现和证明过程及其基本应用;难点:勾股定理在余弦定理的发现和证明过程中的作用.(三)学法与教学用具学法:首先研究把已知两边及其夹角判定三角形全等的方法进行量化,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题,利用向量的数量积比较容易地证明了余弦定理。

从而利用余弦定理的第二种形式由已知三角形的三边确定三角形的角教学用具:直尺、投影仪、计算器(四)教学设想[创设情景] C 如图1.1—4,在∆ABC 中,设BC=a ,AC=b,AB=c ,已知a,b 和∠C ,求边c b aA c B(图1.1-4)[探索研究]联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A 、B 均未知,所以较难求边c 。

由于涉及边长问题,从而可以考虑用向量来研究这个问题. A如图1.1-5,设CB a =,CA b =,AB c =,那么c a b =-,则 b c()()222 2 2c c c a b a ba ab b a b a b a b =⋅=--=⋅+⋅-⋅=+-⋅ C a B从而 2222cos c a b ab C =+- (图1.1—5)同理可证 2222cos a b c bc A =+-2222cos b a c ac B =+-于是得到以下定理余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

人教A版高中数学 高三一轮(文) 第三章 3.7正弦定理、余弦定理【教案】

人教A版高中数学 高三一轮(文) 第三章 3.7正弦定理、余弦定理【教案】

§3.7 正弦定理、余弦定理1.正弦、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .3.在△ABC 中,已知a 、b 和A 时,解的情况如下:【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)在△ABC 中,A >B 必有sin A >sin B .( √ )(2)若满足条件C =60°,AB =3,BC =a 的△ABC 有两个,那么a 的取值范围是(3,2).( √ )(3)若△ABC 中,a cos B =b cos A ,则△ABC 是等腰三角形.( √ ) (4)在△ABC 中,tan A =a 2,tan B =b 2,那么△ABC 是等腰三角形.( × )(5)当b 2+c 2-a 2>0时,三角形ABC 为锐角三角形;当b 2+c 2-a 2=0时,三角形为直角三角形;当b 2+c 2-a 2<0时,三角形为钝角三角形.( × ) (6)在△ABC 中,AB =3,AC =1,B =30°,则△ABC 的面积等于32.( × )1.(2013·湖南改编)在锐角△ABC 中,角A ,B 所对的边长分别为a ,b ,若2a sin B =3b ,则角A = . 答案 π3解析 在△ABC 中,利用正弦定理得 2sin A sin B =3sin B ,∴sin A =32. 又A 为锐角,∴A =π3.2.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是 三角形. 答案 钝角解析 ∵sin 2A +sin 2B <sin 2C , ∴a 2+b 2<c 2,∴cos C =a 2+b 2-c 22ab <0,∴C >π2,∴△ABC 为钝角三角形.3.(2014·江西改编)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是 .答案332解析 ∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.4.(2014·广东)在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知b cos C +c cos B =2b ,则ab = .答案 2解析 方法一 因为b cos C +c cos B =2b , 所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2b ,化简可得ab=2.方法二 因为b cos C +c cos B =2b , 所以sin B cos C +sin C cos B =2sin B , 故sin(B +C )=2sin B ,故sin A =2sin B ,则a =2b ,即ab=2.题型一 利用正弦定理、余弦定理解三角形例1 (2013·山东)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6,b =2,cos B =79.(1)求a ,c 的值; (2)求sin(A -B )的值. 解 (1)由余弦定理得:cos B =a 2+c 2-b 22ac =a 2+c 2-42ac =79,即a 2+c 2-4=149ac .∴(a +c )2-2ac -4=149ac ,∴ac =9.由⎩⎪⎨⎪⎧a +c =6,ac =9,得a =c =3.(2)在△ABC 中,cos B =79,∴sin B =1-cos 2B =1-⎝⎛⎭⎫792=429.由正弦定理得:a sin A =bsin B ,∴sin A =a sin B b =3×4292=223.又A =C ,∴0<A <π2,∴cos A =1-sin 2A =13,∴sin (A -B )=sin A cos B -cos A sin B =223×79-13×429=10227.思维升华 (1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.