高二暑期集训专题解析版:解三角形小题专项训练(2)

合集下载

专题06 三角形综合的压轴真题训练(解析版)--2023 年中考数学压轴真题汇编

专题06  三角形综合的压轴真题训练(解析版)--2023 年中考数学压轴真题汇编

挑战2023年中考数学选择、填空压轴真题汇编专题06三角形综合的压轴真题训练一.全等三角形的判定与性质1.(2022•淄博)如图,在△ABC中,AB=AC,点D在AC边上,过△ABD的内心I作IE⊥BD于点E.若BD=10,CD=4,则BE的长为()A.6B.7C.8D.9【答案】B【解答】解:如图,连接AI,BI,CI,DI,过点I作IT⊥AC于点T.∵I是△ABD的内心,∴∠BAI=∠CAI,∵AB=AC,AI=AI,∴△BAI≌△CAI(SAS),∴IB=IC,∵∠ITD=∠IED=90°,∠IDT=∠IDE,DI=DI,∴△IDT≌△IDE(AAS),∴DE=DT,IT=IE,∵∠BEI=∠CTI=90°,∴Rt△BEI≌Rt△CTI(HL),∴BE=CT,设BE=CT=x,∵DE=DT,∴10﹣x=x﹣4,∴x=7,∴BE=7.故选:B.2.(2022•湘西州)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是()A.24B.22C.20D.18【答案】B【解答】解:∵CG∥AB,∴∠B=∠MCG,∵M是BC的中点,∴BM=CM,在△BMH和△CMG中,,∴△BMH≌△CMG(ASA),∴HM=GM,BH=CG,∵AB=6,AC=8,∴四边形ACGH的周长=AC+CG+AH+GH=AB+AC+GH=14+GH,∴当GH最小时,即MH⊥AB时四边形ACGH的周长有最小值,∵∠A=90°,MH⊥AB,∴GH∥AC,∴四边形ACGH为矩形,∴GH=8,∴四边形ACGH的周长最小值为14+8=22,故选:B.3.(2022•南充)如图,正方形ABCD边长为1,点E在边AB上(不与A,B 重合),将△ADE沿直线DE折叠,点A落在点A1处,连接A1B,将A1B绕点B顺时针旋转90°得到A2B,连接A1A,A1C,A2C.给出下列四个结论:①△ABA1≌△CBA2;②∠ADE+∠A1CB=45°;③点P是直线DE上动点,则CP+A1P的最小值为;④当∠ADE=30°时,△A1BE的面积为.其中正确的结论是.(填写序号)【答案】①②③【解答】解:∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°,∵∠A1BA2=∠ABC=90°,∴∠ABA1=∠CBA2,∵BA1=BA2,∴△ABA1≌△CBA2(SAS),故①正确,过点D作DT⊥CA1于点T,∵CD=DA1,∴∠CDT=∠A1DT,∵∠ADE=∠A1DE,∠ADC=90°,∴∠ADE+∠CDT=45°,∵∠CDT+∠DCT=90°,∠DCT+∠BCA1=90°,∴∠CDT=∠BCA1,∴∠ADE+∠BCA1=45°,故②正确.连接P A,AC.∵A,A1关于DE对称,∴P A=PA1,∴P A1+PC=PA+PC≥AC=,∴P A1+PC的最小值为,故③正确,过点A1作A1H⊥AB于点H,∵∠ADE=30°,∴AE=A1E=AD•tan30°=,∴EB=AB﹣AE=1﹣,∵∠A1EB=60°,∴A1H=A1E•sin60°=×=,∴=×(1﹣)×=,故④错误.故答案为:①②③.4.(2022•朝阳)等边三角形ABC中,D是边BC上的一点,BD=2CD,以AD 为边作等边三角形ADE,连接CE.若CE=2,则等边三角形ABC的边长为.【答案】3或.【解答】解:如图,E点在AD的右边,∵△ADE与△ABC都是等边三角形,∴AC=AB,AE=AD,∠DAE=∠BAC=60°,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即∠CAE=∠BAD.在△CAE和△BAD中,,∴△CAE≌△BAD(SAS),∴CE=BD=2,∵BD=2CD,∴CD=1,∴BC=BD+CD=2+1=3,∴等边三角形ABC的边长为3,如图,E点在AD的左边,同上,△BAE≌△CAD(SAS),∴BE=CD,∠ABE=∠ACD=60°,∴∠EBD=120°,过点E作EF⊥BC交CB的延长线于点F,则∠EBF=60°,∴EF=BE=CD,BF=BE=CD,∴CF=BF+BD+CD=CD,在Rt△EFC中,CE=2,∴EF2+CF2=CE2=4,∴+=4,∴CD=或CD=﹣(舍去),∴BC=,∴等边三角形ABC的边长为,故答案为:3或.5.(2022•日照)如图,在平面直角坐标系xOy中,点A的坐标为(0,4),P 是x轴上一动点,把线段PA绕点P顺时针旋转60°得到线段PF,连接OF,则线段OF长的最小值是.【答案】2【解答】解:方法一:∵将线段P A绕点P顺时针旋转60°得到线段PF,∴∠APF=60°,PF=PA,∴△APF是等边三角形,∴AP=AF,如图,当点F1在x轴上时,△P1AF1为等边三角形,则P1A=P1F1=AF1,∠AP1F1=60°,∵AO⊥P1F1,∴P1O=F1O,∠AOP1=90°,∴∠P1AO=30°,且AO=4,由勾股定理得:P1O=F1O=,∴P1A=P1F1=AF1=,∴点F1的坐标为(,0),如图,当点F2在y轴上时,∵△P2AF2为等边三角形,AO⊥P2O,∴AO=F2O=4,∴点F2的坐标为(0,﹣4),∵tan∠OF1F2===,∴∠OF1F2=60°,∴点F运动所形成的图象是一条直线,∴当OF⊥F1F2时,线段OF最短,设直线F1F2的解析式为y=kx+b,则,解得,∴直线F1F2的解析式为y=x﹣4,∵AO=F2O=4,AO⊥P1F1,∴F1F2=AF1=,在Rt△OF1F2中,设点O到F1F2的距离为h,则×OF1×OF2=×F1F2×h,∴××4=××h,解得h=2,即线段OF的最小值为2;方法二:如图,在第二象限作等边三角形AOB,连接BP、AF,过点B作BP′⊥x轴于点P′,∵将线段P A绕点P顺时针旋转60°得到线段PF,∴∠APF=60°,PF=PA,∴△APF是等边三角形,∴AP=AF,∠PAF=60°,∵△AOB是等边三角形,∴AB=AO=OB=4,∠BAO=60°,∴∠BAP=60°+∠OAP=∠OAF,在△BAP和△OAF中,,∴△BAP≌△OAF(SAS),∴BP=OF,∵P是x轴上一动点,∴当BP⊥x轴时,BP最小,即点P与点P′重合时BP=BP′最小,∵∠BOP′=30°,∠BP′O=90°,∴BP′=OB=×4=2,∴OF的最小值为2,故答案为2.二.勾股定理6.(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNXT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=.【答案】48【解答】解:设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.故答案为:48.7.(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt △DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A 重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.【答案】21【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F 作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•DE•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.8.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.【答案】80【解答】解:过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI 于点N,∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,∴∠CAJ=∠DCM,∠BCJ=∠CFN,∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,∴DM=NF,∴△DMI≌△FNI(AAS),∴DI=FI,MI=NI,∵∠DCF=90°,∴DI=FI=CI=5,在Rt△DMI中,由勾股定理可得:MI===3,∴NI=MI=3,∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,∴AB=AJ+BJ=8+2=10,∵四边形ABHL为正方形,∴AL=AB=10,∵四边形AJKL为矩形,∴四边形AJKL的面积为:AL•AJ=10×8=80,故答案为:80.三.等腰直角三角形(共2小题)9.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE =90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得PA+PB+PC的值最小,若点D 在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④【答案】B【解答】解:如图1中,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ADB=∠AEC,故①正确,∵∠ADB+∠ADC=180°,∴∠AEC+∠ADC=180°,∴∠DAE+∠DCE=180°,∴∠DAE=∠DCE=90°,取DE的中点O,连接OA,OA,OC,则OA=OD=OE=OC,∴A,D,C,E四点共圆,∴∠DAC=∠CED,故②正确,设CD=m,则BD=CE=2m.DE=m,OA=m,过点C作CJ⊥DF于点J,∵tan∠CDF===2,∴CJ=m,∵AO⊥DE,CJ⊥DE,∴AO∥CJ,∴===,故③正确.如图2中,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴P A+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时∠APB=∠APC =∠BPC=120°,PB=PC,AD⊥BC,∴∠BPD=∠CPD=60°,设PD=t,则BD=AD=t,∴2+t=t,∴t=+1,∴CE=BD=t=3+,故④错误.故选:B.10.(2022•绵阳)如图,四边形ABCD中,∠ADC=90°,AC⊥BC,∠ABC =45°,AC与BD交于点E,若AB=2,CD=2,则△ABE的面积为.【答案】【解答】解:过点D作DF⊥AC于点F,∵AC⊥BC,∠ABC=45°,∴AC=BC=AB=2,∵∠ADC=90°,CD=2,∴AD=,∵,∴DF=,∴AF=,∴CF=,∵DF∥BC,∴△DEF∽△BEC,∴,即,∴EF=,∴AE=,∴.故答案为:.11.(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC 外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.【答案】B【解答】解:如图,不妨假设点P在AB的左侧,+S△ABC=S△PBC+S△P AC,∵S△P AB∴S1+S0=S2+S3,∵S1+S2+S3=2S0,∴S1+S1+S0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△P AB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.12.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为()A.B.C.2D.【答案】C【解答】解:设CF交AB于点P,过C作CN⊥AB于点N,如图:设正方形JKLM边长为m,∴正方形JKLM面积为m2,∵正方形ABGF与正方形JKLM的面积之比为5,∴正方形ABGF的面积为5m2,∴AF=AB=m,由已知可得:∠AFL=90°﹣∠MFG=∠MGF,∠ALF=90°=∠FMG,AF =GF,∴△AFL≌△FGM(AAS),∴AL=FM,设AL=FM=x,则FL=FM+ML=x+m,在Rt△AFL中,AL2+FL2=AF2,∴x2+(x+m)2=(m)2,解得x=m或x=﹣2m(舍去),∴AL=FM=m,FL=2m,∵tan∠AFL====,∴=,∴AP=,∴FP===m,BP=AB﹣AP=m﹣=,∴AP=BP,即P为AB中点,∵∠ACB=90°,∴CP=AP=BP=,∵∠CPN=∠APF,∠CNP=90°=∠FAP,∴△CPN∽△FPA,∴==,即==,∴CN=m,PN=m,∴AN=AP+PN=m,∴tan∠BAC====,∵△AEC和△BCH是等腰直角三角形,∴△AEC∽△BCH,∴=,∵CE=+,∴=,∴CH=2,故选:C.13.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4B.6C.2D.3【答案】C【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,根据题意得到点P的轨迹为圆弧,当MP为直径时最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP==2,则PM==2.故选:C.14.(2022•苏州)如图,点A的坐标为(0,2),点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m,3),则m的值为()A.B.C.D.【答案】C【解答】解:过C作CD⊥x轴于点D,CE⊥y轴于点E,如图:∵CD⊥x轴,CE⊥y轴,∠DOE=90°,∴四边形EODC是矩形,∵将线段AB绕点A按逆时针方向旋转60°得到线段AC,∴AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴AB=AC=BC,∵A(0,2),C(m,3),∴CE=m=OD,CD=3,OA=2,∴AE=OE﹣OA=CD﹣OA=1,∴AC===BC=AB,在Rt△BCD中,BD===,在Rt△AOB中,OB===,∵OB+BD=OD=m,∴+=m,化简变形得:3m4﹣22m2﹣25=0,解得m=或m=﹣(舍去),∴m=,故选:C.三.等腰直角三角形(共1小题)15.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C 为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN 交边AB于点E.若AC=5,BE=4,∠B=45°,则AB的长为.【答案】7【解答】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,∴BE=CE=4,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°,在Rt△ACE中,AE===3,∴AB=AE+BE=3+4=7,故答案为:7.四.等边三角形的性质(共2小题)16.(2022•张家界)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=,则△AOB与△BOC的面积之和为()A.B.C.D.【答案】C【解答】解:将△AOB绕点B顺时针旋转60°得△CDB,连接OD,∴OB=BD,∠OBD=60°,CD=OA=2,∴△BOD是等边三角形,∴OD=OB=1,∵OD2+OC2=12+()2=4,CD2=22=4,∴OD2+OC2=CD2,∴∠DOC=90°,+S△BCD=S△BOD+S△COD=×∴△AOB与△BOC的面积之和为S△BOC12+=,故选:C.17.(2022•鄂州)如图,在边长为6的等边△ABC中,D、E分别为边BC、AC 上的点,AD与BE相交于点P,若BD=CE=2,则△ABP的周长为.【答案】【解答】解:∵△ABC是等边三角形,∴AB=BC,∠ABD=∠C=60°,在△ABD和△BCE中,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∴∠APE=∠ABP+∠BAD=∠ABP+∠CBE=∠ABD=60°,∴∠APB=120°,在CB上取一点F使CF=CE=2,则BF=BC﹣CF=4,∴∠C=60°,∴△CEF是等边三角形,∴∠BFE=120°,即∠APB=∠BFE,∴△APB∽△BFE,∴==2,设BP=x,则AP=2x,作BH⊥AD延长线于H,∵∠BPD=∠APE=60°,∴∠PBH=30°,∴PH=,BH=,∴AH=AP+PH=2x+=x,在Rt△ABH中,AH2+BH2=AB2,即(x)2+(x)2=62,解得x=或﹣(舍去),∴AP=,BP=,∴△ABP的周长为AB+AP+BP=6++=6+=,故答案为:.五.含30度角的直角三角形(共1小题)18.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少m (结果取整数,参考数据:≈1.7).【答案】370【解答】解:解法一:如图,延长DC,AB交于点G,过点N作NH⊥AD于H,∵∠D=60°,∠ABC=120°,∠BCD=150°,∴∠A=360°﹣60°﹣120°﹣150°=30°,∴∠G=90°,∴AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,∴BG=BC=50,CG=50,∴DG=CD+CG=100+50,∴AD=2DG=200+100,AG=DG=150+100,∵DM=100,∴AM=AD﹣DM=200+100﹣100=100+100,∵BG=50,BN=50(﹣1),∴AN=AG﹣BG﹣BN=150+100﹣50﹣50(﹣1)=150+50,Rt△ANH中,∵∠A=30°,∴NH=AN=75+25,AH=NH=75+75,由勾股定理得:MN===50(+1),∴AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,∵CD=DM,∠D=60°,∴△DCM是等边三角形,∴∠DCM=60°,由解法一可知:CG=50,GN=BG+BN=50+50(﹣1)=50,∴△CGN是等腰直角三角形,∴∠GCN=45°,∴∠BCN=45°﹣30°=15°,∴∠MCN=150°﹣60°﹣15°=75°=∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(﹣1)=50+50,∵AM+AN﹣MN=100+100+150+50﹣50(+1)=200+100≈370(m).答:路线M→N的长比路线M→A→N的长少370m.故答案为:370.六.等腰直角三角形(共2小题)19.(2022•长沙)如图,在△ABC中,按以下步骤作图:①分别以点A、B为圆心,大于AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若AB=2,则AM的长为()A.4B.2C.D.【答案】B【解答】解:由作图可知,PQ是AB的垂直平分线,∴AM=BM,∵以点D为圆心,AD长为半径画弧交PQ于点M,∴DA=DM=DB,∴∠DAM=∠DMA,∠DBM=∠DMB,∵∠DAM+∠DMA+∠DBM+∠DMB=180°,∴2∠DMA+2∠DMB=180°,∴∠DMA+∠DMB=90°,即∠AMB=90°,∴△AMB是等腰直角三角形,∴AM=AB=×2=2,故选:B.20.(2022•河南)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,点D 为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P 的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为.【答案】或【解答】解:如图:∵∠ACB=90°,AC=BC=2,∴AB=AC=4,∵点D为AB的中点,∴CD=AD=AB=2,∠ADC=90°,∵∠ADQ=90°,∴点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,∴AQ===,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ′=3,∴AQ′===,综上所述:当∠ADQ=90°时,AQ的长为或,故答案为:或.。

专题18 全等三角形(专项训练)(解析版)

专题18 全等三角形(专项训练)(解析版)