(1)(2014·天津)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知b -c=14a,2sin B =3sin C ,则cos A 的值为 . (2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos A =35,cos B =513,b =3,则c= . 答案 (1)-14 (2)145解析 (1)由2sin B =3sin C 及正弦定理得2b =3c , 即b =32c .又b -c =14a ,∴12c =14a ,即a =2c .由余弦定理得cos A =b 2+c 2-a 22bc =94c 2+c 2-4c 22×32c 2=-34c 23c 2=-14. (2)在△ABC 中,∵cos A =35>0,∴sin A =45.∵cos B =513>0,∴sin B =1213.∴sin C =sin [π-(A +B )]=sin(A +B ) =sin A cos B +cos A sin B =45×513+35×1213=5665. 由正弦定理知b sin B =csin C ,∴c =b sin Csin B =3×56651213=145.题型二 利用正弦、余弦定理判定三角形的形状例2 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且2a sin A =(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状. 解 (1)由2a sin A =(2b -c )sin B +(2c -b )sin C , 得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2, ∴cos A =b 2+c 2-a 22bc =12,∵0°<A <180°,∴A =60°.(2)∵A +B +C =180°,∴B +C =180°-60°=120°. 由sin B +sin C =3,得sin B +sin(120°-B )=3, ∴sin B +sin 120°cos B -cos 120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1.∵0°<B <120°,∴30°<B +30°<150°. ∴B +30°=90°,B =60°.∴A =B =C =60°,∴△ABC 为等边三角形.思维升华 (1)三角形的形状按边分类主要有:等腰三角形,等边三角形等;按角分类主要有:直角三角形,锐角三角形,钝角三角形等.判断三角形的形状,应围绕三角形的边角关系进行思考,主要看其是不是正三角形、等腰三角形、直角三角形、钝角三角形或锐角三角形,要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.(2)边角转化的工具主要是正弦定理和余弦定理.(1)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb<cos A ,则△ABC为 .①钝角三角形 ②直角三角形 ③锐角三角形 ④等边三角形(2)在△ABC 中,cos 2B 2=a +c2c (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为 .①等边三角形 ②直角三角形③等腰三角形或直角三角形 ④等腰直角三角形 答案 (1)① (2)②解析 (1)已知c b <cos A ,由正弦定理,得sin Csin B <cos A ,即sin C <sin B cos A ,所以sin(A +B )<sinB cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,所以△ABC 是钝角三角形. (2)∵cos 2B2=1+cos B2,∴(1+cos B )·c =a +c , ∴a =cos B ·c =a 2+c 2-b 22a ,∴2a 2=a 2+c 2-b 2, ∴a 2+b 2=c 2,∴△ABC 为直角三角形. 题型三 和三角形面积有关的问题例3 (2014·浙江)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a ≠b ,c =3,cos 2A -cos 2B =3sin A cos A -3sin B cos B . (1)求角C 的大小;(2)若sin A =45,求△ABC 的面积.解 (1)由题意得1+cos 2A 2-1+cos 2B 2=32sin 2A -32sin 2B , 即32sin 2A -12cos 2A =32sin 2B -12cos 2B , sin ⎝⎛⎭⎫2A -π6=sin ⎝⎛⎭⎫2B -π6. 由a ≠b ,得A ≠B .又A +B ∈(0,π),得 2A -π6+2B -π6=π,即A +B =2π3,所以C =π3.(2)由c =3,sin A =45,a sin A =c sin C ,得a =85.由a <c ,得A <C ,从而cos A =35,故sin B =sin(A +C )=sin A cos C +cos A sin C =4+3310,所以,△ABC 的面积为 S =12ac sin B =83+1825. 思维升华 三角形面积公式的应用原则:(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.(1)(2013·课标全国Ⅱ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为 .(2)(2014·山东)在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为 .