专题18 全等三角形一、单选题1.(2021·湖南怀化·九年级)如图,在△AEF中,尺规作图如下:分别以点E,点F为圆心,大于12EF的长为半径作弧,两弧相交于G,H两点,作直线GH,交EF于点O,连接AO,则下列结论正确的是()A.AO平分△EAF B.AO垂直平分EF C.GH垂直平分EF D.GH平分AF【答案】C【详解】由尺规作图的痕迹可得:GH垂直平分线段EF.故选C.2.(2021·江苏南京·九年级)如图,在等腰△ABC中,AB=AC,D、E分别在BC、AC上,AD=DE,BD=CE,若△ADE=m°,则△BAD的度数是()A.m°B.1902m⎛⎫-⎪⎝⎭°C.(90-m)°D.3902m⎛⎫-⎪⎝⎭°【答案】D【分析】分别过点E、G作EF△CD、DG△AB,证明△CEF△△BDG、△DEF△△ADG,从而证明△CDE△△ADB,得到△EDC=△BAD,再利用等边对等角,用m表示出△AED和△CED,再利用平角的定义即可表示出△BAD的度数.【详解】解:分别过点E、G作EF△CD、DG△AB,垂直分别为F、G,△AB=AC , △△B =△C ,△EF △CD ,DG △AB , △△EFC =△DGB =90°, 在△CEF 和△BDG 中△△EFC =△DGB ,△C =△B ,CE =BD , △△CEF △△DGB (AAS ), △EF =DG ,在Rt △DEF 和Rt △ADG 中 △DE =AD ,EF =DG , △Rt △DEF △Rt △ADG (HL ), △△CED =△ADB ,△EDC =△DAB , △AD =ED ,△ADE =m °, △△DEA =180-()2m °△△ADB =△CED =180-(180-)2m°, △△BAD =△EDC =180°-(△ADB +△ADE )=180°-180-(180-+)2mm ° =3(90-)2m° , 故选:D . 【点睛】本题主要考查了全等三角形的判定、等腰三角形的性质等知识,能够根据线段相等等已知条件构造全等三角形是解答此题的关键.3.(2021·江苏九年级)如图,Rt AOB Rt COD △≌△,直角边分别落在x 轴和y 轴上,斜边相交于点E ,且tan 2OAB ∠=.若四边形OAEC 的面积为12,反比例函数(0)ky x x=>的图像经过点E ,则k 的值是( )A .7B .8C .9D .10【答案】B 【分析】过点E 作EF OA ⊥于F ,EG OC ⊥于G ,连接OE ,证明三角形全等,得对应边相等,用来证明四边形为正方形,再根据tan 2OAB ∠=,建立边与边之间的等量关系,利用两直线平行和四边形的面积,即可求出解. 【详解】解:过点E 作EF OA ⊥于F ,EG OC ⊥于G ,连接OE ,如图:Rt AOB Rt COD △≌△,,,OA OC OB OD ABO CDO ∴==∠=∠,OB OC OD OA ∴-=-,即:BC AD =, 在BCE DAE =中,{ABO CDO BEC DEA BC AD ∠=∠∠=∠=,()BCE DAE AAS ∴≌, EC AE ∴=,在CEO 和AEO △中, OC OA OE OE EC EA =⎧⎪=⎨⎪=⎩()CEO AEO SSS ∴≌,45COE AOE ∴∠=∠=︒,COEAOESS=,,,EG OC EF AO OA OC ⊥⊥⊥,∴四边形OFEG 为正方形,EG EF OG OF ∴===,tan 2,2OBOAB OA∠=∴=, 设OA OC a ==,则2OB OD a ==, 设EG EF x ==,则OG OF x ==,//EG OA ,EG BGOA BO ∴=, 即:22x a x a a-=, 解得:23x a =, 22(,)33E a a ∴,四边形OAEC 的面积为12, 162AEOSS ∴==四边形OAEC, 162OA EF ∴⨯=, 12623a a ∴⨯⨯=, 解得:218a =, 22248339k a a a ∴=⨯==, 故选:B . 【点睛】本题考查了反比例函数k 的几何意义,待定系数法,三角形全等的判定与性质,正方形的判定与性质,三角形的面积,解直角三角形,解题的关键是:利用点的坐标表示出相应线段的长度.4.(2021·山东九年级)如图,在ABC中,AB AC=,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于12BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若5,1AE BE==,则EC的长度是()AB.C.9D【答案】A【分析】利用基本作图得到CE△AB,根据线段的和差关系可得AC=AB=6,然后利用勾股定理计算CE的长.【详解】△AE=5,BE=1,△AB=6,由作图可知CM为AB的垂线,即CE△AB,△在△ACE中,AC2=AE2+CE2,△AB=AC,△62=52+CE2,解得:CE(负值舍去),故选:A.【点睛】本题考查了基本作图及勾股定理,熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)是解题关键.5.(2021·江苏省天一中学九年级)如图,ABC中,△C=90o,BC=8,AC=6,点P在AB上,AP=3.6,点E从点A出发,沿AC运动到点C,连接PE,作射线PF垂直于PE,交直线BC于点F,EF的中点为Q,则在整个运动过程中,线段PQ扫过的面积为()A.8B.6C.94πD.2516π【答案】B【分析】连接CQ,PQ,证明点Q在CP的垂直平分线上,连接CP,作CP的垂直平分线交BC于M,交AC于N,即点Q在MN上,可得PQ扫过的面积为△PMN的面积,证明△ABC△△ACP,得到MN△AB,再证明△CMN△△CBA,得到相似比,求出△CMN的面积即可得解.【详解】解:连接CQ,PQ,△△ACB=90°,PE△PF,Q为EF中点,△PQ=CQ=12EF,△点Q在CP的垂直平分线上,如图,连接CP,作CP的垂直平分线交BC于M,交AC于N,即点Q在MN上,△PQ扫过的面积为△PMN的面积,△△ACB=90°,AC=6,BC=8,△AB,△AP=3.6,则35AP ACAC AB==,又△C=△C,△△ABC△△ACP,△△APC =△ACB =90°,即CP △AB , △MN △CP , △MN △AB ,△△CMN △△CBA ,又MN 垂直平分CP , △12CM CN CB CA ==,且△CMN 和△PMN 的面积相等, △S △PMN =S △CMN =14S △ABC =116842⨯⨯⨯=6,故选B .【点睛】本题考查了相似三角形的判定和性质,垂直平分线的性质,勾股定理,直角三角形斜边中线的性质,解题的关键是推出点Q 的路径,得到点Q 在CP 的垂直平分线上.6.(2021·吉林)如图,在ABC 中,90ACB ∠>︒按以下步骤作图:分别以点A 和C 为圆心,大于12AC 的边长为半径作圆弧,两弧相交于点M 和N ;作直线MN 交AB 于点D ,连结CD .若5cm AB =,则BC 的长可能是( )A .7cmB .6cmC .5cmD .4cm【答案】D 【分析】由基本作图得到MN 垂直平分AC ,则DA =DC ,根据三角形三边的关系得到BC <CD +DB ,然后对各选项进行判断. 【详解】解:由作法得MN 垂直平分AC , △DA =DC ,△CD +BD =DA +DB =AB =5, △BC <CD +DB , △BC <5. 故选:D . 【点睛】本题考查了作图-基本作图-作已知线段的垂直平分线.也考查了线段垂直平分线的性质.7.(2021·广西柳州·)如图,在Rt △ABC 中,△ACB =90°,AC =BC ,点M 在AC 边上,且A M=2,M C =6,动点P 在AB 边上,连接PC ,P M ,则PC +P M 的最小值是( )A .B .8C .D .10【答案】A 【分析】首先利用等腰三角形和垂直平分线的性质求出8AC '=和90C AC ∠'=︒,然后利用勾股定理求解即可. 【详解】解:如解图,过点C 作CO AB ⊥于点O ,延长CO 到点C ',使OC OC '=,连接MC ',交AB 于点P ',此时MC P M P C P M P C '='+''='+'的值最小,连接AC ',,,90CO AB AC BC ACB ⊥=∠=︒,1245ACO ACB ∴∠=∠=︒.,CO OC CO AB ='⊥,268AC CA AM MC ∴'==+=+=, 45OC A OCA ∴∠'=∠=︒, 90C AC ∴∠'=︒, C A AC ∴'⊥,MC ∴'=PC PM ∴+的最小值为故选:A .【点睛】本题主要考查等腰三角形的性质,垂直平分线的应用和勾股定理,找到P 点的位置是关键.8.(2021·湖南长沙·九年级)如图,用直尺和圆规作图,以点O 为圆心,适当长为半径画弧,分别交OB ,OA 于点E 、D ,再分别以点E 、D 为圆心,大于12ED 的长为半径画弧,两弧交于点C ,连接OC ,则△ODC △OEC 的理由是( )A .SSSB .SASC .AASD .HL【答案】A 【分析】连接EC 、DC .根据作图的过程知,OE=OD ,CE=CD ,利用SSS 即可证明△ODC △OEC . 【详解】如图,连接EC 、DC .根据作图的过程知,OE=OD ,CE=CD , 在△EOC 与△DOC 中, OE OD OC OC CE CD =⎧⎪=⎨⎪=⎩, △△EOC △△DOC (SSS ). 故选A . 【点睛】本题考查了基本作图及三角形全等的判定方法,根据作图方法确定出三角形全等的条件是解决问题的关键. 9.(2021·四川宜宾市·)如图,在ABC 中,90,16,C AC AB ∠=︒=的垂直平分线MN 交AC 于点D ,交AB 于点E ,连接BD ,若:3:5CD DB =,则ABC 的面积为( )A .16B .32C .48D .64【答案】D 【分析】由于CD :DB =3:5,可设DC =3x ,BD =5x ,由于MN 是线段AB 的垂直平分线,故AD =DB ,AD =5x ,又知AC =16,即可据此列方程解答. 【详解】解:△CD :DB =3:5, △设DC =3x ,BD =5x ,又△MN 是线段AB 的垂直平分线, △AD =DB =5x ,又△AC=16cm,△3x+5x=16,解得,x=2,△CD=6,DB=10,在Rt△BDC中,CD=6,DB=10,BC8=,△△ABC的面积=12AC×BC=12×16×8=64.故选D.10.(2021·河北唐山·)如图,所示的正方形网格中,一条A,B,C三点均在格点上,那么ABC的外接圆圆心是()A.点E B.点F C.点G D.点H【答案】C【分析】由ABC的外接圆圆心在AB与BC的垂直平分线上,根据网格可知EG所在直线是AB的垂直平分线,BC 的垂直平分线是点G所在直线即可.【详解】解:△A,B,C三点均在格点上,连结BC,△ABC的外接圆圆心在AB与BC的垂直平分线上,由网格可知EG所在直线是AB的垂直平分线,BC的垂直平分线是点G所在直线,△点G是ABC的外接圆圆心.故选择:C.【点睛】本题考查网格三角形,三角形外接圆圆心,线段垂直平分线,掌握网格三角形,三角形外接圆圆心,线段垂直平分线是解题关键.二、填空题11.(2021·建昌县教师进修学校九年级)如图,在ABC中,AC=4,BC=8,分别以点A,B为圆心,等长为半径作弧,交AB,BC,AC于点D,E,F,再以点F为圆心,DE长为半径作弧,交前弧于点G,连接AG并延长交BC于点H.则BH长_____.【答案】6【分析】根据尺规作图可得△CAH=△B,故可得到△ACH△△BCA,得到AC HCBC AC=,故可求出CH,从而求出BH的长.【详解】根据尺规作图可得△CAH=△B,又△C=△C△△ACH△△BCA△AC HC BC AC=△484HC =△HC=2故BH=BC-HC=6故答案为6.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知尺规作角相等的方法及相似三角形的判定定理. 12.(2021·建昌县教师进修学校九年级)如图,E 是正方形ABCD 外一点,连接AE ,BE ,DE ,AP △AE 交DE 于点P ,连接BP ,若AE =AP =1,PB △EB △ED ;△点B 到直线DE 的距离是1;△APDAPBSS+=;△S 正方形ABCD .其中正确结论的序号为______.【答案】△△△ 【分析】根据正方形性质可得AD =AB ,△BAD =ADC =90°,再由AP △AE ,易证△ABE △△ADP ,再利用等腰直角三角形性质可得:△AEB =135°,进而可得:EB △ED ;由勾股定理即可求得BE =1,即点B 到直线DE 的距离为1;设正方形ABCD 边长为a ,根据勾股定理可得22212a a ⎛⎛⎫ -+= ⎪ ⎝⎭⎝⎭,解得:22a=+,即可求得:APDAPBS S+=,2正方形2ABCD S a ==+,即可求解.【详解】解:△四边形ABCD 是正方形, △AD =AB ,△BAD =△ADC =90° △AP △AE , △△EAP =90°△△BAE +△BAP =△BAP +△DAP =90°, △△BAE =△DAP , △AE =AP =1,△△ABE △△ADP (SAS ), △△AEB =△APD ,BE =DP △△AEP 是等腰直角三角形,△△AEP =△APE =45°,EP ===,△△APD =180°-△APE =180°-45°=135°, △△AEB =135°,△△BED =△AEB -△AEP =135°-45°=90°, △EB △ED ,故△正确;△1BE ==,故△正确;过点E 作EF △AB 于点F ,过点P 作PG △AB 于点G ,△AF =BF ,△AFE =△PGA =90°, △△EAF +△P AG =△P AG +△APG =90°, △△EAF =△APG , △△EAF △△APG (AAS ), △EF =AG ,AF =PG ,设正方形ABCD 边长为a ,则AB =a ,12AF PG a ==,△AG EF ====,△BG AB AG a =-=-, 在Rt BPG △ 中,由勾股定理得:22212a a ⎛⎛⎫ -+= ⎪ ⎝⎭⎝⎭,解得:22a =+,△()12APDAPBAEBAPBSSSSAB EF PG +=+=+1122a a ⎫⎪=+=⎪⎝⎭,故△正确;△2正方形2ABCD S a ==+,故△错误,故正确的有△△△. 故答案为:△△△. 【点睛】本题主要考查了正方形性质,等腰直角三角形性质,勾股定理,全等三角形判定和性质,三角形面积和正方形面积等;熟练掌握相关知识点是解题的关键.13.(2021·东莞市东莞中学初中部九年级)如图,OA =OB ,AC =BC ,△ACO =30°,则△ACB =__.【答案】60° 【分析】利用SSS 证明△AOC △△BOC 可得△BCO =△ACO =30°,进而可求解△ACB 的度数. 【详解】解:在△ACO 和△BCO 中, OA OB AC BC OC OC =⎧⎪=⎨⎪=⎩, △△AOC △△BOC (SSS ), △△BCO =△ACO =30°, △△ACB =△BCO +△ACO =60°, 故答案为:60°. 【点睛】本题考查了全等三角形判定与性质,熟知全等三角形的判定定理是解题的关键.14.(2021·江苏)如图,在四边形ABCD 中,AB △DC ,过点C 作CE △BC ,交AD 于点E ,连接BE ,△BEC =△DEC ,若AB =6,则CD =___.【答案】3 【分析】延长AD ,BC 交于点P ,先证明BCE PCE ≅△△,可得到PC =BC ,从而得到CD 是ABP △ 的中位线,即可得出答案. 【详解】如图,延长AD ,BC 交于点P , △CE △BC ,△90PCE BCE ∠=∠=︒ , 又△△BEC =△DEC ,CE =CE , △()BCE PCE ASA ≅ , △PC =BC , △AB △DC ,△CD 是ABP △ 的中位线, △116322CD AB ==⨯= , 故答案为3. 【点睛】本题主要考查了三角形的中位线定理和三角形全等,解题的关键是做辅助线构造出三角形,找到三角形的中位线.15.(2021·江苏九年级)如图所示的网格是正方形网格,图形的各个顶点均为格点,则△1+△2=___.【答案】135°【分析】直接利用网格证明△ABC△△CDE,得出对应角△1=△3,进而得出答案.【详解】解:如图所示:可知:AB=CD=3,BC=DE=1,△B=△D=90°,△△ABC△△CDE(SAS),△△1=△3,则△1+△2=△2+△3=135°.故答案为:135°.【点睛】此题主要考查了全等三角形的判定和性质,正确借助网格分析是解题关键.三、解答题16.(2021·西安市铁一中学九年级)如图,已知直线l外有一点P,请用尺规作图的方法在直线l上找一点Q,使得Q到P的距离最小(保留作图痕迹,不写作法).【答案】见解析.【分析】以点P为圆心,适当长为半径,作弧交直线l于两点,再作以这两点为线段的垂直平分线,交直线于点Q 即可.【详解】解:如图,点Q即是所求作的点.【点睛】本题考查过直线外一点,作直线的垂直平分线,是重要考点,掌握相关知识是解题关键.17.(2021·建昌县教师进修学校九年级)如图,在ABC中,△BAC=90°,AB=AC=4,过点C作MN△AB,点P为斜边BC上一点,点Q为直线MN上一点,连接PQ,作PR△PQ交直线AC于点R.(1)当点Q在射线CM上时△如图1,若P是BC的中点,则线段PQ,PR的数量关系为;△如图2,若P不是BC的中点,写出线段CP,CQ,CR之间的数量关系,并证明你的结论;(2)若14CP BC=,3CQ=,请直接写出CR的长.【答案】(1)△PQ=PR;CQ CR+=,见解析;(2)5或1【分析】(1)△PQ=PR;连结AP,△BAC=90°,AB=AC,可得△ACP=45°,由点P为BC中点,可得AP△BC,AP平分△BAC,可得△APQ+△QPC=90°,△P AC=45°,可求△RAP=135°,△ACP=△P AC=45°,可证△RAP△△QCP (ASA)即可;CQ CR+=.作PE △PC交AC于点E,可得△EPC=90°,可得△EPQ+△QPC=90°,由PR△PQ,可得△RPE+△EPQ=90°,可得△RPE=△QPC,再证△PER△△PCQ(ASA),可得ER=CQ,在Rt△CEP中,利用三角函数可求CE=即可;(2)由△BAC=90°,AB=AC=4,利用勾股定理可求BC=14CP BC=,可14CP BC=Q在MN上位置分两种情况:当点Q在CM上与点Q在CN上时,利用结论可求CR.【详解】(1)△连结AP,△△BAC=90°,AB=AC,△△ACP=45°,△点P为BC中点△AP△BC,AP平分△BAC,△△APQ+△QPC=90°,△P AC=45°,△△RAP=180°-△P AC=135°,△ACP=△P AC=45°△AP=CP,△RP△PQ,△△RP A+△APQ=90°,△△RP A=△QOC,△MN∥AB,△△ACQ=△BAC=90°,△△QCP=△ACQ+△PCA=90°+45°=135°=△RAP,在△RAP和△QCP中,RAP QCPAP CPRPA QPC∠=∠⎧⎪=⎨⎪∠=∠⎩△△RAP△△QCP(ASA),△PR=PQ,故答案为:PQ =PR ;CQ CR +=.证明:作PE △PC 交AC 于点E ,则△EPC =90°, △△EPQ+△QPC =90° △PR △PQ △△RPQ =90°, △△RPE +△EPQ =90°, △△RPE =△QPC ,△△BAC =90°,AB =AC ,MN △AB△△ABC =△ACB =45°,△ACM =△BAC =90° △△PEC =45°△PE =PC ,△PER =△PCQ =135°, 在△REP 和△QCP 中,REP QCP EP CPRPE QPC ∠=∠⎧⎪=⎨⎪∠=∠⎩△△PER △△PCQ (ASA ), △ER =CQ ,在Rt △CEP 中,cos △PEC =PC CE =CE = 又△CE ER CR +=,CQ CR +=.(2)△△BAC =90°,AB =AC =4,△BC = △14CP BC =△1144CP BC ==⨯ 当点Q 在CM 上时CR CQ =+当点Q 在CN 上时证明:作PE △PC 交CN 于点E , 则△EPC =90°, △△EPR+△RPC =90° △PR △PQ △△RPQ =90°, △△RPE +△EPQ =90°, △△RPC =△QPE ,△△BAC =90°,AB =AC ,MN △AB△△ABC =△ACB =45°=△BCQ ,△ACN =△ACB +△BCQ =90°=△BAC△△PEC =45°△PE =PC ,△PEQ =△PCR =135°, 在△QEP 和△RCP 中,QEP RCP EP CPQPE RPC ∠=∠⎧⎪=⎨⎪∠=∠⎩△△QEP △△RCP (ASA ), △EQ =CR ,在Rt △CEP 中,cos △PEC=PC CE =CE = 又△CR CE CR -=,△CQ CR =.=3CR CQ =△CR 的长为5或1. 【点睛】本题考查等腰直角三角形的性质与判定,平行线性质,勾股定理,三角形全等判定与性质,线段的和差,锐角三角函数,掌握等腰直角三角形的性质与判定,平行线性质,勾股定理,三角形全等判定与性质,线段的和差,锐角三角函数是解题关键.18.(2021·广东广州·铁一中学)如图,90A ∠=︒,//AD BC ,点E 是AB 上的一点,且AE BC =,12∠=∠.求证:ADE BEC △△≌.【答案】见解析 【分析】根据等角对等边可得ED EC =,由此根据HL 证明Rt ADE △和Rt BEC △全等解答即可. 【详解】证明:12∠=∠,ED EC ∴=,△90A ∠=︒,//AD BC , △18090B A ∠=︒-=︒∠, 在Rt ADE △和Rt BEC △中,AE BC ED EC=⎧⎨=⎩, Rt Rt (HL)ADE BEC ∴△≌△.【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定方法是解决本题的关键.19.(2021·江苏高港区·高港实验学校九年级)如图,在正方形ABCD 中,F 为BC 为边上的定点,E 、G 分别是AB 、CD 边上的动点,AF 和EG 交于点H 且AF △EG .(1)求证:AF =EG ; (2)若AB =6,BF =2.△若BE =3,求AG 的长;△连结AG 、EF ,求AG +EF 的最小值. 【答案】(1)见解析;(2)△【分析】(1)过点G 作GM △AD 交AB 于点M ,则可得AD =MG ,然后证明△GME △△ABF 即可;(2)△过点G 作GM △AD 交AB 于点M ,连接AG ,由(1)可得EM =BF =2,从而可求得AM ,在Rt △AMG 中由勾股定理即可求得AG 的长;△过点F 作FP △EG ,FP =EG ,连接AP ,则易得GP =EF ,当A 、G 、P 三点共线时,AG +EF 最小,在Rt △AFP 中由勾股定理即可求得AP 的长即可. 【详解】(1)过点G 作GM △AD 交AB 于点M △四边形ABCD 是正方形△△BAD =△B =90゜,AB △CD ,AD =AB △△EMG =△BAD =△B =90゜ △AB △CD ,GM △AD△四边形AMGD 是平行四边形 △△BAD =90゜△四边形AMGD 是矩形 △MG =AD △MG =AB △AF △EG△△AEH +△EAH =90゜ △△EAH +△AFB =90゜ △△AEH =△AFB 在△GME 和△ABF 中EMG B AEH AFB MG AB ∠=∠⎧⎪∠=∠⎨⎪=⎩△△GME △△ABF (AAS ) △AF =EG(2)△过点G作GM△AD交AB于点M,连接AG,如图由(1)知,△GME△△ABF△EM=BF=2△AB=6,BE=3△AE=AB-BE=3△AM=AE-EM=1在Rt△AMG中,GM=AD=6,由勾股定理得:AG=△过点F作FP△EG,FP=EG,连接AP,如图则四边形EFPG是平行四边形△GP=EF△AG+GP≥GP△当A、G、P三点共线时,AG+EF=AG+GP最小,最小值为线段AP的长△AF△EG,FP△EG△FP△AF在Rt△ABF中,由勾股定理得AF==△AF=EG,EG=FP△FP=AF=在Rt△AFP中,由勾股定理得AP=所以AG+EF的最小值为【点睛】本题考查了正方形的性质,平行四边形的判定与性质,矩形的判定与性质,全等三角形的判定与性质,勾股定理,两点间线段最短等知识,灵活运用这些知识是解决的关键,确定AG+EF最小值是线段AP的长是难点.20.(2021·杭州市丰潭中学九年级)如图,已知AB是△O的弦,OB=1,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交△O于点D,连接AD.设△B=α,△ADC=β.(1)求△BOD的度数(用含α,β的代数式表示);(2)若α=30°,当AC的长度为多少时,以点A、C、D为顶点的三角形与B、C、O为顶点的三角形相似?请写出解答过程.(3)若α=β,连接AO,记△AOD、△AOC、△COB的面积分别为S1,S2,S3,如果S2是S1和S3的比例中项,求OC的长.【答案】(1)△BOD=2α+2β;(2)AC(3)OC.【分析】(1)作辅助线OA,根据同弧所对的圆周角是圆心角的一半即可确定△DOB的值;(2)分析△ACD中只有△D可能等于30°,得出△D的对应角为△B,根据相垂径定理可得出AC的长;(3)先根据比例中项得出a和b的关系式,再证明△ACD△△OCA,再得出AD和AC的关系式,两式联立即可求出AC、AD,从而求出OC.【详解】解:(1)连接AO,如图:△OA =OD ,OA =OB ,△B =α,△ADC =β, △△OAD =△ADC =α,△OAB =△B =β,△△BOD =2△DAB =2(△OAD +△OAB )=2α+2β; (2)△点C 不与A 、B 重合, △△DAC >30°,△ACD >30°, △△ACD △△OCB , △△D =△B =α=30°,由(1)知△DOB =2(30°+30°)=120°, △△BOC =60°, △△OCB =90°,根据垂径定理知C 是AB 的中点,△AC =BC =OB •cos 30°=1=(3)△α=β, △△ADO =△ABO , △OA =OD =OB ,△△ADO =△OAD =△ABO =△OAB , △△ADO △△ABO ,△OA 是△DAC 的角平分线,设AD =a ,AC =b ,AD 、AC 边上的高为h , 则:112S ah =,212S bh =,3()12S a b h =-,又△S 2是S 1和S 3的比例中项,△2213S S S =•,即211()()1222bh ah a b h =•-,化简得a 2﹣b 2=ab △,△α=β, △△DOB =4α, △△DCB =3α, △△AOC =△DAC =2α, △△ACO ~△DCA , △AO COA C A C D A C D ==, △11b OCa OC b+==,整理得:bOC a=,a 2b =a +b △, 联立△△得:1a b ⎧=⎪⎨⎪=⎩△OC=21.(2021·珠海市九洲中学九年级)如图,AC 是平行四边形ABCD 的对角线.(1)利用尺规作出AC 的垂直平分线(要求保留作图痕迹,不写作法);(2)设AC 的垂直平分线分别与AB 、AC 、CD 交于点E 、O 、F ,求证:OE OF =. 【答案】(1)答案见详解;(2)答案见详解 【分析】(1)如图可得AC 的垂直平分线;(2)由根据作图知,PQ 是AC 的垂直平分线,又由四边形ABCD 是平行四边形,易证得△AOE △△COF ,继而证得结论. 【详解】 解:(1)如图:(2)证明:根据作图知,PQ 是AC 的垂直平分线, △OA =OC ,且EF △AC , △四边形ABCD 是平行四边形, △AB △CD , △△OAE =△OCF , 在△OAE 和△OCF 中, OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△AOE △△COF (ASA ), △OE =OF . 【点睛】此题考查了平行四边形的性质、线段垂直平分线的性质与作法以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22.(2021·温州绣山中学九年级)如图,在△ABCD 中,对角线AC ,BD 交于点O ,AE △BD ,CF △BD ,垂足分别为E ,F . (1)求证:EO =FO ;(2)若AE =EF =4,求AC 的长.【答案】(1)见解析;(2) 【分析】(1)由平行四边形的性质得到AB =CD ,△ABE =△CDF ,然后根据题意证明ABE CDF △≌△即可.(2)根据OE =OF =12EF 求出OE 的长度,然后根据勾股定理求出AO 的长度,即可根据平行四边形对角线互相平分求出AC 的长度. 【详解】(1)△四边形ABCD 是平行四边形, △AB =CD ,AB △CD , △△ABE =△CDF , △AE △ED ,CF △BD , △△AEB =△CFD =90°, 在△ABE 和△CDF 中,AEB CFD ABE CDF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, △()ABE CDF AAS △≌△, △BE =DF , △OB =OD , △OB -BE =OD -DF , △OE =OF .(2)△AE =EF =4, △OE =OF =122EF =,△在Rt AEO中,AO =△2AC AO == 【点睛】此题考查了平行四边形的性质,三角形全等和勾股定理的运用,解题的关键是熟练掌握平行四边形的性质,三角形全等和勾股定理.23.(2021·福建泉州五中)如图,在ABCD 中,AE BC ⊥于点E ,CF AD ⊥于点F ,求证:BE DF =.【答案】见解析.【分析】根据平行四边形的性质可得AB =CD ,△B =△D ,然后利用AAS 定理证明△ABE △△CFD 可得BE =DF【详解】 证明:四边形ABCD 是平行四边形,AB CD ∴=,B D ∠=∠,AE BC ⊥,CF AD ⊥,90AEB CFD ∴∠=∠=︒在ABE ∆和CDF ∆中,AEB CFD B DAB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE CDF AAS ∴∆≅∆,BE DF ∴=.【点睛】此题主要考查了平行四边形的性质和全等三角形的性质与判定,平行四边形的性质的作用:平行四边形对应边相等,对应角相等,对角线互相平分,是我们证明直线的平行、线段相等、角相等的重要方法.。