答案 (1)3+1 (2)16解析 (1)因为B =π6,C =π4,所以A =7π12.由正弦定理得b sin π6=csinπ4,解得c =2 2.所以三角形的面积为12bc sin A =12×2×22sin 7π12.因为sin 7π12=sin ⎝⎛⎭⎫π3+π4=32×22+22×12=22⎝⎛⎭⎫32+12,所以12bc sin A =22×22⎝⎛⎭⎫32+12=3+1.(2)已知A =π6,由题意得|AB →||AC →|cos π6=tan π6,|AB →||AC →|=23,所以△ABC 的面积S =12|AB →||AC →|sin π6=12×23×12=16.三角变换不等价致误典例:在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ),试判断△ABC 的形状. 易错分析 (1)从两个角的正弦值相等直接得到两角相等,忽略两角互补情形; (2)代数运算中两边同除一个可能为0的式子,导致漏解; (3)结论表述不规范. 规范解答解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin (A +B )-s in(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .方法一 由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 方法二 由正弦定理、余弦定理得: a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰三角形或直角三角形.温馨提醒 (1)判断三角形形状要对所给的边角关系式进行转化,使之变为只含边或只含角的式子,然后进行判断;(2)在三角变换过程中,一般不要两边约去公因式,应移项提取公因式,以免漏解;在利用三角函数关系推证角的关系时,要注意利用诱导公式,不要漏掉角之间关系的某种情况.方法与技巧1.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.2.正弦、余弦定理的公式应注意灵活运用,如由正弦、余弦定理结合得sin 2A =sin 2B +sin 2C -2sin B ·sin C ·cos A ,可以进行化简或证明.3.在解三角形或判断三角形形状时,要注意三角函数值的符号和角的范围,防止出现增解、漏解. 失误与防范1.在利用正弦定理解已知三角形的两边和其中一边的对角求另一边的对角,进而求出其他的边和角时,有时可能出现一解、两解,所以要进行分类讨论.2.利用正弦、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.A 组 专项基础训练 (时间:40分钟)1.在△ABC 中,若A =60°,B =45°,BC =32,则AC = . 答案 2 3解析 由正弦定理得AC sin B =BC sin A ,所以AC =BC sin B sin A =32sin 45°sin 60°=2 3.2.在△ABC 中,A ∶B =1∶2,sin C =1,则a ∶b ∶c = . 答案 1∶3∶2解析 由sin C =1,∴C =π2,由A ∶B =1∶2,故A +B =3A =π2,得A =π6,B =π3,由正弦定理得,a ∶b ∶c =sin A ∶sin B ∶sin C =12∶32∶22=1∶3∶2.3.(2013·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B = .答案 π6解析 由条件得a b sin B cos C +c b sin B cos A =12,由正弦定理,得sin A cos C +sin C cos A =12,∴sin(A +C )=12,从而sin B =12, 又a >b ,且B ∈(0,π),因此B =π6. 4.△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高为 .答案 332解析 设AB =a ,则由AC 2=AB 2+BC 2-2AB ·BC ·cos B 知7=a 2+4-2a ,即a 2-2a -3=0,∴a =3(负值舍去).∴BC 边上的高为AB ·sin B =3×32=332. 5.(2014·课标全国Ⅱ改编)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC = . 答案 5解析 ∵S =12AB ·BC sin B =12×1×2sin B =12, ∴sin B =22,∴B =π4或3π4. 当B =3π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC cos B =1+2+2=5,∴AC =5,此时△ABC 为钝角三角形,符合题意;当B =π4时,根据余弦定理有AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2=1,∴AC =1,此时AB 2+AC 2=BC 2,△ABC 为直角三角形,不符合题意.故AC = 5.6.在△ABC 中,若b =5,B =π4,sin A =13,则a = . 答案 523解析 根据正弦定理应有a sin A =b sin B , ∴a =b sin A sin B =5×1322=523. 7.在△ABC 中,若AB =5,AC =5,且cos C =910,则BC = . 答案 4或5解析 设BC =x ,则由余弦定理AB 2=AC 2+BC 2-2AC ·BC cos C 得5=25+x 2-2·5·x ·910,即x 2-9x +20=0,解得x =4或x =5.8.(2014·福建)在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于 . 