经典初中数学三角形专题训练及例题解析

经典初中数学三角形专题训练及例题解析

经典《三角形》专题训练知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。

推论2:三角形的一个外角等于不相邻的两个内角的和。

推论3:三角形的一个外角大于与它不相邻的任何一个内角。

7、多边形的外角和恒为360°8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。

③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。

B.n 边形共有2)3(-n n 条对角线。

9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。

②多边形的外角和等于360°。

三角形 (按角分) 三角形 (按边分)10、平面镶嵌及平面镶嵌的条件。

①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。

②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。

专题23 等边三角形(专项训练)(解析版)

专题23 等边三角形(专项训练)(解析版)

专题23 等边三角形一、单选题1.(2021·甘肃庆阳市·九年级)如图,AB 为O 的直径,点C 、D 在O 上,且2AC BC ==,30BCD ∠=︒,则BD 的长为( )A B C D 【答案】C 【分析】根据AB 为O 的直径,2AC BC ==,可利用勾股定理求直径长,再根据30BCD ∠=︒,可得△OBD 为等边三角形,可求BD 的长. 【详解】解:△AB 为O 的直径,2AC BC ==,△△ACB =90°,AB = 连接OD , △30BCD ∠=︒, △△DOB =60°, △OD =OB ,△△OBD 为等边三角形,△BD OD == 故选:C .【点睛】本题考查了圆周角的性质、勾股定理、等边三角形的判定与性质,解题关键是熟练运用圆周角的性质得出直角三角形和等边三角形.2.(2021·河南开封·)如图所示的木质活动衣帽架是由三个全等的菱形组成,根据实际需要可调节A,E间的距离,已知菱形ABCD的边长为20cm,若A,E间的距离调节到60cm时,则这个活动衣帽架所围成的面积为()A.2600cm B.2C.2D.2【答案】B【分析】连接AE,由题意得AC=13AE=20(cm),再证△ABC是等边三角形,即可求解.【详解】解:连接AE,如图所示:△AE间的距离调节到60cm,木质活动衣帽架是由三个全等的菱形组成,△AC=13AE=20(cm),△菱形ABCD的边长为20cm,△AC =AB =BC , △△ABC 是等边三角形,△这个活动衣帽架所围成的面积为:3S 菱形ABCD =3×2S △ABC 2×202=2,故选:B . 【点睛】本题考查了菱形的性质、等边三角形的判定与性质、全等图形的性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.3.(2021·贵州九年级)等边三角形12//l l ,如图放置,若38α∠=︒,则β∠等于( )A .22°B .17°C .27°D .32°【答案】A 【分析】过点A 作AD △l 1,如图,根据平行线的性质可得△BAD =△α.根据平行线的传递性可得AD △l 2,从而得到△DAC =△β.再根据等边△ABC 可得到△BAC =60°,就可求出△DAC ,从而解决问题. 【详解】解:过点A 作AD △l 1,如图,则△BAD =△α. △l 1△l 2, △AD △l 2, △△DAC =△β,△△ABC 是等边三角形, △△BAC =60°,△△β=△CAD =△BAC -△α=60°-38=22°. 故选:A .4.(2021·广东深圳·九年级)如图,PA ,PB 与O 分别相切于点A ,B ,2PA =,60P ∠=︒,则AB =( )A B .2 C .D .3【答案】B 【分析】先判断出PA PB =,进而判断出PAB △是等边三角形,即可得出结论. 【详解】解:△PA ,PB 与O 分别相切于点A ,B ,△PA PB =, △60APB ∠=︒, △PAB △是等边三角形, △2AB AP ==. 故选:B . 【点睛】本题考查了切线长定理,等边三角形的判定和性质,熟练掌握切线长定理是解题的关键. 5.(2021·河北)如图,AD 是等边△ABC 的中线,AE =AD ,则△EDC 的度数为( )A.30°B.20°C.25°D.15°【答案】D【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD△BC,△CAD=30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得△ADE的度数,继而求得答案.【详解】解:△AD是等边△ABC的中线,△AD△BC,△BAD=△CAD=12△BAC=12×60°=30°,△△ADC=90°,△AD=AE,△△ADE=△AED=180752CAD∠︒-=︒,△△EDC=△ADC-△ADE=90°-75°=15°.故选:D.【点睛】本题考查了等边三角形的性质、等腰三角形的性质以及三角形内角和定理.此题难度不大,解题的关键是注意数形结合思想的应用.6.(2021·山东临沂市·)一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A .12πB .C .9πD .6π【答案】A 【分析】由三视图可知:该几何体是一个圆锥,其轴截面是一个高为4,据此即可得出表面积. 【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为△正三角形的边长=4, △圆锥的底面圆半径是2,母线长是4, △底面周长为4π, △侧面积为12×4π×4=8π,△底面积为πr 2=4π, △全面积是12π. 故选:A . 【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.(2021·湖北荆门市·)如图,ABC 是等边三角形,BCD △是等腰三角形,且BC CD =,过点D 作AB 的平行线交AC 于点E ,若8AB =,6DE =,则BD 的长为( )A .6B .CD .【答案】B 【分析】连接AC 交BD 于点O ,由题意证明AC 垂直平分BD ,由ABD △是等边三角形,得到30,8,4BAO DAO AB AD BD BO OD ∠=∠=︒=====,通过证明EDF 是等边三角形,可得2DE EF DF ===,由勾股定理求得OC BC 、的长即可.【详解】解:连接AD 交BC 于点O ,取AC 中点N ,连接ON ,如图,ABC 是等边三角形,60AB AC ABC ∴=∠=︒BCD △是等腰三角形,BD DC ∴=AD ∴垂直平分BCBO CO ∴=ON ∴是ABC 的中位线,118422ON AB ∴==⨯=////ON AB DE ∴::4:62:3AO AD ON DE ∴===:2:1AO OD ∴= 12OD AO ∴=tan AOABO BO∴∠=8AO ∴===1122OD AO ∴==⨯=Rt BOD 中,BD =故选:B . 【点睛】本题考查等边三角形的判定与性质、等腰三角形的判定与性质、中位线、勾股定理、正切等知识,是重要考点,难度较易,掌握相关知识是解题关键.8.(2021·江苏)将如图所示的纸片折叠、粘合成正方体形状.下列结论:△粘合时,线段AB 与线段FG 重合;△在正方体中,DE 所在的面与GH 所在的面相对; △在正方体中,AC //DE ;△在正方体中,DE 与EF 的夹角是60°. 其中所有正确结论的序号是 A .△△△ B .△△△C .△△△D .△△△【答案】B 【分析】根据正方体的平面展开图,折叠成几何体的直观图,直接利用相关性质判定△△△△的结论. 【详解】解:根据正方体的平面展开图,折叠成几何体的直观图,如图所示:△粘合时,线段AB与线段FG重合,故△正确,符合题意;△在正方体中,DE所在的面与GH所在的面相对,故△正确,符合题意;△在正方体中,AC和DE不在同一平面内,不平行,故△错误,不符合题意;△在正方体中,连接BD,所以△BDE为等边三角形,DE与EF所在直线成60°角,故△正确,符合题意.故选:B.【点睛】本题考查了正方体及其平面展开图,等边三角形的判定和性质,注意正方体的空间图形,从相对面入手,分析及解答问题.9.(2021·山东九年级)如图,等边三角形纸片ABC的周长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA的方向各剪一刀,则剪下的△DEF的周长是()A.1B.2C.3D.4【答案】B【分析】根据边三角形纸片ABC的周长为6可求BC=2,根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.【详解】解:△等边三角形纸片ABC的周长为6,BC△2△E ,F 是边BC 上的三等分点, △EF =23,△△ABC 是等边三角形, △△B =△C =60°, 又△DE △AB ,DF △AC ,△△DEF =△B =60°,△DFE =△C =60°, △△DEF 是等边三角形,△剪下的△DEF 的周长是23×3=2.故选:B . 【点睛】考查了等边三角形的性质,平行线的性质,关键是证明△DEF 是等边三角形.10.(2021·河北)如图,AD 是等边ABC 的中线,点E 在AC 上,AE AD =,则EDC ∠的度数为( )A .30B .20︒C .25︒D .15︒【答案】D 【分析】由等边三角形三线合一即可求出30DAC ∠=︒,90ADC ∠=︒.再由等腰三角形的性质可求出75ADE ∠=︒,最后即可求出15EDC ∠=︒. 【详解】△ABC 是等边三角形,且AD 为中线. △1302DAC BAC ∠=∠=︒,90ADC ∠=︒,△AE AD =,△11(180)(18030)7522ADE AED DAC ∠=∠=︒-∠=︒-︒=︒,△907515EDC ADC ADE ∠=∠-∠=︒-︒=︒. 故选:D .【点睛】本题考查等边三角形和等腰三角形的性质.掌握等边三角形三线合一是解答本题的关键. 二、填空题11.(2021·重庆字水中学)如图,半径为4的扇形AOB 的圆心角为90°,点D 为半径OA 的中点,CD △OA 交于点C ,连接AC 、CO ,以点O 为圆心OD 为半径画弧分别交OC 、OB 于点F 、E ,则图中阴影部分的面积为_____.【答案】3π-【分析】先根据垂直平分线的性质证得AOC ∆为等边三角形,得到60AOC ∠=︒,即可得到CD =,然后根据扇形面积公式、三角形面积公式计算即可. 【详解】解:点D 为半径OA 的中点,CD OA ⊥,OC CA ∴=,4OA OC ==,AOC ∴∆为等边三角形, 60AOC ∴∠=︒,CD ∴= 90AOB ∠=︒,30BOC ∴∠=︒,∴图中阴影部分的面积为:226041302433602360OAC OAC OEFS S S πππ∆⨯⨯-+=-⨯⨯=-扇形扇形,故答案为:3π-【点睛】本题考查的是扇形面积计算,线段垂直平分线的性质,等边三角形的判定和性质,掌握扇形面积公式2360n r S π=是解题的关键.12.(2021·上海奉贤·九年级)如图,已知点O 是正六边形ABCDEF 的中心,记OD π=,OF n =,那么OB =__________________(用向量π、n 表示).【答案】n π-- 【分析】根据正六边形性质,得OEF 为等边三角形,根据平行线性质,得//FE OD ;结合向量性质,得FE OD =,再根据向量性质计算,即可得到答案. 【详解】 连接OE ,△六边形ABCDEF 是正六边形, △360606EOD EOF ︒∠=∠==︒,OE OF OD OB === △FE OE OF OD === △OEF 为等边三角形△OEF EOF ∠=∠ △//FE OD △FE OD =△OE OF FE n π=+=+ △OB OE n π=-=-- 故答案为:n π--. 【点睛】本题考查了正多边形、等边三角形、平行线、向量的知识;解题的关键是熟练掌握正多边形、向量的性质,从而完成求解.13.(2021·河南九年级)某种商品的商标图案如图所示(阴影部分),已知菱形ABCD 的边长为4,60A ∠=︒,弧BD 是以A 为圆心,AB 长为半径的弧,弧CD 是以B 圆心,BC 长为半径的弧,则该商标图案(阴影部分)的面积为______.【答案】 【分析】根据菱形和圆的对称性易得阴影部分的面积为菱形面积的一半,据此求解即可. 【详解】解:连接BD ,作DE BC ⊥于E .△图中阴影部分的面积就是BCD △的面积,且等于菱形面积的一半, 菱形ABCD 边长是4cm ,60A ∠=︒,DE ∴=ABCD S BC DE ∴=⨯=菱形S ∴=阴影故答案为: 【点睛】考查扇形面积的计算;得到阴影部分面积就是BCD △的面积,且等于菱形面积的一半是解决本题的关键. 14.(2021·江苏秦淮区·九年级)如图,在Rt ABC △中,90,30ACB BAC ∠=︒∠=︒.将ABC 绕点C 顺时针旋转后得A B C '',且点B '落在AB 边上,连接AA '.若2BC =,则四边形AB CA ''的面积为_________.【答案】【分析】首先根据旋转的性质得出A B C ''≅ABC ,得出BCB '是等边三角形,再证明AB A ≅CB A (SAS ),那么四边形AB CA ''的面积即可转化为两个全等三角形的面积,即可求出答案. 【详解】△A B C ''是由ABC 旋转得到, △2BCCB ,B CB A ,AC A C '= ,又△30BAC ∠=︒,90ACB ∠=︒, △4,60ABB CB A ,△BB C '△是等边三角形,AC = △2BB BC '==,60BB C '∠=︒, △422ABAB BB ,18060A B A BB CCB A,在AB A 和CB A 中, △AB CB AB A CB A B A B A ''''''''=⎧⎪∠='∠'⎨⎪=⎩, △AB A ≅CB A (SAS ),△S 四边形AB CA''=1222223432ABCB CAS S,故填:【点睛】本题考查旋转的性质,含30°锐角的直角三角形的性质,勾股定理,全等三角形的判定和性质,等边三角形的判定与性质,解题关键是熟练掌握旋转的性质.15.(2021·黑龙江九年级)如图,点D在ABC内部,DAB≌EAC,若添加一个条件:______.则ADE 是等边三角形.【答案】AD=DE或△EAD=60°或△BAC=60°或AB=BC等【分析】根据全等三角形的性质定理和等边三角形的判定即可得到结论.【详解】解:△△DAB△△EAC,△AD=AE,若添加条件:AD=DE,则△EAD是等边三角形;若添加条件:△EAD=60°,则△EAD是等边三角形;若添加条件:△BAC=60°,△△DAB△△EAC,△AD=AE,△BAD=△CAE,△△EAD=△CAE+△CAD=△BAD +△CAD =60°,△△EAD是等边三角形;若添加条件:AB=BC,同理可得△EAD是等边三角形.故答案为:AD=DE或△EAD=60°或△BAC=60°或AB=BC等.【点睛】本题考查了全等三角形的性质,等边三角形的判定和性质,熟练掌握全等三角形的性质定理是解题的关键.三、解答题16.(2021·福建龙岩市·)如图,已知四边形ABCD是平行四边形.(1)尺规作图,在BC上作一点E,使得DAE D∠=∠;⊥,求B的度数.(2)在(1)的条件下,若点E恰好是BC的中点,连接AC恰好AC AB【答案】(1)见解析;(2)60°.【分析】(1)根据作一个角等于已知角作法解题,或利用平行四边形对角相等性质,得到△B=△D,由平行四边形对边平行的性质,得到△AEB=△DAE,由此,以点A为圆心,AB为半径作圆,交BC于点E即可得到△B=△AEB,据此解题;(2)由直角三角形斜边的中线性质得到AE=BE,结合平行四边形对边平行性质,及(1)中结论,得到△AEB =△B,据此证明AB=BE=AE,即ABE△是等边三角形,即可求解.【详解】(1)△点E为所求作.或(2)解:△AC△AB△△BAC=90°△点E 是BC 的中点 △AE =BE△四边形ABCD 是平行四边形 △AD //BC ,△D =△B △△AEB =△DAE △△D =△DAE △△AEB =△B △AB =AE △AB =BE =AE △ABE △是等边三角形 △△B =60°. 【点睛】本题考查尺规作图—作一个角等于已知角、平行四边形的性质、平行线的性质、直角三角形斜边中线的性质、等边三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.17.(2021·福建莆田市·)如图,ABC 中,,40AB AC BAC =∠=︒,将线段AB 绕点A 逆时针旋转60︒得到线段AD ,连接BD .(1)根据题意,补全图形(要求:尺规作图,保留痕迹,不写作法); (2)求DBC ∠的度数.【答案】(1)见解析;(2)10DBC ∠=︒ 【分析】(1)线段AB 绕点A 逆时针旋转60︒,得到等边三角形,据此根据等边三角形的性质做边AB 的垂直平分线,以点A 为圆心,AB 长为半径,在垂直平分线上画弧就得到点 D ,连接.或者分别以点A 、B 为圆心,AB 长为半径做弧,交于一点,连接.(2)观察知DBC ABC ABD ∠=∠-∠,分别在对应三角形中求解计算. 【详解】 (2)(作法一)如图,AD 、BD 即为所求 . (作法二)如图,线段AD ,BD 即为所求. (2)解:△,40AB AC BAC =∠=︒, △70ABC ∠=︒.△由旋转可知,60,BAD AB AD ∠=︒=,△ABD △为等边三角形, △60ABD ∠=︒.△10DBC ABC ABD ∠=∠-∠=︒. 【点睛】本题考查了等腰三角形的性质,等边三角形的判定与性质等,涉及了尺规作图,熟练掌握和灵活运用相关知识是解题的关键18.(2021·西城·北京四中九年级)如图所示,四边形ABCD 为菱形,AB =2,△ABC =60°,点E 为边BC 上动点(不含端点),点B 关于直线AE 的对称点为点F ,点G 为DF 中点,连接AG . (1)依题意,补全图形;(2)点E 运动过程中,是否可能EF △AG ?若可能,求BE 长;若不可能,请说明理由; (3)连接CG ,点E 运动过程中,直接写出CG 的最小值.【答案】(1)见解析;(2)不可能,见解析;(31 【分析】(1)根据题意画出图形即可.(2)如图1中,结论:不可能.连接BD .只要证明平行时,点E 与B 重合,不符合题意即可. (3)如图2中,取AD 的中点T ,连接GT ,CG ,CT ,AC .解直角三角形求出CT ,GT ,根据CG ≥CT ﹣GT ,求出CG 的最小值即可. 【详解】解:(1)图形如图1所示:(2)如图1中,结论:不可能.理由:连接BD.△四边形ABCD是菱形,△△ABC=△ADC=60°,AB=AD,△△ADB=△BDC=30°,△点B关于直线AE的对称点为点F,△AF=AB=AD,△AFE=△ABE=60°,△点G为DF中点,△FG=DG,△AG△DF,若EF//AG,则EF△DF,△△EFG=90°,△△AFG=30°,△△AFD=△ADF,△△ADF=30°,△△ADB=△ADF,此时点F与B重合,不符合题意,△不可能存在EF//AG.(3)如图2中,取AD的中点T,连接GT,CG,CT,AC.△四边形ABCD是菱形,△△B=△ADC=60°,DA=DC,△△ACD是等边三角形,△AT=TD,△CT△AD,△CT=CD•sin60°△AG△DF,△△AGD=90°,△AT=TD,AD=1,△TG=12△CG≥CT﹣GT,△CG1,△CG1.【点睛】本题考查了菱形的性质,等腰三角形、等边三角形的性质,解直角三角形,三角形三边关系等;解题的关键是准确作出辅助线.⊥于D,E是BC延长线上的一点,19.(2021·北京门头沟·)已知,如图,ABC是等边三角形,BD AC∠的度数.DB DE=.求E【答案】30. 【分析】首先证明30DBC ∠=︒,根据等腰三角形的性质即可解决问题. 【详解】解:ABC ∆是等边三角形,60ABC ∴∠=︒,BD AC ⊥,1302DBC ABC ∴∠=∠=︒,DB DE =,E DBC ∴∠=∠,30E ∴∠=︒.【点睛】本题考查等边三角形的性质,等腰三角形的性质等知识,熟练掌握基本知识是解题的关键.20.(2021·浙江)如图,在ABC ∆中,,AB AC AD =是BC 边上的中线,E 是AC 边上一点,过点D 作DE DF ⊥交CA 的延长线于点,F DB DF =.(1)求证:ABD EFD △≌△; (2)若30,6B AB ∠=︒=,求AF 的长. 【答案】(1)见详解;(2)3AF =【分析】(1)由题意易得AD BC ⊥,DB DF DC ==,则有90ADB EDF ∠=∠=︒,F C B ∠=∠=∠,然后问题可求证;(2)由(1)可得6,AB EF DE AD ===,进而可得60DEF ∠=︒,则有△ADE 是等边三角形,然后可得AD =AE =AF ,最后问题可求解. 【详解】(1)证明:△,AB AC AD =是BC 边上的中线, △AD BC ⊥,BD CD =,B C ∠=∠, △DE DF ⊥,△90ADB EDF ∠=∠=︒, △DB DF =, △DB DF DC ==, △F C B ∠=∠=∠, △()ABD EFD ASA ≌;(2)解:由(1)可得ABD EFD △≌△, △30,6B AB ∠=︒=,△6,AB EF DE AD ===,30B F ∠=∠=︒, △60DEF ∠=︒, △△ADE 是等边三角形, △60DAE ∠=︒,△30ADF DAE F F ∠=∠-∠=︒=∠, △AD =AE =AF , △132AF EF ==. 【点睛】本题主要考查等边三角形、等腰三角形及全等三角形的性质与判定,熟练掌握等边三角形、等腰三角形及全等三角形的性质与判定是解题的关键.21.(2021·陕西西安市·)如图,△ABD 和△BCE 都为等边三角形,连接AE 、CD .求证:AE =DC .【答案】见解析【分析】先由△ABD和△BCE是等边三角形,可知AB=BD,BE=BC,△ABD=△CBE,从而得到△ABE=△CBD,即可证明△ABE△△DBC,从而得到结论.【详解】解:证明:△△ABD和△BCE都为等边三角形,△AB=BD,BE=BC,△ABD=△CBE,△△ABE=△CBD,△△ABE△△DBC(SAS),△AE=DC.【点睛】本题考查的是等边三角形的性质及全等三角形的判定与性质,根据题意判断出△ABE△△DBC是解答此题的关键.22.(2021·湖北黄冈市·)如图,在Rt△ABC中,△ACB=90°,△A=30°,点O为AB中点,点P为直线BC 上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,试猜想写出线段CP与BQ的数量关系,并证明你的猜想;(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?(直接写“成立”或“不成立”即可,不需证明).【答案】(1) BQ=CP.理由见解析;(2) 成立:PC=BQ, 理由见解析.【分析】(1)由△ACB=90°,△A=30°得到△ABC=60°,根据直角三角形斜边上中线性质得到OB=OC,则可判断△OCB、△CPH为等边三角形,作辅助线PH△AB交CO于H,证明△POH△△QPB全等可得PH=QB= PC;(2)与(1)的证明方法同样得到△POH△△QPB,可得PH=QB= PC.【详解】解:(1)结论:BQ=CP.理由:如图1中,作PH△AB交CO于H.在Rt△ABC中,△△ACB=90°,△A=30°,点O为AB中点,△CO=AO=BO,△CBO=60°,△△CBO是等边三角形,△△CHP=△COB=60°,△CPH=△CBO=60°,△△CHP=△CPH=60°,△△CPH是等边三角形,△PC=PH=CH,△OH=PB,△△OPB=△OPQ+△QPB=△OCB+△COP,△△OPQ=△OCP=60°,△△POH=△QPB,△在△POH与△QPB中,△△POH△△QPB(SAS),△PH=QB,△PC=BQ.(2)成立:PC=BQ.理由:作PH△AB交CO的延长线于H.在Rt△ABC中,△△ACB=90°,△A=30°,点O为AB中点,△CO=AO=BO,△CBO=60°,△△CBO是等边三角形,△△CHP=△COB=60°,△CPH=△CBO=60°,△△CHP=△CPH=60°,△△CPH是等边三角形,△PC=PH=CH,△OH=PB,△△POH=60°+△CPO,△QPO=60°+△CPQ,△△POH=△QPB,△在△POH与△QPB中,△△POH△△QPB(SAS),△PH=QB,△PC=BQ.【点睛】本题考查全等三角形的判定与性质, 等边三角形的判定与性质, 含30度角的直角三角形.,连接CO并延长,交边AB于点D,23.(2021·上海)如图,O是ABC的外接圆,AB长为4,AB AC交AB于点E,且E为弧AB的中点,求:(1)边BC的长;.(2)O的半径.【答案】(1)4;(2【分析】(1)根据垂径定理证明点C 在AB 垂直平分线上,即可解题;(2)连结BO ,先证明ABC 是等边三角形,再结合已知可证30DBO ︒∠=,继而根据余弦的定义解题. 【详解】证明:(1)△E 为AB 中点,OE 为半径 △OE 垂直平分AB △C 在AB 垂直平分线上 △4CB CA AB ===(2)连结BO △CB CA AB == △ABC 是等边三角形 △60ABC ︒∠=△CD AB ⊥,又△OB OC = △30OBC OCB ︒∠=∠= △30DBO ︒∠= 又△122BD AB ==△2cos30r BO ︒=== 【点睛】本题考查垂径定理、等边三角形的判定与性质、余弦等知识,是重要考点,难度较易,掌握相关知识是解题关键.。

专题03破解矢量三角形在静态平衡和动态平衡中的应用- 冲刺2023年高考物理小题限时集训(解析版)

专题03破解矢量三角形在静态平衡和动态平衡中的应用- 冲刺2023年高考物理小题限时集训(解析版)

03破解矢量三角形在静态平衡和动态平衡中的应用难度:★★★★☆建议用时:30分钟正确率:/121.(2023·武汉模拟)半圆柱体P 放在粗糙的水平地面上,其右端有一固定放置的竖直挡板MN 。

在半圆柱体P 和MN 之间放有一个光滑均匀的小圆柱体Q,整个装置处于平衡状态,如图所示是这个装置的截面图。

现使MN 保持竖直并且缓慢地向右平移,在Q 滑落到地面之前,发现P 始终保持静止,则在此过程中,下列说法正确的是()A.Q 对P 的弹力逐渐增大B.Q 所受的合力逐渐增大C.MN 对Q 的弹力逐渐减小D.地面对P 的摩擦力逐渐减小【答案】A【解析】ABC.对圆柱体Q 受力分析,受到重力、板MN 的支持力N 1和半圆柱体P 对Q 的支持力N 2,如图所示由图可知,随着MN 缓慢向右平移,N 2与竖直方向的夹角不断增大,MN 对Q 的弹力N 1逐渐增大,P 对Q 的弹力N 2逐渐增大,但其所受合力一直为零,故A 正确,BC 错误;D.对PQ 整体受力分析,受到总重力、MN 板的支持力N 1,地面的支持力N 3,地面的静摩擦力f ,如图所示根据共点力平衡条件可知,地面对P 的摩擦力始终等于N 1,所以地面对P 的摩擦力逐渐增大,故D 错误。

故选A。

2.(2022·河北)如图,用两根等长的细绳将一匀质圆柱体悬挂在竖直木板的P 点,将木板以底边MN 为轴向后方缓慢转动直至水平,绳与木板之间的夹角保持不变,忽略圆柱体与木板之间的摩擦,在转动过程中()A.圆柱体对木板的压力逐渐增大B.圆柱体对木板的压力先增大后减小C.两根细绳上的拉力均先增大后减小D.两根细绳对圆柱体拉力的合力保持不变【答案】B【解析】设两绳子对圆柱体的拉力的合力为T ,木板对圆柱体的支持力为N ,绳子与木板夹角为α,从右向左看如图所示在矢量三角形中,根据正弦定理sin sin sin mg N Tαβγ==在木板以直线MN 为轴向后方缓慢转动直至水平过程中,α不变,γ从90︒逐渐减小到0,又180γβα++=︒且90α<︒可知90180γβ︒<+<︒则0180β<<︒可知β从锐角逐渐增大到钝角,根据sin sin sin mg N Tαβγ==由于sin γ不断减小,可知T 不断减小,sin β先增大后减小,可知N 先增大后减小,结合牛顿第三定律可知,圆柱体对木板的压力先增大后减小,设两绳子之间的夹角为2θ,绳子拉力为'T ,则'2cos T Tθ=可得'2cos T T θ=θ不变,T 逐渐减小,可知绳子拉力不断减小,故B 正确,ACD 错误。

全等图形与全等三角形压轴题五种模型全攻略(解析版)--初中数学专题训练 (2)

全等图形与全等三角形压轴题五种模型全攻略(解析版)--初中数学专题训练 (2)

全等图形与全等三角形压轴题五种模型全攻略【考点导航】目录【典型例题】【考点一全等图形识别】【考点二利用全等图形求正方形网格中角度之和】【考点三将已知图形分割成几个全等图形】【考点四全等三角形的概念】【考点五全等三角形的性质】【过关检测】【典型例题】【考点一全等图形识别】1例题:(2023·浙江·八年级假期作业)下列各组图形中,属于全等图形的是( )A. B.C. D.【变式训练】1(2023·浙江·八年级假期作业)对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有()A.1个B.2个C.3个D.4个2(2022春·七年级单元测试)如图,四边形ABCD与四边形A B C D 全等,则∠A =,∠A=,B C =,AD=.【考点二利用全等图形求正方形网格中角度之和】1例题:(2023春·七年级课时练习)如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=____ _______度.【变式训练】1(2022秋·湖北武汉·八年级统考期中)在如图所示的3×3正方形网格中,∠1+∠2+∠3=度.2(2023·江苏·八年级假期作业)如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为.【考点三将已知图形分割成几个全等图形】1(2023春·全国·七年级专题练习)沿着图中的虚线,用两种方法将下面的图形划分为两个全等的图形.【变式训练】1(2023·江苏·八年级假期作业)试在下列两个图中,沿正方形的网格线(虚线)把这两个图形分别分割成两个全等的图形,将其中一部分涂上阴影.2(2022秋·全国·八年级专题练习)沿网格线把正方形分割成两个全等图形?用两种不同的方法试一试.【考点四全等三角形的概念】1(2023春·江苏盐城·七年级校考期中)下列说法中,正确的有( )①形状相同的两个图形是全等形 ②面积相等的两个图形是全等形 ③全等三角形的周长相等,面积相等 ④若△ABC≌△DEF,则∠A=∠D,AB=EFA.1个B.2个C.3个D.4个【变式训练】1(2023·全国·八年级假期作业)已知△ABC≌△DEF,且∠A与∠D是对应角,∠B和∠E是对应角,则下列说法中正确的是()A.AC与DF是对应边B.AC与DE是对应边C.AC与EF是对应边D.不能确定AC的对应边2(2023·全国·八年级假期作业)下列说法正确的是()A.形状相同的两个三角形一定是全等三角形B.周长相等的两个三角形一定是全等三角形C.面积相等的两个三角形一定是全等三角形D.边长为5cm的等边三角形都是全等三角形【考点五全等三角形的性质】1(2023春·广东深圳·七年级校考期中)如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠B等于___ ___.【变式训练】1(2022秋·八年级单元测试)如图,Rt△ABC≌Rt△EFC,并且CF=5cm,∠EFC=52°,则BC=,∠A=.2(2023秋·八年级课时练习)如图,△ABC≌△ADE,且AE∥BD,∠ADB=25°,则∠BAC的度数为.3(2023·江苏·八年级假期作业)如图,ΔABC≅ΔADE,且∠CAD=10°,∠B=∠D=25°,∠EAB= 120°,求∠DFB和∠DGB的度数.【过关检测】一、选择题1(2023秋·七年级单元测试)下列各组中的两个图形属于全等图形的是()A. B.C. D.2(2023·江苏·八年级假期作业)下列说法正确的是()A.两个形状相同的图形称为全等图形B.两个圆是全等图形C.全等图形的形状、大小都相同D.面积相等的两个三角形是全等图形3(2023·浙江·八年级假期作业)如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=90°,则∠EAC=()A.10°B.20°C.30°D.40°4(2023·全国·八年级假期作业)如图,△ABC≅△BAD,A的对应顶点是B,C的对应顶点是D,若AB=8,AC=3,BC=7,则AD的长为()A.3B.7C.8D.以上都不对5(2023秋·四川广安·八年级统考期末)如图,已知Rt△ABC≌Rt△BDE,若AC=5,DE=2,则CE 的长为()A.2B.3C.4D.56(2023·江苏·八年级假期作业)如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则∠1-∠2-∠3的度数为( ).A.30°B.45°C.55°D.60°二、填空题7(2023春·七年级课时练习)请观察图中的5组图案,其中是全等形的是(填序号);8(2023秋·八年级课时练习)已知△ABC中,D是BC边上的一点,△ABD≌△ACD,则∠ADB的度数为.9(2023春·全国·七年级专题练习)如图,四边形ABCD≌四边形A B C D ,若∠B=90°,∠C=60°,∠D =105°,则∠A =°.10(2023·浙江·八年级假期作业)如图,△OAD≌△OBC,且∠O=73°,∠C=20°,则∠AEB=度.11(2023·浙江·八年级假期作业)如图,在4×4的正方形网格中,求α+β=度.12(2023·浙江·八年级假期作业)如图,△ADE≌△ABC,点D在边AC上,延长ED交边BC于点F,若∠EAC=35°,则∠BFD=.三、解答题13(2023·浙江·八年级假期作业)把4×4的正方形方格图形分割成两个全等图形,如图,沿着虚线画出种不同的分法,把4×4的正方形方格图形分割成两个全等图形.14(2023·浙江·八年级假期作业)如图,△ABC≌△DEF,点A对应点D,点B对应点E,点B、F、C、E在一条直线上.(1)求证:BF=EC;(2)若AB=3,EF=7,求AC边的取值范围.15(2023·江苏·八年级假期作业)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.(1)当DE=8,BC=5时,求线段AE的长;(2)已知∠D=35°,∠C=60°,求∠DBC与∠AFD的度数.16(2023·江苏·八年级假期作业)如图,已知△ABF≌△CDE.(1)若∠B=45°,∠DCF=25°,求∠EFC的度数;(2)若BD=10,EF=5,求BF的长.17(2023春·七年级课时练习)如图,已知△ABC≅△FED,∠A和∠F是对应角,CB和DE是对应边,AF=8,BE=2.(1)写出其他对应边及对应角;(2)判断AC与DF的位置关系,并说明理由.(3)求AB的长.。

解三角形小题专项训练

高二暑期集训专题:解三角形小题专项训练1.【A 】在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,所以cos A =13,又a =3,由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 1.【B 】在△ABC 中,已知045,1,2===B c b ,则a 的值为 ( )A.226- B.226+ C.12+ D.23- 解析:B2.【A 】△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( ) A.3π4B.π3C.π4D.π6【解析】在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A , ∵b =c ,∴a 2=2b 2(1-cos A ),又∵a 2=2b 2(1-sin A ), ∴cos A =sin A ,∴tan A =1,∵A ∈(0,π),∴A =π4,故选C.2.【B 】在△ABC 中,若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°. 3.【AB 】在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =csin C ,∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.4.【A 】在△ABC 中,已知2a b c =+,2sin sin sin A B C =,试判断△ABC 的形状A .直角三角形B .等腰三角形C .等腰直角三角形D .正三角形 解:由正弦定理2sin sin sin a b c R ABC===得:sin 2a A R=,sin 2b B R=,sin 2c C R=。

专题08 等腰三角形(考点串讲)(解析版)

专题08 等腰三角形【考点剖析】1.等腰三角形的性质(1)等腰三角形性质1:等腰三角形的两个底角相等(简称:等边对等角) (2)等腰三角形性质2:文字:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角的三线合一) 图形:如下所示;21DCBA符号:在ABC ∆中,AB =AC ,1212,,;,,;,12.BD CD AD BC AD B BD CD AD BC C BD CD ∠=∠⎧⎪=⊥∠=∠⊥∠=∠⎨⎪⊥⎩==若则若则若,则2.等腰三角形的判定(1)等腰三角形的判定方法1:(定义法)有两条边相等的三角形是等腰三角形;(2) 等腰三角形的判定方法2:有两个角相等的三角形是等腰三角形;(简称:等角对等边)3.等边三角形的性质(1)等边三角形性质1:等边三角形的三条边都相等; (2) 等边三角形性质2:等边三角形的每个内角等于60︒; (3)等边三角形性质3:等边三角形是轴对称图形,有三条对称轴.4.等边三角形的判定(1)等边三角形的判定方法1:(定义法:从边看)有三条边相等的三角形是等边三角形; (2)等边三角形的判定方法2:(从角看)三个内角都相等的三角形是等边三角形;(3)等边三角形的判定方法3:(从边、角看)有一个内角等于60︒的等腰三角形是等边三角形. 【典例分析】例1 (杨浦2019期末14)在ABC ∆中,AB=AC ,把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N. 如果CAN ∆是等腰三角形,则B ∠的度数为 . 【答案】4536︒︒或;【解析】因为把ABC ∆折叠,使点B 与点A 重合,折痕交AB 于点M ,交BC 于点N.所以MN 是AB 的中垂线,∴NB=BA ,B BAN ∴∠=∠,AB AC B C =∴∠=∠Q ,设B x ∠=,则C BAN x ∠=∠=. (1)当AN=NC 时,CAN C x ∠=∠=,在ABC ∆中,根据三角形内角和定理得4180x =︒,得45x =︒,故45B ∠=︒;(2)当AN=AC 时,ANC C x ∠=∠=,而ANC B BAN ∠=∠+∠,故此时不成立;(3)当CA=CN 时,1802x NAC ANC ︒-∠=∠=,于是得1801802xx x x ︒-+++=︒,解得36x =︒. 综上所述:4536B ∠=︒︒或.NM CBA例2 (浦东2018期末18)如图,在ABC ∆中,A=120,=40B ∠︒∠︒,如果过点A 的一条直线把ABC ∆分割成两个等腰三角形,直线l 与BC 交于点D ,那么ADC ∠的度数是 .CBA【答案】14080︒︒或;【解析】如图所示,把BAC ∠分为1000︒︒和2或者4080︒︒和,可得ADC=14080∠︒︒或.ABCDC BA20°80°80°40°40°20°20°40°40°100°例3 (闵行2018期末17)有下列三个等式①AB =DC ;②BE =CE ;②∠B =∠C .如果从这三个等式中选出两个作为条件,能推出Rt △AED 是等腰三角形,你认为这两个条件可以是 (写出一种即可)EDCBA【答案】①②或①③或②③.(答案不唯一)【解析】解:当AB =DC ,BE =CE ,∠AEB =∠DEC 时,Rt △ABE ≌Rt △DCE (HL ),故AE =DE ,即Rt △AED 是等腰三角形;当AB =DC ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (AAS ),故AE =DE ,即Rt △AED 是等腰三角形;当BE =CE ,∠B =∠C ,∠AEB =∠DEC 时,△ABE ≌△DCE (ASA ),故AE =DE ,即Rt △AED 是等腰三角形.故答案为:①②或①③或②③.(答案不唯一)例4 (黄浦2018期末27)如图,在ABC ∆中,AD BC ⊥,垂足为点D ,AD 平分BAC ∠,点O 是线段AD 上一点,线段的延长线交边AC 于点F ,线段CO 的延长线交边AB 于点E . (1)说明ABC ∆是等腰三角形的理由; (2)说明BF=CE 的理由.O FE DC BA【答案与解析】(1)AD BC ADB=ADC ⊥∴∠∠Q ,Q AD 平分BAC ∠,BAD=CAD ∴∠∠.ADB=DAC+ACD ADC=BAD+ABD ∠∠∠∠∠∠Q ,,ABD=ACD ∴∠∠,AB=AC ∴即ABC ∆是等腰三角形;(2)ABC ∆Q 是等腰三角形,AD BC ⊥,BD=CD ∴.在BDO CDO ∆∆与中,DO DO ADB ADC BD CD =⎧⎪∠=∠⎨⎪=⎩,BDO CDO ∴∆∆≌OBD OCD ∴∠=∠.在BEC CFB ∆∆与中ECB FBCBC CBABC ACB ∠=∠⎧⎪=⎨⎪∠=∠⎩BEC CFB ∴∆∆≌,BF CE ∴=. 【真题训练】 一、选择题1.(宝山2018期末18)如图7,在ABC ∆中,AB=AC ,30A ∠=︒,以B 为圆心,BC 的长为半径作弧,交AC 于点D ,联结BD ,则ABD ∠等于( )A. 45︒;B. 50︒;C. 60︒;D. 75︒.DABC【答案】A ;【解析】因为在ABC ∆中,AB=AC ,30A ∠=︒,所以18030752ABC ACB ︒-︒∠=∠==︒,又因为以B为圆心,BC 的长为半径作弧,交AC 于点D ,所以,75BD BC BCA BDC =∴∠=∠=︒,30CBD ∴∠=︒,故753045ABD ABC CBD ∠=∠-∠=︒-︒=︒. 故答案选A.2.(长宁2019期末20)在平面直角坐标系,O 为坐标原点,点A的坐标为,M 为坐标轴上一点,且使得MOA ∆为等腰三角形,那么满足条件的点M 的个数为( ) A. 4; B.5; C.6; D.8 【答案】C ;【解析】分三种情况:(1)当OA=OM 时,可得M 点坐标可以为:(0,2)、(0,-2)、(2,0)、(-2,0);当AO=AM 时,M 点坐标可以为(2,0)、(0,;当MO=MA 时,(2,0)、(0,3;故一共有6个不同的点. 故选C. 二、填空题3.(浦东2018期末13)已知一个等腰三角形两边长分别为2和4,那么这个等腰三角形的周长是 . 【答案】10;【解析】依题,(1)若腰长为2、底为4,不可能构成等腰三角形,舍去;(2)若腰长为4、底为2,符合题意,周长为4+4+2=10;由上可知,这个等腰三角形的周长为10. 4.(宝山2018期末7)已知实数x 、y满足|3|0x -=,那么以x 、y 的值为两边长的等腰三角形的周长是 . 【答案】15;【解析】因为实数x 、y满足|3|0x -=,所以x=3,y=6,故符合题意的等腰三角形三边长分别为6、6、3,故此等腰三角形的周长为6+6+3=15.5.(闵行2018期末15)如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2= .l 3l 2l 1【答案】35°.【解析】解:∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∵△ABC 是等边三角形, ∴∠ABC =60°,∴∠4=60°﹣25°=35°,∴∠2=∠4=35°.故答案为:35°.1l 2l 36.(普陀2018期末17)如图,已知△ABC 中,∠ABC 的角平分线BE 交AC 于点E ,DE ∥BC ,如果点D 是边AB 的中点,AB=8,那么DE 的长是 .E D CBA【答案】4;【解析】解:连接BE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∵DE ∥BC ,∴∠DEB=∠ABE , ∴∠ABE=∠DEB ,∴BD=DE ,∵D 是AB 的中点,∴AB=BD ,∴DE=12AB=4,故答案为:4 AD BCE7.(宝山2018期末13)如图,已知Rt ABC ∆中,90ACB ∠=︒,AC=AE ,BC=BD ,则ACD BCE ∠+∠= ______-︒.ECBA【答案】45;【解析】过点C 作CH AB ⊥于点H ,因为AC =AE ,所以ACE AEC ∠=∠,因为CH AB ⊥,所以90AEC HCE ∠+∠=︒, 又90ACE BCE ∠+∠=︒,所以=BCE HCE ∠∠;同理可得:ACD HCD ∠=∠; 故+=+BCE ACD HCE HCD ∠∠∠∠即+=45BCE ACD ∠∠︒.HED CBA8.(黄浦2018期末19)已知等腰三角形的一个内角为50度,则这个等腰三角形的顶角为 ︒. 【答案】50︒或80︒;【解析】(1)当顶角为50︒时,这个等腰三角形的顶角为50︒;(2)当底角为50︒时,则顶角为180-250=80︒⨯︒︒;综上述,这个等腰三角形的顶角为50︒或80︒.9.(长宁2018期末14)等腰三角形一腰上的高与另一腰的夹角为40︒,那么这个等腰三角形的顶角为____度.【答案】50130︒︒或.【解析】(1)如下图1,4050ABD A ∠=︒∴∠=︒,(2)如图2,40130ABD BAC ∠=︒∴∠=︒,故这个等腰三角形的顶角为50130︒︒或(图2)(图1)10.(黄浦2018期末14)等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且 ,那么AD BC ⊥且 .DCBA【答案】BD=CD ;BAD CAD ∠=∠;【解析】等腰三角形底边上的中线垂直于底边且平分顶角,用符号来表示为:如图,如果在ABC ∆中,AB=AC ,且BD=CD ,那么AD BC ⊥且BAD CAD ∠=∠.故答案为:BD=CD ;BAD CAD ∠=∠. 11.(杨浦2019期末13)如图,已知在ABC ∆中,AB=AC ,点D 在边BC 上,要使BD=CD ,还需添加一个条件,这个条件是 .(只需填上一个正确的条件)D B A【答案】BAD CAD ∠=∠或者AD BC ⊥(只填一个)【解析】解:在ABC ∆中,AB=AC ,BAD CAD ∠=∠,BD CD ∴=;或者 在ABC ∆中,AB=AC ,AD BC ⊥,BD CD ∴=;故答案为:BAD CAD ∠=∠或者AD BC ⊥. 考查等腰三角形的三线合一。

专题 二次函数与等腰三角形有关问题(专项训练)(解析版)