答案 2 3解析 如图所示,在△ABC 中,由正弦定理得23sin 60°=4sin B,解得sin B =1,所以B =90°,所以S △ABC =12×AB ×23=12×42-(23)2×23=2 3.9.(2013·北京)在△ABC 中,a =3,b =26,B =2A .(1)求cos A 的值;(2)求c 的值.解 (1)在△ABC 中,由正弦定理a sin A =b sin B ⇒3sin A =26sin 2A =262sin A cos A, ∴cos A =63. (2)由余弦定理,a 2=b 2+c 2-2bc cos A ⇒32=(26)2+c 2-2×26c ×63, 则c 2-8c +15=0.∴c =5或c =3.当c =3时,a =c ,∴A =C .由A +B +C =π,知B =π2,与a 2+c 2≠b 2矛盾. ∴c =3舍去.故c 的值为5.10.(2014·辽宁)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a >c ,已知BA →·BC →=2,cos B =13,b =3.求: (1)a 和c 的值;(2)cos(B -C )的值.解 (1)由BA →·BC →=2得c ·a cos B =2.又cos B =13,所以ac =6. 由余弦定理,得a 2+c 2=b 2+2ac cos B .又b =3,所以a 2+c 2=9+2×6×13=13. 解⎩⎪⎨⎪⎧ ac =6,a 2+c 2=13,得⎩⎪⎨⎪⎧ a =2,c =3或⎩⎪⎨⎪⎧a =3,c =2. 因为a >c ,所以a =3,c =2.(2)在△ABC 中,sin B =1-cos 2B = 1-(13)2=223, 由正弦定理,得sin C =c b sin B =23×223=429. 因为a =b >c ,所以C 为锐角,因此cos C =1-sin 2C = 1-(429)2=79. 于是cos(B -C )=cos B cos C +sin B sin C=13×79+223×429=2327. B 组 专项能力提升(时间:20分钟)1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a ,则b a= .答案 2解析 ∵a sin A sin B +b cos 2A =2a ,∴sin A sin A sin B +sin B cos 2A =2sin A ,∴sin B =2sin A ,∴b a =sin B sin A= 2. 2.在△ABC 中,若b =5,B =π4,tan A =2,则a = . 答案 210解析 由tan A =2得sin A =2cos A .又sin 2A +cos 2A =1得sin A =255. ∵b =5,B =π4,根据正弦定理,有a sin A =b sin B, ∴a =b sin A sin B =2522=210. 3.(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是 . 答案 6-24解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c .由余弦定理得cos C =a 2+b 2-c 22ab=a 2+b 2-(a +2b )242ab =34a 2+12b 2-2ab 22ab ≥2⎝⎛⎭⎫34a 2⎝⎛⎭⎫12b 2-2ab 22ab =6-24, 故6-24≤cos C <1, 故cos C 的最小值为6-24. 4.(2013·浙江)在△ABC 中,C =90°,M 是BC 的中点.若sin ∠BAM =13,则sin ∠BAC = .答案 63解析 因为sin ∠BAM =13, 所以cos ∠BAM =223. 如图,在△ABM 中,利用正弦定理,得BM sin ∠BAM =AM sin B,所以BM AM =sin ∠BAM sin B =13sin B =13cos ∠BAC. 在Rt △ACM 中,有CM AM =sin ∠CAM =sin(∠BAC -∠BAM ).由题意知BM =CM ,所以13cos ∠BAC=sin(∠BAC -∠BAM ). 化简,得22sin ∠BAC cos ∠BAC -cos 2∠BAC =1.所以22tan ∠BAC -1=tan 2∠BAC +1,解得tan ∠BAC = 2.再结合sin 2∠BAC +cos 2∠BAC =1,∠BAC 为锐角可解得sin ∠BAC =63. 5.已知△ABC 的三个内角A ,B ,C 成等差数列,角B 所对的边b =3,且函数f (x )=23sin 2x +2sin x cos x -3在x =A 处取得最大值.(1)求f (x )的值域及周期;(2)求△ABC 的面积.解 (1)因为A ,B ,C 成等差数列,所以2B =A +C ,又A +B +C =π,所以B =π3,即A +C =2π3. 因为f (x )=23sin 2x +2sin x cos x - 3=3(2sin 2x -1)+sin 2x =sin 2x -3cos 2x=2sin ⎝⎛⎭⎫2x -π3, 所以T =2π2=π. 又因为sin ⎝⎛⎭⎫2x -π3∈[-1,1], 所以f (x )的值域为[-2,2].(2)因为f (x )在x =A 处取得最大值,所以sin ⎝⎛⎭⎫2A -π3=1. 因为0<A <23π,所以-π3<2A -π3<π, 故当2A -π3=π2时,f (x )取到最大值, 所以A =512π,所以C =π4.由正弦定理,知3sin π3=c sin π4⇒c = 2. 又因为sin A =sin ⎝⎛⎭⎫π4+π6=2+64, 所以S △ABC =12bc sin A =3+34.。