专题06 二次函数与等腰三角形有关问题(专项训练)1.(2022•榆阳区一模)如图,已知抛物线y=mx2+4x+n与x轴交于A、B两点,与y轴交于点C.直线y=x﹣3经过B,C两点.(1)求抛物线的函数表达式;(2)抛物线的顶点为M,在该抛物线的对称轴l上是否存在点P,使得以C,M,P为顶点的三角形是等腰三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)y=x﹣3中,令x=0,则y=﹣3,∴C(0,﹣3),令y=0,则x=3,∴B(3,0),将C(0,﹣3),B(3,0)代入y=mx2+4x+n中,∴,解得,∴y=﹣x2+4x﹣3;(2)存在点P,使得以C,M,P为顶点的三角形是等腰三角形,理由如下:∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴M(2,1),对称轴为直线x=2,设P(2,t),∴MP=|t﹣1|,MC=2,CP=,①当MP=MC时,|t﹣1|=2,∴t=2+1或t=﹣2+1,∴P(2,2+1)或(2,﹣2+1);②当MP=CP时,|t﹣1|=,解得t=﹣,∴P(2,﹣);③当MC=CP时,2=,解得t=1(舍)或t=﹣7,∴P(2,7);综上所述:P点坐标为(2,2+1)或(2,﹣2+1)或(2,﹣)或(2,7).2.(2022•岚山区一模)已知抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,交y轴于点C,点P是抛物线上一个动点,且点P的横坐标为m.(1)求抛物线的解析式;(2)如图2,将直线BC沿y轴向下平移5个单位,交x轴于点M,交y轴于点N.过点P作x轴的垂线,交直线MN于点D,是否存在一点P,使△BMD是等腰三角形?若存在,请直接写出符合条件的m的值;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+8与x轴交于A(﹣3,0),B(8,0)两点,∴,解得,,∴抛物线的解析式为y=﹣x2+x+8;(3)易证线BC的解析式为y=﹣x+8,向下平移5个单位得到y=﹣x+3,当y=0时,x=3,∴M(3,0),当x=0时,y=3,∴N(0,3),由题意得PD⊥MB,∵MB=8﹣3=5,D(m,﹣m+3),∴MD2=(m﹣3)2+(﹣m+3)2,BD2=(8﹣m)2+(﹣m+3)2,若△BMD是等腰三角形,可分三种情况:①当MB=MD时,∴(m﹣3)2+(﹣m+3)2=25,解得m1=3+,m2=3﹣,②当MB=BD时,∴(8﹣m)2+(﹣m+3)2=25,解得,m1=3(舍去),m2=8(舍去),③当MD+BD时,∴(8﹣m)2+(﹣m+3)2=(m﹣3)2+(﹣m+3)2,解得,m=5.5.综上所述,m的值为3+或3﹣或5.5时,△BMD是等腰三角形.3.(2022•兴宁区校级模拟)如图,抛物线y=﹣x2+bx+c过点A、B,抛物线的对称轴交x 轴于点D,直线y=﹣x+3与x轴交于点B,与y轴交于点C,且.(1)求抛物线的解析式;(2)在x轴上是否存在点P,使得△PDC为等腰三角形?若存在,请求出点P的坐标,若不存在,请说明理由.【解答】解:(1)对于直线y=﹣x+3,令y=0,即﹣x+3=0,解得:x=3,令x=0,得y=3,∴B(3,0),C(0,3),∵A为x轴负半轴上一点,且OA=OB,∴A(﹣1,0).将点A、B的坐标分别代入y=﹣x2+bx+c中,得,解得,∴抛物线的解析式为y=﹣x2+2x+3;(3)存在.如图2,∵点P在x轴上,∴设P(m,0).∵C(0,3),D(1,0),∴由勾股定理,得:CD2=OC2+OD2=32+12=10,PD2=(m﹣1)2,CP2=OP2+OC2=m2+32=m2+9,分为三种情况讨论:①当CD=PD时,CD2=PD2,即10=(m﹣1)2,解得m1=1+,m2=1﹣,此时点P的坐标为(1+,0)或(1﹣,0);②当CD=CP时,CD2=CP2,即10=m2+9,解得m1=﹣1,m2=1(不符合题意,舍去),此时点P的坐标为(﹣1,0);③当PC=PD时,PC2=PD2,即m2+9=(m﹣1)2,解得m=﹣4,此时点P的坐标为(﹣4,0).综上所述,在x轴上存在点P,使得△PDC为等腰三角形,满足条件的点P的坐标为(1+,0)或(1﹣,0)或(﹣1,0)或(﹣4,0).4.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME 的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.5.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);6.(2021•攀枝花)如图,开口向上的抛物线与x轴交于A(x1,0)、B(x2,0)两点,与y轴交于点C,且AC⊥BC,其中x1,x2是方程x2+3x﹣4=0的两个根.(1)求点C的坐标,并求出抛物线的表达式;(2)垂直于线段BC的直线l交x轴于点D,交线段BC于点E,连接CD,求△CDE的面积的最大值及此时点D的坐标;(3)在(2)的结论下,抛物线的对称轴上是否存在点P,使得△PDE是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由x2+3x﹣4=0得x1=﹣4,x2=1,∴A(﹣4,0),B(1,0),∴OA=4,OB=1,∵AC⊥BC,∴∠ACO=90°﹣∠BCO=∠OBC,∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴=,即=,∴OC=2,∴C(0,﹣2),设抛物线解析式为y=a(x+4)(x﹣1),将C(0,﹣2)代入得﹣2=﹣4a,∴a=,∴抛物线解析式为y=(x+4)(x﹣1)=x2+x﹣2;(2)如图:由A(﹣4,0),B(1,0),C(0,﹣2)得:AB=5,BC=,AC=2,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴△ABC∽△DBE,∴==,设D(t,0),则BD=1﹣t,∴==,∴DE=(1﹣t),BE=(1﹣t),∴S△BDE=DE•BE=(1﹣t)2,而S△BDC=BD•OC=(1﹣t)×2=1﹣t,∴S△CDE=S△BDC﹣S△BDE=1﹣t﹣(1﹣t)2=﹣t2﹣t+=﹣(t+)2+,∵﹣<0,∴t=﹣时,S△CDE最大为,此时D(﹣,0);(3)存在,由y=x2+x﹣2知抛物线对称轴为直线x=﹣,而D(﹣,0),∴D在对称轴上,由(2)得DE=×[1﹣(﹣)]=,当DE=DP时,如图:∴DP=,∴P(﹣,)或(﹣,﹣),当DE=PE时,过E作EH⊥x轴于H,如图:∵∠HDE=∠EDB,∠DHE=∠BED=90°,∴△DHE∽△DEB,∴==,即==,∴HE=1,DH=2,∴E(,﹣1),∵E在DP的垂直平分线上,∴P(﹣,﹣2),当PD=PE时,如图:设P(﹣,m),则m2=(﹣﹣)2+(m+1)2,解得m=﹣,∴P(﹣,﹣),综上所述,P的坐标为(﹣,)或(﹣,﹣)或(﹣,﹣2)或(﹣,﹣).7.(2021•宿迁)如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴交于点C.连接AC,BC,点P在抛物线上运动.(1)求抛物线的表达式;(2)如图②,若点P在第一象限,直线AP交BC于点F,过点P作x轴的垂线交BC 于点H,当△PFH为等腰三角形时,求线段PH的长.【解答】解:(1)∵A(﹣1,0),B(4,0)是抛物线y=﹣x2+bx+c与x轴的两个交点,且二次项系数a=,∴根据抛物线的两点式知,y=.(2)设PH与x轴的交点为Q1,P(a,),则H(a,),PH=,若FP=FH,则∠FPH=∠FHP=∠BHQ1=∠BCO,∴tan∠APQ1=tan∠BCO=2,∴AQ1=2PQ1,即a+1=2(),解得a=3(﹣1舍去),此时PH=.若PF=PH,过点F作FM⊥y轴于点M,∴∠PFH=∠PHF,∵∠CF A=∠PFH,∠Q1HB=∠PHF,∴∠CF A=∠Q1HB,又∵∠ACF=∠BQ1H=90°,∴△ACF∽△BQ1H,∴CF=AC=,在Rt△CMF中,MF=1,CM=,F(1,),∴AF:,将上式和抛物线解析式联立并解得x=(﹣1舍去),此时PH=.若HF=HP,过点C作CE∥AB交AP于点E(见上图),∵∠CAF+∠CF A=90°,∠P AQ+∠HPF=90°,∠CF A=∠HFP=∠HPF,∴∠CAF=∠P AQ1,即AP平分∠CAB,∴CE=CA=,∴E(,2),∴AE:,联立抛物线解析式,解得x=5﹣(﹣1舍去).此时PH=.∴当FP=FH时,PH=;当PF=PH时,PH=;当HF=HP时,PH=;8.(2020•济南)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0),与y轴交于点C.在x轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为y=﹣x2+2x+3,当x=0时,y=3,故点C(0,3);(2)当m=1时,点E(1,0),设点D的坐标为(1,a),由点A、C、D的坐标得,AC==,同理可得:AD=,CD=,①当CD=AD时,即=,解得a=1;②当AC=AD时,同理可得a=(舍去负值);故点D的坐标为(1,1)或(1,);9.(2020•桂林)如图,已知抛物线y=a(x+6)(x﹣2)过点C(0,2),交x轴于点A 和点B(点A在点B的左侧),抛物线的顶点为D,对称轴DE交x轴于点E,连接EC.(1)直接写出a的值,点A的坐标和抛物线对称轴的表达式;(2)若点M是抛物线对称轴DE上的点,当△MCE是等腰三角形时,求点M的坐标;【解答】解:(1)∵抛物线y=a(x+6)(x﹣2)过点C(0,2),∴2=a(0+6)(0﹣2),∴a=﹣,∴抛物线的解析式为y=﹣(x+6)(x﹣2)=﹣(x+2)2+,∴抛物线的对称轴为直线x=﹣2;针对于抛物线的解析式为y=﹣(x+6)(x﹣2),令y=0,则﹣(x+6)(x﹣2)=0,∴x=2或x=﹣6,∴A(﹣6,0);(2)如图1,由(1)知,抛物线的对称轴为x=﹣2,∴E(﹣2,0),∵C(0,2),∴OC=OE=2,∴CE=OC=2,∠CED=45°,∵△CME是等腰三角形,∴①当ME=MC时,∴∠ECM=∠CED=45°,∴∠CME=90°,∴M(﹣2,2),②当CE=CM时,∴MM1=CM=2,∴EM1=4,∴M1(﹣2,4),③当EM=CE时,∴EM2=EM3=2,∴M2(﹣2,﹣2),M3(﹣2,2),即满足条件的点M的坐标为(﹣2,2)或(﹣2,4)或(﹣2,2)或(﹣2,﹣2);10.(2020•枣庄)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+4;(2)存在,理由:点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,连接AQ,则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m﹣(﹣3)]2+(﹣m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).11.(2019•本溪)抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D 重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF为等腰三角形时,请直接写出点P的坐标.【解答】解:(1)函数的表达式为:y=﹣(x+1)(x﹣5)=﹣x2+x+;(32)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)2=()2+4,解得:m=0或(0舍去),②当CP=PF时,同理可得:m=,③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2)或(2,)或(2,)。