人教版高中数学余弦定理教案

人教版高中数学余弦定理教案

人教版高中数学余弦定理教案一、教学目标1. 理解余弦定理的概念和意义,掌握余弦定理的表达式。

2. 能够运用余弦定理解决三角形中的边角关系问题。

3. 培养学生的逻辑思维能力和解决实际问题的能力。

二、教学内容1. 余弦定理的定义和表达式2. 余弦定理的应用3. 余弦定理在三角形中的证明三、教学重点与难点1. 重点:余弦定理的概念和意义,余弦定理的表达式。

2. 难点:运用余弦定理解决实际问题,余弦定理在三角形中的证明。

四、教学方法1. 采用问题驱动法,引导学生通过思考和讨论来理解和掌握余弦定理。

2. 通过举例和练习题,培养学生的实际应用能力。

3. 利用几何图形和动画演示,帮助学生直观地理解余弦定理。

五、教学过程1. 导入:通过一个实际问题,引导学生思考三角形中的边角关系。

2. 讲解:介绍余弦定理的定义和表达式,解释余弦定理的意义。

3. 演示:利用几何图形和动画演示余弦定理的应用和证明过程。

4. 练习:给出一些练习题,让学生运用余弦定理解决问题。

5. 总结:回顾本节课的内容,强调余弦定理的重要性和应用范围。

教案示例:一、教学目标1. 理解余弦定理的概念和意义,掌握余弦定理的表达式。

2. 能够运用余弦定理解决三角形中的边角关系问题。

3. 培养学生的逻辑思维能力和解决实际问题的能力。

二、教学内容1. 余弦定理的定义和表达式2. 余弦定理的应用3. 余弦定理在三角形中的证明三、教学重点与难点1. 重点:余弦定理的概念和意义,余弦定理的表达式。

2. 难点:运用余弦定理解决实际问题,余弦定理在三角形中的证明。

四、教学方法1. 采用问题驱动法,引导学生通过思考和讨论来理解和掌握余弦定理。

2. 通过举例和练习题,培养学生的实际应用能力。

3. 利用几何图形和动画演示,帮助学生直观地理解余弦定理。

五、教学过程1. 导入:通过一个实际问题,引导学生思考三角形中的边角关系。

问题:在三角形ABC中,已知边长AB=5,边长BC=8,角C=45°,求边长AC 的长度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2余 弦 定 理(1)
一、教学内容分析
《余弦定理》第一课时。通过利用平面几何法,坐标法(两点的距离公式),
向量的模,正弦定理等方法推导余弦定理,正确理解余弦定理的结构特征,初步
体会余弦定理解决“边、角、边”和“边、边、边”问题,理解余弦定理是勾股
定理的特例, 从多视角思考问题和发现问题,形成良好的思维品质,激发学生学
习数学的积极性和浓厚的兴趣,培养学生思维的广阔性。
二、学生学习情况分析
本课之前,学生已经学习了两点间的距离公式,三角函数、向量基本知识和
正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上
利用多种方法探求余弦定理,学生已有一定的学习基础和学习兴趣。
三、教学目标
继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现
形式,体会多种方法特别是向量方法推导余弦定理的思想;通过例题运用余弦定
理解决“边、角、边”及“边、边、边”问题;理解余弦定理是勾股定理的特例,
理解余弦定理的本质。
四、教学重点与难点
教学重点:余弦定理的证明过程特别是向量法与坐标法及定理的应用;
教学难点:用正弦定理推导余弦定理的方法
五、教学过程:
1.知识回顾
正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即