【高中数学竞赛专题大全】 竞赛专题3 三角函数(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题3 三角函数 (50题竞赛真题强化训练)一、单选题1.(2018·吉林·高三竞赛)已知()sin 2cos xf x x=+,则对任意x ∈R ,下列说法中错误的是( ) A .()1sin 3f x x ≥B .()f x x ≤C .()f x ≤D .()()0f x f x ππ++-=【答案】A 【解析】 【详解】由()1sin 3f x x ≥得sin (1cos 01cos 0x x x ),-≥-≥,所以该式不一定成立,sinx 有可能是负数,所以选项A 错误; ()sin sin 2cos x f x x x x =≤≤+.所以选项B 正确;()sin 2cos x f x x=+=sin 0||cos (2)x x ---表示单位圆上的点和(-2,0)所在直线的斜率的绝对值,数形结合观察得到()f x ≤C 正确; ()()f x f x ππ++-=sin sin 002-cos 2-cos 2-cos x x x x x-+==,所以选项D 正确.故答案为A2.(2018·四川·高三竞赛)函数()()()sin 1cos 12sin 2x x y x R x--=∈+的最大值为( ).A .2B .1C .12+D【答案】B 【解析】 【详解】因为()sin cos sin cos 122sin cosxx x x x y x ⋅-++=+⋅,令sin cos 4t x x x π⎛⎫⎡=+=+∈ ⎪⎣⎝⎭, 则()21sin cos 12x x t ⋅=-,于是()()22211112.2121t t t y t t --+==-++- 令()(21t g t t t =+,则()()22211t g t t '-=+. 由()0g t '=知1t =-或1.因为(()()111,1,22g g g g =-=-==()g t 的最小值是()112g -=-,所以y 的最大值是11122⎛⎫--= ⎪⎝⎭.故答案为:B3.(2019·全国·高三竞赛)函数[][]sin cos sin cos y x x x x =⋅++的值域为( )([]x 表示不超过实数x 的最大整数). A .{}2,1,0,1,2-- B .{}2,1,0,1-- C .{}1,0,1- D .{}2,1,1--【答案】D 【解析】 【详解】1sin224y x x π⎤⎡⎤⎛⎫=++ ⎪⎥⎢⎥⎣⎦⎝⎭⎦..下面的讨论均视k Z ∈. (1)当222k x k πππ≤≤+时,1y =; (2)当32224k x k ππππ+<≤+时,1y =-; (3)当3224k x k ππππ+<<+时,2y =-; (4)当2x k ππ=+或322k ππ+时,1y =-;(5)当3222k x k ππππ+<<+时,2y =-; (6)当372224k x k ππππ+<<+时,2y =-; (7)当72224k x k ππππ+≤<+时,1y =-. 综上,{}2,1,1y ∈--. 故答案为D4.(2010·四川·高三竞赛)已知条件43p =和条件4:sin cos 3q αα+=.则p 是q 的( ). A .充分但不必要条件 B .必要但不充分条件 C .充要条件 D .既不充分也不必要条件【答案】C 【解析】 【详解】sin cos αα+,所以,p 是q 的充要条件.5.(2018·全国·高三竞赛)在ABC ∆中,A B C ∠≤∠≤∠,sin sin sin cos cos cos A B CA B C++=++则B 的取值范围是( ).A .,32ππ⎛⎫ ⎪⎝⎭B .0,2π⎛⎫ ⎪⎝⎭C .3π D .,43ππ⎛⎫ ⎪⎝⎭【答案】C 【解析】 【详解】由条件有)sin sin sin cos cos cos A B C A B C ++=++2sincos sin 22A C A C B +-⇒︒+ 2cos cos cos 22A C A C B +-⎫=︒+⎪⎭2sin cos222A C A C A C ++-⎛⎫⇒- ⎪⎝⎭ sin B B =. 利用辅助角公式有2sin cossin 3223A C A C B ππ+-⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭2sin cos 262B A C π-⎛⎫⇒- ⎪⎝⎭ 2sin cos 2626B B ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭60602sin cos cos 0222B A C B -︒--︒⎛⎫⇒-= ⎪⎝⎭606060sinsin sin 0244B AC B B A C -︒-+-︒-+-︒⇒︒︒=, 所以,600B ∠-︒=或者600A C B ∠-∠+∠-︒=或者600B A C ∠-∠+∠-︒=, 即60B ∠=︒或者60C ∠=︒或者60A ∠=︒,亦即A B C ∠∠∠、、中有一个为60︒.若60B ∠<︒,则60A B ∠≤∠<︒,所以,只能60C ∠=︒,此时,180A B C ∠+∠+∠<︒,矛盾; 若60B ∠>︒,则60C B ∠≥∠>︒,所以,只能60A ∠=︒,从而,180A B C ∠+∠+∠>︒,亦矛盾. 选C. 二、填空题6.(2018·江西·高三竞赛)若三个角x 、y 、z 成等差数列,公差为π3,则tan tan tan tan tan tan x y y z z x ++=______.【答案】3- 【解析】 【详解】 根据π3x y =-,π3z y =+,则tan x =tan z =所以tan tan x y tan tan y z 22tan 3tan tan 13tan y z x y -=-. 则229tan 3tan tan tan tan tan tan 313tan y x y y z z x y-++==--. 故答案为-37.(2018·广东·高三竞赛)已知△ABC 的三个角A 、B 、C 成等差数列,对应的三边为a 、b 、c ,且a 、c成等比数列,则2:ABC S a ∆=___________.【解析】 【详解】因为A 、B 、C 成等差数列,2B A C =+,3180B A B C =++=︒,因此60B =︒.又因为a 、c成等比数列,所以c qa =,b =由正弦定理()sin sin 120a qa A A ==︒-,整理得22sin A q =221A q q=-,()()232235420q q q q ⎡⎤-+++-=⎣⎦. 所以2q =,1sin 2A =,30A =︒,90C =︒.故212ABC S ab ∆==,所以2:ABC S a ∆=8.(2019·全国·高三竞赛)设锐角α、β满足αβ≠,且()()22cos cos 1tan tan 2αβαβ++⋅=,则αβ+=__________. 【答案】90 【解析】 【详解】由已知等式得()()()()22222tan tan 1tan tan 21tan 1tan αβαβαβ+++⋅=++,()()2tan tan tan tan 10αβαβ-⋅-=.但锐角αβ≠,故tan tan 10αβ⋅-=()cos 090αβαβ⇒+=⇒+=︒.故答案为909.(2021·全国·高三竞赛)函数sin 1tan tan 2x y x x ⎛⎫=+⋅ ⎪⎝⎭的最小正周期为____________.【答案】2π 【解析】 【详解】解析:当=2,x k k Z π∈时,sin 1tan tan 02x y x x ⎛⎫=+⋅= ⎪⎝⎭,当2,x k k Z π≠∈时,sin 1cos sin 1tan cos sin x x y x x x x -⎛⎫=+⋅= ⎪⎝⎭,其中2x k ππ≠+且2x k ππ≠+,画出图象可得函数周期为2π.故答案为:2π.10.(2021·浙江金华第一中学高三竞赛)设()()πcos 2243x f x x x =++为定义在R 上的函数.若正整数n 满足()12021nk f k ==∏,则n 的所有可能值之和为______.【答案】12121 【解析】 【详解】()cos cos cos 2222()41(1)(3)xxxf k k k k k πππ=++=++,111()(11)(13)(21)(23)nk f k --==++++⨯∏00(431)(433)m m ⨯-+-+11(421)(423)m m --⨯-+-+0011(411)(413)(41)(43)m m m m ⨯-+-+++,考虑cos2x π的周期为4,分四种情况考虑(1)当43k m =-(m 为正整数)时,4311111001()(21)(23)(41)(43)(443)(431)(433)m k f k m m m ---==++++⨯-+-+-+∏13(41)2021m -=⨯-=,所以416063,436061m n m -==-=;(2)当42k m =-时,42111()3(41)2021m k f k m ---==⨯+=∏,无正整数解;(3)当41k m =-时,41111()3(41)2021m k f k m ---==⨯+=∏,无正整数解;(4)当4k m =时,41111()3(43)2021m k f k m --==⨯+=∏,此时46060n m ==,综上,6060n =或6061n =, 故答案为:12121.11.(2021·全国·高三竞赛)在ABC 中,1155,tantantan222AC AC B =+-=,则+BC AB 的值为__________. 【答案】7 【解析】 【详解】解析:记ABC 中A 、B 、C 所对的边分别是a 、b 、c , 如图,设内切圆的半径为r ,则tan22A r b c a =+-,tan 22C r a b c =+-,tan 22B r a c b =+-,故5()b c a a b c a c b +-++-=+-,故()57a c b +=, 即7a c +=, 故答案为:712.(2021·全国·高三竞赛)已知ABC 满足2sin sin 2sin A B C +=,则59sin sin A C+的最小值是_______. 【答案】16 【解析】【详解】解析:2sin sin 2sin sin 2(sin sin )A B C B C A +=⇒=-2sincos 4sin cos 2222A C A C C A A C ++-+⇒⋅=⋅sin 2sin tan 3tan 2222A C C A C A+-⇒=⇒=. 令tan 2A t =,则222259595527326sin sin 22191t t t t A C t t t t +++=+=+++216416t t +=≥=.当113,tan ,tan 22222A C t ===时,tan02A C+>,所以180A C +<︒, 故min5916sin sin A C ⎛⎫+= ⎪⎝⎭. 故答案为:1613.(2020·浙江·高三竞赛)已知,,0,2παβγ⎡⎤∈⎢⎥⎣⎦,则cos 2cos cos cos()2cos()αβγαγβγ++-+-+的最大值为___________.【答案】【解析】 【详解】()cos cos 2sin sin 2sin 222γγγααγα⎛⎫-+=+≤ ⎪⎝⎭,同理()cos cos 2sin2γββγ-+≤,故cos 2cos cos cos()6sin22cos()cos αβγαγβγγγ++-+-++≤,而22cos 2sin 3116sin 6sin 12sin 222222γγγγγ⎛⎫+++=--+ -⎪=⎝⎭,因为0sin 2γ≤≤23112sin 222γ⎛⎫--+≤ ⎪⎝⎭当且仅当,24ππγαβ===时,各等号成立,故答案为:14.(2021·全国·高三竞赛)已知三角形ABC 的三个边长a b c 、、成等比数列,并且满足a b c ≥≥.则A ∠的取值范围为___________.【答案】2[,)33ππ【解析】 【详解】由条件2b ac =,结合余弦定理222cos 2a c b B ac+-=,则有11cos (1)22a c B c a =+-≥,从而(0,]3B π∈,而A 是最大角,从而2,33A ππ⎡⎫∈⎪⎢⎣⎭.故答案为:2,33ππ⎡⎫⎪⎢⎣⎭. 15.(2021·全国·高三竞赛)设02πθ<<,且333cos sin 1(cos sin 1)m θθθθ++=++,则实数m 的取值范是___________.【答案】14⎫⎪⎣⎭ 【解析】 【详解】解析:333cos sin 1(cos sin 1)m θθθθ++=++ ()223(cos sin )cos cos sin sin 1(cos sin 1)θθθθθθθθ+-++=++.令cos sin x θθ=+,则4x πθ⎛⎫=+∈ ⎪⎝⎭,且21sin cos 2x θθ-=, 于是2323321112232231(1)2(1)2(1)2(1)2(1)2x x x x x x x m x x x x x ⎛⎫--+ ⎪+-+--⎝⎭=====-+++++, 为然m是上的减函数,所以()(1)f f m f ≤<,即14m ⎫∈⎪⎣⎭.故答案为:41,24⎡⎫⎪⎢⎣⎭. 16.(2021·浙江·高三竞赛)在ABC 中,30B C ∠=∠=︒,2AB =.若动点P ,Q 分别在AB ,BC 边上,且直线PQ 把ABC 的面积等分,则线段PQ 的取值范围为______.【答案】 【解析】 【分析】【详解】如图所示,设,BP x BQ y ==,所以113sin 30222BPQBBCSxy S ︒===,所以23xy =由余弦定理可得,2222222312266PQ x y xy x y x x=+-=+-=+-, 易得[1,2]x ∈,所以2[1,4]x ∈, 所以2367PQ ≤≤,则PQ 的取值范围为[436,7]-. 故答案为:[436,7]-.17.(2021·浙江·高三竞赛)若π3,π44x ⎛⎫∈- ⎪⎝⎭,则函数4sin cos 3sin cos x x y x x +=+的最小值为______.【答案】22【解析】 【分析】 【详解】令(sin cos 224t x x x π⎛⎫=+=+∈ ⎪⎝⎭, ()22213211222t t y t tt t-++===+≥当且仅当12t t =即2t =.故答案为:2218.(2021·全国·高三竞赛)已知等腰直角PQR 的三个顶点分别在等腰直角ABC 的三条边上,记PQR 、ABC 的面积分别为PQR S、ABCS,则PQR ABCS S的最小值为__________.【答案】15【解析】 【分析】 【详解】(1)当PQR 的直角顶点在ABC 的斜边上,如图1所示,则P ,C 、Q ,R 四点共圆,180APR CQR BQR ∠=∠=︒-∠,所以sin sin APR BQR ∠=∠.在APR △、BQR 中分别应用正弦定理得,sin sin sin sin PR AR QR BRA APRB BQR==∠∠. 又45,A B PR QR ∠=∠=︒=,故AR BR =,即R 为AB 的中点. 过R 作RH AC ⊥于H ,则12PR RH BC ≥=, 所以22221124PQR ABCBC SPR SBC BC ⎛⎫ ⎪⎝⎭=≥=,此时PQR ABCS S 的最小值为14.(2)当PQR 的直角顶点在ABC 的直角边上,如图2所示.设1,(01),02BC CR x x BRQ παα⎛⎫==≤≤∠=<< ⎪⎝⎭,则90CPR PRC BRQ α∠=︒-∠=∠=. 在Rt CPR 中,sin sin CR xPR αα==,在BRQ 中, 31,,sin 4x BR x RQ PR RQB QRB B ππαα=-==∠=-∠-∠=-, 由正弦定理,11sin 3sin sin sin cos 2sin sin sin 44x RQ RB x x B RQB απαααπα-=⇔=⇔=∠+⎛⎫- ⎪⎝⎭,因此222111122sin 2cos 2sin PQRx SPR ααα⎛⎫⎛⎫=== ⎪ ⎪+⎝⎭⎝⎭. 这样,()()2222111cos 2sin 512cos sin PQR ABCS Sαααα⎛⎫=≥= ⎪+++⎝⎭,当且仅当arctan 2α=时取等号,此时PQR ABCS S的最小值为15.故答案为:15.19.(2021·全国·高三竞赛)满足方程223cos cos 22cos cos2cos4,[0,2]4x x x x x x π+-=∈的实数x 构成的集合的元素个数为________. 【答案】14 【解析】 【分析】 【详解】将方程变形为,1cos2cos44cos cos2cos42x x x x x +-=-.两边同乘2sin x ,运用积化和差和正弦的倍角公式,得:(sin3sin )(sin5sin3)sin8sin x x x x x x -+--=-,即sin5sin8x x =,故58(21),x x k k π+=+∈Z 或852,x x k k π=+∈Z , 即21,13k x k π+=∈Z 或2,3k x k π=∈Z . 又因为在方程两边同时乘sin x 时,所以引入了增根,x k k π=∈Z (代入原方程检验可得). 再结合[0,2]xπ,得所求结果为14.故答案为:14.20.(2021·全国·高三竞赛)设ABC 的三内角A 、B 、C 所对的边长分别为a 、b 、c ,若2b c a +-=,则2222sin sin 2sin sin sin 22222C B A B Cb c bc +-值为_________. 【答案】1 【解析】 【分析】 【详解】2222sin sin 2sin sin sin 22222C B A B Cb c bc +- 2211(1cos )(1cos )12(cos cos cos 1)22b Cc B bc A B C =-+--++- 22(2)(cos cos 1114)(cos cos 22)b c bc b C b c B c c B b C =++-+-+221(2cos )4b c bc A ++-22221111(2)()142242b c a b c bc ba ca a +-=++--+==. 故答案为:1.21.(2021·全国·高三竞赛)ABC 中,A 、B 、C 的对边分别为a 、b 、c ,O 是ABC 的外心,点P 满足OP OA OB OC =++,若3B π=,且4BP BC ⋅=,则ABC 的面积为_________.【答案】【解析】 【分析】 【详解】由OP OA OB OC =++,得OP OA OB OC -=+,即AP OB OC =+. 注意到()OB OC BC +⊥,所以AP BC ⊥. 同理,BP AC ⊥,所以P 是ABC 的垂心, ()BP BC BA AP BC BA BC ⋅=+⋅=⋅,所以cos 4ac B =,8ac =,所以1sin 2ABC S ac B ==△故答案为:22.(2021·全国·高三竞赛)设ABC 的三个内角分别为A 、B 、C ,并且sin cos sin A B C 、、成等比数列,cos sin cos A B C 、、成等差数列,则B 为____________. 【答案】23π【解析】 【分析】 【详解】依题意,2sin sin cos ,cos cos 2sin A C B A C B =+=, 前一式积化和差可得2cos()2cos cos A C B B -=-,后一式和差化积可得cos2cos 22A C B-=, 所以22cos()2cos18cos 14cos 322A CB AC B --=-=-=+,联立两式得1cos 2B =-或3(舍去),所以23B π=. 故答案为:23π. 23.(2021·全国·高三竞赛)如果三个正实数x y 、、z 满足2225x xy y ++=,22144y yz z ++=,22169z zx x ++=,则xy yz zx ++=_________.【答案】【解析】 【分析】 【详解】易知三个等式可化为2222222222cos1205,2cos12012,2cos12013.x y xy y z yz z x zx ⎧+-︒=⎪+-︒=⎨⎪+-︒=⎩构造Rt ABC ,其中13,5,12AB BC CA ===.设P 为ABC 内一点,使得,,,120PB x PC y PA z BPC CPA APB ===∠=∠=∠=︒. 因BPCCPAAPBABCSSSS++=,则11()sin12051222xy yz zx ++︒=⨯⨯,所以xy yz zx ++=故答案为:24.(2021·全国·高三竞赛)设()cos ()cos 30xf x x =︒-,则()()()1260f f f ︒+︒++︒=_________.【解析】 【分析】 【详解】 因为()cos ()cos 30xf x x =︒-,所以:()()()()cos 60cos ()60cos 30cos 30x xf x f x x x ︒-+︒-=+︒--︒()()()()cos cos 602cos30cos 30cos 30cos 30x x x x x +︒-︒-︒===-︒-︒令:()()()1259s f f f =︒+︒++︒,① ()()()()595821s f f f f =︒+︒++︒+︒,②①+②得::()()()()()()2159258591s f f f f f f =︒+︒+︒+︒++︒+︒=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦所以s =()()()59312592f f f +++=.又()()1cos6060cos 3060f ︒︒==︒=︒-,则()()()()125960f f f f ︒+︒++︒+︒==. 25.(2021·全国·高三竞赛)已知cos cos 1x y +=,则sin sin xy -的取值范围是________. 【答案】⎡⎣【解析】 【分析】 【详解】设sin sin x y t -=,易得2cos in sin 1cos s 2y x y t x --=,即21cos()2t x y -+=. 由于()1cos 1x y -≤+≤,所以21112t --≤≤,解得t≤故答案为:⎡⎣.26.(2020·全国·高三竞赛)在ABC中,6,4AB BC ==,边AC 66sin cos 22A A+的值为_______. 【答案】211256. 【解析】【分析】由中线长公式计算出AC 的长度,然后运用余弦定理计算出cos A 的值,化简后即可求出结果. 【详解】记M 为AC 的中点,由中线长公式得()222242BM AC AB BC +=+,可8AC ==.由余弦定理得2222228647cos 22868CA AB BC A CA AB +-+-===⋅⋅⋅,所以66224224sin cos sin cos sin sin cos cos 22222222A A A A A A A A ⎛⎫⎛⎫+=+-+ ⎪⎪⎝⎭⎝⎭22222sin cos 3sin cos 2222A A A A ⎛⎫=+- ⎪⎝⎭231sin 4A =-213211cos 44256A =+=. 故答案为:211256【点睛】关键点点睛:解答本题关键是能够熟练运用中线长公式、余弦定理、倍角公式等进行计算,考查综合能力.27.(2019·江苏·高三竞赛)已知函数()4sin 23cos 22sin 4cos f x x x a x a x =+++的最小值为-6,则实数a 的值为________ .【答案】【解析】 【详解】令sin 2cos x x t +=,则[t ∈, ∴224sin 23cos 25t x x =++,∴2()()225,[f x g t t at t ==+-∈,当2a-≤a ≥函数的最小值为:(((22256g a =⨯+⨯⨯-=-,解得:a =当2a-a ≤-函数的最小值为:22256g a =⨯+⨯⨯-=-,解得:a =,不合题意,舍去;当2a-<a -< 函数的最小值为:22256222a a a g a ⎛⎫⎛⎫⎛⎫-=⨯-+⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得:a =.故答案为:28.(2019·福建·高三竞赛)在△ABC中,若AC =AB =25tan 12π=,则BC =____________ .【解析】 【详解】5tan 12π=,得2sin 56tan 122cos 6A A πππ⎛⎫+ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭,即5tan tan 612A ππ⎛⎫+= ⎪⎝⎭,所以5,612A k k πππ+=+∈Z . 结合0A π<<,得5,6124A A πππ+==. 所以由余弦定理,得:2222cos BC AC AB AC AB A =+-⋅⋅⋅22222cos4π=+-⋅2=所以BC29.(2018·全国·高三竞赛)设 A B C ∠∠∠、、是ABC 的三个内角.若sin ,A a =cos B b =,其中,a >0,0b >,且221a b +≤,则tan C =______.【解析】 【详解】因为cos 0B b =>,所以,B ∠为锐角,sin B又221a b +≤,则sin sin A a B =≤. 于是()sin sin A B π-≤. 若A ∠为钝角,则A π-∠为锐角.又B ∠为锐角,则A B A B ππ-∠≤∠⇒∠+∠≥矛盾.从而,A ∠为锐角,且cos A .故sin tan cos A A A ==sin tan cos B B B ==则tan tan tan tan tan 1A B C A B +==⋅-30.(2018·全国·高三竞赛)在ABC ∆中,已知a 、b 、c 分别是A ∠、B 、C ∠的对边.若4cos a b C b a +=,()1cos 6A B -=,则cos C ______. 【答案】23【解析】 【详解】由题设及余弦定理知222222422a b a b c a b c b a ab+-+=⋅⇒+=()()2221cos21cos22sin sin sin 1cos cos 22A BC A B A B A B --⇒=+=+=-+⋅-()2111cos 1cos 21cos 66C C C =+⇒+=-2cos 3C ⇒=或34-. 而()3cos cos 2sin sin 0cos 4C A B A B C ++=⋅>⇒=-(舍去).因此,2cos 3C =. 31.(2018·全国·高三竞赛)若对任意的ABC ∆,只要()+p q r p q R 、+=∈,就有222sin sin sin p A q B pq C +>,则正数r 的取值范围是______.【答案】01r <≤ 【解析】 【详解】设的三边长分别为a 、b 、c . 则222sin sin sin p A q B pq C +>①22211a b c q p⇔+>. 若1r ≤,则()22221111a b q p a b q p qp ⎛⎫+≥++ ⎪⎝⎭ ()22a b c ≥+>;若1r >,令2rp q ==. 当a b =,C π∠→时,2221 22a b rc +→<,式①不成立.综上,01r <≤.32.(2018·全国·高三竞赛)在锐角ABC ∆中,cos cos sin sin A B A B +--的取值范围是______. 【答案】()2,0- 【解析】 【详解】由02A B C π<∠∠∠<、、 22A B AB πππ⇒<∠+∠⇒∠-∠,2B A π∠>-∠.则0cos sin 1A B <<<,0cos sin 1B A <<<故2cos cos sin sin 0A B A B -<+--<. 所以取值范围是()2,0-.33.(2019·全国·高三竞赛)已知单位圆221x y +=上三个点()11,A x y ,()22,B x y ,()33,C x y满足1231230x x x y y y ++=++= .则222222123123x x x y y y ++=++=__________.【答案】32【解析】 【详解】设1cos x α=,2cos x β=,3cos x γ=,1sin y α=,2sin y β= 3sin y γ=. 由题设知ABC ∆的外心、重心、垂心重合,其为正三角形.故()222313cos cos cos cos2cos2cos2222αβγαβγ++=+++=, ()222313sin sin sin cos2cos2cos2222αβγαβγ++=-++=. 故答案为3234.(2021·全国·高三竞赛)在ABC 中,2cos 3cos 6cos A B C +=,则cos C 的最大值为_______________.【解析】 【分析】 【详解】令cos ,cos ,cos A x B y C z ===,则236x y z +=,即223y z x =-. 因为222cos cos cos 2cos cos cos 1A B C A B C +++=, 所以22222212233x z x z x z x z ⎛⎫⎛⎫+-+=-- ⎪ ⎪⎝⎭⎝⎭,整理得222134********z x z z x z ⎛⎫⎛⎫-+-+-= ⎪ ⎪⎝⎭⎝⎭,()2228134Δ44510393z z z z ⎛⎫⎛⎫=----≥ ⎪ ⎪⎝⎭⎝⎭,化简得2413(1)(1)4039z z z z ⎛⎫+-+-≥ ⎪⎝⎭, 于是24134039z z +-≤,得z ≤ 所以cos C.16. 35.(2021·全国·高三竞赛)已知正整数n p 、,且2p ≥,设正实数12,,,n m m m 满足1111npi im ==+∑,则12n m m m 的最小值为_______.【答案】(1)mp n - 【解析】 【分析】【详解】令2tan ,0,,1,2,,2p i i i m x x i n π⎛⎫=∈= ⎪⎝⎭.由题设可得22212cos cos cos 1n x x x +++=,于是:2222121cos cos cos sin n n x x x x -+++=,222221221cos cos cos cos sin n n n x x x x x --++++=,……2222231cos cos cos sin n x x x x +++=,将上述各式利用均值不等式得:2221(1)cos sin n n n x x --≤, 22221(1)cos sin n n n x x ---≤,……2231(1)cos sin n n x x -≤,再把上述n 个不等式相乘,得()2222221212(1)cos cos cos sin sin sin n n n n x x x x x x -≤,即22212tan tan tan (1)n n x x x n ≥-.由于2tan ,1,2,,p i i m x i n ==,故12(1)n pn m mm n ≥-,当且仅当1(1)p i m n =-时上式等号成立.故答案为:(1)mp n -.36.(2021·全国·高三竞赛)设锐角ABC 的三个内角、、A B C ,满足sin sin sin A B C =⋅,则tan tan tan A B C ⋅⋅的最小值为_______.【答案】163【解析】 【分析】 【详解】由题设可知,0,,2A B C π<<,则cos 0,cos 0B C >>.又由A B C π++=及sin sin sin A B C =⋅ 得()()sin sin sin B C B C π-+=⋅, 即()sin sin sin B C B C +=⋅,则sin cos cos sin sin sin B C B C B C +=⋅, ① 由cos 0,cos 0B C >>,①式两边同时除以cos cos B C ⋅, 可得tan tan tan tan B C B C +=⋅. 设tan tan B C s +=,则tan tan B C s ⋅=, 由0,2B C π<<知,tan 0,tan 0B C >>,则0s >. 于是有()tan tan B s B s ⋅-=,故2tan tan 0B s B s -+=,从而有22(tan )(4)244s s sB s s -=-=-.又2(tan )02s B -≥,得(4)04s s -≥,而0s >.所以4s ≥.故4s ≥.tan tan tan tan(())tan tan A B C B C B C π⋅⋅=-+⋅⋅2tan tan tan tan 1tan tan 1B C s B C B C s +=-⋅⋅=-⋅-. 因为4s ≥,于是求tan tan tan A B C ⋅⋅的最小值转化为求函数2()(4)1x f x x x =≥-的最小值.考虑函数221()(4),()(1)2(4)111x x f x x f x x x x x x =≥==-++≥---,即()f x 在[)4,+∞上单调递增,从而()()4,4x f x f ≥≥. 因此()f x 的最小值在4x =时取得,为2416(4)413f ==-. 由tan tan tan tan 4B C B C +=⋅=得,tan tan 2B C ==,从而4tan 3A =, 故当4tan 3A =,tan tan 2BC ==时,tan tan tan A B C ⋅⋅取得最小值163. 故答案为:163. 37.(2019·贵州·高三竞赛)在△ABC 中,0,0GA GB GC GA GB ++=⋅=.则(tan tan )tan tan tan A B CA B+⋅=____________ .【答案】12 【解析】 【详解】设△ABC 中角A 、B 、C 所对的边分别为a 、b 、c .由0,0GA GB GC GA GB ++=⋅=,知G 为△ABC 的重心. 又GA ⊥GB ,所以22222222211221122GA GB c GA GB a GB GA b ⎧⎪+=⎪⎪⎪⎛⎫⎛⎫+=⎨ ⎪ ⎪⎝⎭⎝⎭⎪⎪⎛⎫⎛⎫⎪+= ⎪ ⎪⎪⎝⎭⎝⎭⎩.得到2225a b c +=.故:(tan tan )tan (sin cos cos sin )sin tan tan sin sin cos A B C A B A B C A B A B C++=⋅2sin sin sin cos C A B C =()22222abc ab a b c =+-2222212c a b c ==+-. 故答案为:12.38.(2019·江西·高三竞赛)△ABC 的三个内角A 、B 、C 满足:A =3B =9C ,则cos cos A B +cos cos cos cos B C C A +=____________ .【答案】14-【解析】 【详解】设,3,9C B A θθθ===,由39θθθπ++=得13πθ=,所以cos cos cos cos cos cos S A B B C C A =++9339coscos cos cos cos cos 131313131313ππππππ=++112642108cos cos cos cos cos cos 2131313131313ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 注意括号中的诸角度构成公差为213π的等差数列,两边同乘4sin 13π,得到 246810124sin2sincos cos cos cos cos cos 1313131313131313S ππππππππ⎛⎫⋅=+++++⎪⎝⎭35375sin sin sin sin sin sin 131313131313ππππππ⎛⎫⎛⎫⎛⎫=-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭971191311sin sin sin sin sin sin 131313131313ππππππ⎛⎫⎛⎫⎛⎫-+-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ sin13π=-.所以,14S =-.故答案为:14-.三、解答题39.(2021·全国·高三竞赛)在ABC 中,三内角A 、B 、C 满足tan tan tan tan tan tan A B B C C A =+,求cos C 的最小值.【答案】23【解析】 【分析】 【详解】由tan tan tan tan tan tan A B B C C A =+,得: sin sin sin sin sin sin cos cos cos cos cos cos A B B C C AA B B C C A =+sin (sin cos sin cos )cos cos cos C B A A B A B C +=sin sin()cos cos cos C A B A B C+=2sin cos cos cos C A B C=, 所以2sin sin cos sin A B C C =.由正余弦定理,得22222a b c abc ab+-=, 所以2222222sin 223,cos sin sin 333C c a b ab a b c C A B ab ab ab ++====≥=, 当且仅当a b =时等号成立,所以cos C 的最小值为23.40.(2021·全国·高三竞赛)解关于实数x 的方程:{}202020201arctan k x x k==∑(这里{}[][],x x x x =-为不超过实数x 的最大整数) 【答案】{}0 【解析】 【分析】 【详解】(1)当0x <时,{}202020201arctan 0(1,2,,2020),arctan 0k x x k x k k =<=<≤⋅⋅⋅∑,此时原方程无解.(2)当0x =时,有{}202020001arctan0k x x k===∑. (3)当01x <<时,令arct ()1)2an (0x xf x x =-<<,则211()0(01)12f x x x '=-><<+, 故()f x 在()0,1上递增.有()()00f x f >=,即arctan 2x x > 于是,此时{}202020204202020201111125arctan 2224k k k x x x xx x x k k k =====>>=>∑∑∑,即1x >,矛盾.故无解.(4)当1≥x 时,注意到111123tan(arctan arctan )112316++==-, 且由110arctan arctan arctan1arctan1232π<+<+=,知11arctan arctan 234+=π.则{}20202020202011111arctan arctan arctan1arctan arctan 1232k k x x k k π===≥>++=>∑∑,与{}202001x <<,矛盾.故此时无解.由(1)(2)(3)(4),知原方程的解集为{}0.41.(2021·全国·高三竞赛)已知点(2cos ,sin ),(2cos ,sin ),(2cos ,sin )A B C ααββγγ,其中,,[0,2)αβγπ∈,且坐标原点O 恰好为ABC 的重心,判断ABCS是否为定值,若是,求出该定值;若不是,请说明理由.【答案】三角形ABC【解析】 【分析】 【详解】先证明一个引理:若()()1122,,,,(0,0)A x y B x y C ,则122112ABCS x y x y =-. 因为()()1122,,,CA x y CB x y ==, 所以21cosCA CB C CA CBx⋅==⨯所以sin C ==所以:1sin 2ABCSCACB C =⋅⋅ 12211122x y x y ==-回到原题,连结OA 、OB 、OC ,则: ABCOABOBCOACSSSS=++112cos sin 2sin cos 2cos sin 2sin cos 22αβαββγβγ=-+- 12cos sin 2sin cos 2αγαγ+- sin()sin()sin()αββγαγ=-+-+-.由三角形的重心为原点得sin sin sin 0,2cos 2cos 2cos 0.αβγαβγ++=⎧⎨++=⎩即sin sin sin ,cos cos cos .αβγαβγ+=-⎧⎨+=-⎩ 所以两式平方相加可得1cos()2αβ-=-,所以sin()αβ-=,同理sin()sin()βγαγ-=-=, 所以sin()sin()sin()3ABCSαββγαγ=-+-+-==故三角形ABC 42.(2019·上海·高三竞赛)已知,0,2A B π⎛⎫∈ ⎪⎝⎭,且sin sin A B =()sin A B +,求tanA 的最大值.【答案】43【解析】 【详解】由题设等式可得sin sin (sin cos cos sin )A B A B A B =+, 所以tan sin (tan cos sin )A B A B B =+. 令tan t A =,则2sin cos sin t t B B B =+,于是2sin 21cos2t t B B =+-,21)t B θ--, 这里θ是锐角,sin θ=.所以2|21|1t t -+,注意到t >0,可得43t. 当413arctan ,arcsin 3225A B π⎛⎫==+ ⎪⎝⎭时,题设等式成立.所以,tanA 的最大值为43.43.(2018·全国·高三竞赛)在ABC ∆中,证明:coscos cos cos cos cos 222222cos cos cos 222B C C A A BA B C ⋅⋅⋅++≥ABC ∆为正三角形时,上式等号成立.【答案】见解析 【解析】 【详解】如图,对ABC ∆,作其相伴111A B C ∆. 则11cos 2B E B B O =,111cos 2C G C A C =,111cos 2C G A B C =. 故11111111111111coscos 22cos2B E C G B C B O A C B E B C A C G B O A C B C ⋅⋅⋅==⋅. 由O 、E 、1C 、F 四点共圆得11111B E B C B O B F ⋅=⋅则111cos cos 22cos 2B C B F A AC ⋅=.类似地,111coscos 22cos 2B C C G A A B ⋅=,111cos cos 22cos2B C A E A B C ⋅= 记111A B C ∆的三边111111B C C A A B 、、分别为111a b c 、、,相应边上的高111A E B F C G 、、分别为123h h h 、、,且其面积为S 、则312222222111111111cos cos 222111222cos2B C h h h S S S S A a b c a b c a b c ⋅⎛⎫∑=++=++=++ ⎪⎝⎭.其中,“∑”表示轮换对称和.由熟知的不等式222111111334a b c S++≥,得coscos 33222cos 2B CA ⋅∑≥. 当且仅当ABC ∆为正三角形时,上式等号成立.44.(2019·全国·高三竞赛)在△ABC 中,若cos cos 2sin sin A BB A+=,证明:∠A +∠B =90° 【答案】见解析 【解析】 【详解】由sin cos sinB sin sin sin sinB 0A A cosB A B A ⇒⋅+⋅-⋅-⋅=()()sin cos sin sinB cosB sinA 0A A B ⇒-+-=()()sinA sin 90sinB sinB sin 90sinA 0A B ⎡⎤⎡⎤⇒︒--+︒--=⎣⎦⎣⎦909090902sinA cossin 2sin cos sin 2222A B A B B A B AB ︒-+︒--︒-+︒--⇒⋅⋅+⋅⋅ 902sin sin cos 45?sin cos 450222A B A B A B A B ⎡⎤︒----⎛⎫⎛⎫⎛⎫⇒⋅︒-+⋅︒+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=0902A B ︒--⎛⎫⇒ ⎪⎝⎭sin cos sin sin cos sin 02222A B A B A B A B A B ⎡⎤----⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.()()90cos sin sin sin sin sin 0222A B A B A B A B A B ︒----⎛⎫⎡⎤⇒++-= ⎪⎢⎥⎝⎭⎣⎦222cos sin 2sin cos 02222A B A B A B A B -+-+⋅+⋅>sin cos sin sin cos sin 02222A B A B A B A B A B ⎡⎤----⎛⎫⎛⎫++-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 90sin 02A B ︒--⎛⎫⇒= ⎪⎝⎭ 90A B ⇒∠+∠=︒()10A a a a ⎛⎫> ⎪⎝⎭,. 45.(2018·全国·高三竞赛)已知ABC 的三个内角满足2A C B ∠+∠=∠,cos cos A C +=cos 2A C -的值.【解析】 【详解】由题设知60,B ∠= 120A C ∠+∠=︒. 设2A Cα∠-∠=,则2A C α∠-∠=,于是,60,60A C αα∠=+∠=-. 故()()cos cos cos 60cos 602cos60cos cos A C αααα+=++-=⋅=.()()()260cos 6032cos2cos120cos cos604αααα+⋅-⎫==+︒=-⎪⎭.故223cos cos 2cos 04αααα⎫=--⇒+-=⎪⎭()(32cos 0αα⇒+=.若3cos 1αα+⇒=<-舍,从而,2cos 0cos αα=⇒=. 46.(2018·全国·高三竞赛)已知函数()()()3333sin cos sin cos f x x x m x x =+++在0,2x π⎡⎤∈⎢⎥⎣⎦有最大值2.求实数m 的值.【答案】1m =- 【解析】 【详解】注意到,()()233sin cos sin cos sin cos 3sin cos x x x x x x x x ⎡⎤+=++-⋅⎣⎦()()()223sin cos sin cos sin cos 12x x x x x x ⎧⎫⎡⎤=++-+-⎨⎬⎣⎦⎩⎭.令sin cos 4t x x x π⎛⎫⎡=+=+∈ ⎪⎣⎝⎭. 则()()()223333931222f x t t t mt m t t g t ⎡⎤⎛⎫=--+=-+∆ ⎪⎢⎥⎣⎦⎝⎭.由()233322g t m t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦',有以下两种情形.(1)32m ≥. 由()0g t '>,知()max 92322g t g m ⎫==-+=⎪⎭ 230m ⇒-<,矛盾.(2)32m <. 若32132m -<-,即0m <时,()()max 1321g t g m m ==+=⇒=-;若32132m -≤≤-3012m ⎛≤≤ ⎝⎭时, ()max271523248g t g m m ==⇒=-⇒=-,矛盾;若3232m ->-33122m ⎛<< ⎝⎭时,()max 3 222g t g m ⎫==+=⎪⎭34m ⇒=-. 综上,1m =-.47.(2019·全国·高三竞赛)求(),f xy =【答案】42 【解析】 【详解】注意到,2cos472cos 26x x +=+ ()2222cos 16x =-+ ()428cos cos 1x x =-+,同理,()42cos478cos cos 1y y y +=-+,而22cos4cos48sin sin 6x y x y +-⋅+ ()()22cos47cos478sin sin 8x x x y =+++-⋅-()428cos cos 1x x =-++ ()428cos cos 1y y -+- ()()2281cos 1cos 8x y ---()44228cos cos 8cos cos x y x y =+-⋅,()()42424422,8cos cos 1cos cos 1cos cos cos cos f x y x x y y x y x y =-++-+++-⋅,如图,作边长为1的正SAB ∆、SBC ∆、SCD ∆,在SB 、SC 上分别取点X 、Y 使得2cos SX x =,2cos SY y =,联结AX 、AY ,则(),f x y ()8AX XY YD =++,其最小值就是线段ASD 的长度,即当2x y π==时,min 2842f ==.48.(2021·全国·高三竞赛)求证:对任意的n +∈N ,都有21111arctan arctan arctanarctan 37114n n n π++++=+++.【答案】证明见解析. 【解析】 【详解】由于1111tan arctan 1412111n n n n n π-⎛⎫+-== ⎪++⎝⎭+⨯+,只需证: 2111arctan arctan arctanarctan 3712nn n n +++=+++.设*(),2nf n n n =∈+N ,注意到:21()(1)12111()(1)1121n n f n f n n n n n f n f n n n n n ----++==-+-+++⋅++,即21tan[arctan ()arctan (1)]tan arctan 1f n f n n n ⎛⎫--= ⎪++⎝⎭, 又由于()f n 、(1)f n -、211n n ++均大于0,则21[arctan ()arctan (1)],,arctan 0,2212f n f n n n πππ⎛⎫⎛⎫--∈-∈ ⎪ ⎪++⎝⎭⎝⎭, 从而21arctanarctan ()arctan (1)1f n f n n n =--++. 所以2111arctan arctan arctan371n n +++=++arctan ()arctan (0)arctan 2nf n f n -=+,所以对任意的n +∈N ,都有21111arctan arctan arctanarctan 37114n n n π++++=+++.49.(2021·全国·高三竞赛)设αβγ、、是锐角,满足αβγ+=,求证:cos cos cos 1αβγ++-≥【答案】证明见解析 【解析】 【详解】2cos cos cos 12coscos2sin 222αβαβγαβγ+-++-=⋅- 2cos cos sin sin 2222γαβγαβ-+⎛⎫=⋅-⋅ ⎪⎝⎭.由于0,224αβγπ+⎛⎫=∈ ⎪⎝⎭,所以cos cos cos sin 2222αβαβγγ-+>=>. 由恒等式()()222222()()ac bd ad bc a b c d ---=--可知,如果0a b >>且0c d >>,则ac bd -≥cos cossinsin2222γαβγαβ-+⋅≥-⋅===所以cos cos cos 1αβγ++-≥50.(2019·河南·高二竞赛)锐角三角形ABC 中,求证:cos()cos()cos()8cos cos cos B C C A A B A B C ---.【答案】证明见解析 【解析】 【详解】 原不等式等价于cos()cos()cos()8cos cos cos B C C A A B A B C---.在三角形ABC 中,tan tan tan tan tan tan A B C A B C ++=, cos()sin sin cos cos cos sin sin cos cos B C B C B C A B C B C -+=-tan tan 1tan tan 1B C B C +=-tan (tan tan 1)tan tan A B C B C +=+2tan tan tan tan tan A B CB C++=+.令tan tan tan tan tan tan A B xB C y C A z+=⎧⎪+=⎨⎪+=⎩,则原不等式等价于()()()8z x y z x y yxz +++. 而上式左边228zx yxz⋅=,故原不等式得证【高中数学竞赛专题大全】 竞赛专题3 三角函数 (50题竞赛真题强化训练)一、单选题1.(2018·吉林·高三竞赛)已知()sin 2cos xf x x=+,则对任意x ∈R ,下列说法中错误的是( ) A .()1sin 3f x x ≥B .()f x x ≤C .()f x ≤D .()()0f x f x ππ++-=2.(2018·四川·高三竞赛)函数()()()sin 1cos 12sin 2x x y x R x--=∈+的最大值为( ).A .2B .1C .12+D3.(2019·全国·高三竞赛)函数[][]sin cos sin cos y x x x x =⋅++的值域为( )([]x 表示不超过实数x 的最大整数). A .{}2,1,0,1,2-- B .{}2,1,0,1-- C .{}1,0,1-D .{}2,1,1--4.(2010·四川·高三竞赛)已知条件43p =和条件4:sin cos 3q αα+=.则p 是q 的( ). A .充分但不必要条件 B .必要但不充分条件 C .充要条件D .既不充分也不必要条件5.(2018·全国·高三竞赛)在ABC ∆中,A B C ∠≤∠≤∠,sin sin sin cos cos cos A B CA B C++=++则B 的取值范围是( ).A .,32ππ⎛⎫ ⎪⎝⎭B .0,2π⎛⎫ ⎪⎝⎭C .3π D .,43ππ⎛⎫ ⎪⎝⎭二、填空题6.(2018·江西·高三竞赛)若三个角x 、y 、z 成等差数列,公差为π3,则tan tan tan tan tan tan x y y z z x ++=______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二暑期集训专题:解三角形小题专项训练
1.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )
A .6
B .3
C .2
D .2或3 2.在△ABC 中,已知045,1,2===B c b ,则a 的值为 ( ) A.226- B.2
26+ C.12+ D.23- 3.△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A =( )
A.3π4
B.π3
C.π4
D.π6
4.在△ABC 中,若sin A a =cos B b ,则B 的大小为( )
A .30°
B .45°
C .60°
D .90°
5.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( )
A .有一解
B .有两解
C .无解
D .有解但解的个数不确定
6.在△ABC 中,已知2a b c =+,
2sin sin sin A B C =,试判断△ABC 的形状 A .直角三角形 B .等腰三角形 C .等腰直角三角形 D .正三角形
7.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )
A .等腰直角三角形
B .直角三角形
C .等腰三角形
D .等腰三角形或直角三角形
8.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos C =223,b cos A +
a cos B =2,则△ABC 的外接圆面积为( )
A .4π
B .8π
C .9π
D .36π
9.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )
A .3 B.932 C.332 D .3 3
10.故△ABC 为等腰三角形3.(2018·南昌模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则△ABC 的面积为( )
A.12
B.14 C .1 D .2
11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sinB(1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )
A .a =2b
B .b =2a
C .A =2B
D .B =2A
12.已知△ABC 中,AC =4,BC =27,∠BAC =60°,AD ⊥BC 于点D ,则BD CD 的
值为________.
13.在△ABC 中,三个内角A ,B ,C 所对的边分别为a ,b ,c ,若S △ABC =23,
a +
b =6,a cos B +b cos A c
=2cos C ,则c 等于( ) A .27
B .2 3
C .4
D .3 3
14.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知sin A -sinB =13sin C,3b
=2a,2≤a 2+ac ≤18,设△ABC 的面积为S ,p =2a -S ,则p 的最大值是( ) A.529 B.729 C. 2 D.928
14.钝角三角形ABC 的面积是12
,AB=1,,则AC=( )
A. 5
B.
C. 2
D. 1
15.在△ABC 中,
60,B AC =2AB BC +的最大值为 .
16.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,如果△ABC 的面积等
于8,a =5,tan B =-43,那么a +b +c sin A +sin B +sin C
=________. 17.在△ABC 中,B =30°,AC =2 5,D 是AB 边上的一点,CD =2,若∠ACD 为锐角,△ACD 的面积为4,则BC =________.
18.在锐角ABC 中,2A B =,则c b
的取值范围是 19.若ABC 的三边,,a b c 成等比数列,,,a b c 所对的角依次为,,A B C ,则s i n c o s B B +的取值范围是
20.满足2,AB AC ==的ABC 的面积的最大值是
21.在ABC 中,22223a b c ab +=+,若ABC 的外接圆半径为2
,则ABC 的面积的最大值为
22.在锐角ABC 中,三个内角,,A B C 成等差数列,记cos cos M A C =,则M 的取值范围是
23.在锐角ABC 中,2A B =,1AC =,则BC 的取值范围是
24.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.
25.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角∠MAN =60°,C 点的仰角∠CAB =45°以及∠MAC =75°;从C 点测得∠MCA =60°,已知山高BC =100 m ,则山高MN =________m.。

相关文档
最新文档