正弦定理可以解什么类型的三角形问题?
(1)已知两角和任意一边,可以求出其他两边和一角(AAS,ASA);
(2)已知两边和其中一边的对角,可以求出三角形的其他的一边和另外两角(SSA)。
2.提出问题
已知三角形两边及其夹角如何求第三边?
(SAS问题)
在三角形ABC中,已知边a,b,夹角C, 求边c

CcBbAasinsinsin

3.解决问题
通过预习由学生给出自己的证明方法。
学生甲:利用和正弦定理证明相似的方法
法一:平面几何法(作高法)

学生乙:由于涉及边长问题,可考虑求两点的距离。利用坐标法来推导余弦定理:
法二:坐标法
解:以C为原点,BC为x轴建立直角坐标系

学生丙:由于涉及边长问题,从而可以考虑用向量来研究这个问题。 利用向量
法推导余弦定理:
法三:向量法
解:

教师:由于我们才学习了正弦定理,那么用正弦定理可以证明余弦定理吗?

C
B

A
c

a
b

A

222
222

:sin,coscos,(sin)(cos)2cosAADBCBCDADbCCDbCBDBCCDabCABCcbCabCcababC解过点作交于点
在直角三角形中由勾股定理得
C
B

A
c

a
b

A

D

C
B(a,0)

A(bcosC,bsinC)
c

a
b

A

y

x
22
(cos)(sin0)bCabC

22222
cos2cossincbCabCabC

222
2coscababC

c

C
B

A
c

a
b

A

,,CAbCBaABc令

cab由三角形法则有
2
2
||()ccab

22
2

222
||22coscababcababC


法四:
法五:
法六:

4.归纳概括 余弦定理:Abccbacos2222
Baccabcos2222
作用:SAS问题
Cabbaccos2222
三角形中任何一边的平方等于其他两边的平方和减去这两边与它们夹角的余弦
的积的两倍。
推论:

5.余弦定理的简单应用
例1:.在三角形ABC中,已知b=8,c=3,A=600
(1)求a;
(2)求三角形中最大角的余弦值;

sinsinacAC
 由得
sinsin(1)cAaC

sinsin(2)BbC同理c
()(2)BCAB利用代入消去角得
coscos(3)cAbaC
22
(1)A利用+(3)消去即得证

222
:2coscababC求证

222
:(2sin)(2sin)8sinsincosRARBRABC证明右边

()CAB
22
4sin()RAB右边

2sincRC利用证明
()CAB由得
222222
4(sincoscossin2sincossincos)cRABABAABB

2222
cos1sin,cos1sinAABB把代入得

222
2coscababC

222
cos2abcCab

222
cos2acbBac

222
cos2bcaAbc

作用:SSS(已知三边求三个夹角)
(3)判断三角形的形状.(用锐角,钝角,直角三角形回答)
6.余弦定理与勾股定理的关系:
余弦定理是一般三角形中边与角的平方关系,引导学生联想到勾股定理。

余弦定理 勾股定理

例2:用>,<,=填空

勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角
形中三边平方之间的关系。由此可知余弦定理是勾股定理的推广,勾股定理是余
弦定理的特例
7.课堂小结

c2 =a2+ b2-2abcosC
一、
余弦定理是任意三角形边和角之间的规律,勾股定理是它的特殊形式。

222
222
:(1)2cos83283cos60497abcbcAaa解由得

222
(2)49964122737bacacbac由得角B最大
cosB=

(3)cos090.BBABC

所以为钝角三角形

222
2coscababC
222
cab

有关系吗?

22
,,ABCCab(1)在中当为锐角时

2

c

22
,,ABCCab(2)在中当为直角时

22
,,ABCCab(3)在中当为钝角时

2
c

2
c


22222
:(1)090,cos02cosCCcababCab例2.解
当时

22222
(2)90,cos02cosCCcababCab当时

22222
(3)90180,cos02cosCCcababCab当时
二、
余弦定理可解决两类问题:
(1)已知两边和它们的夹角,求第三边(SAS);
(2)已知三边,求三个角(SSS)。

12.课后作业
P10 习题A组 3题,4题

相关文档
最新文档