2021年湖北省武汉市中考数学试卷(附答案详解)

合集下载

2024年湖北武汉中考数学试卷试题解读及答案解析

2024年湖北武汉中考数学试卷试题解读及答案解析

2024年中考数学真题完全解读(武汉卷)审视2024年武汉市中考数学试卷,我们可以明显感受到与去年相比,题型与知识点的考查方式保持了一贯的稳定,整体难度适宜,而且考察手法愈发巧妙多变,要求学生对知识点有深入的理解和灵活的运用。

在历经三次模拟考试的磨砺后,24年的中考数学试卷不仅维持了知识点的连贯性,还在持续的创新与变化中,丰富了知识点的维度和命题的广度。

试卷的四大模块一一数与式、函数、几何图形、统计概率,分别占据了20分、34分、52分和14分的分值。

与23年相比,数与式部分稍有减少,具体体现在无理数的举例开放题上少了3分,而几何部分则增加了3分,主要涉及平行线和角的计算。

试卷的基础题、中档题和压轴题的分布与往年保持一致,基础题占据了约81分,即67.5%的比例,中档题和压轴题则分别占据了27分和12分,占比分别为22.5%和10%o然而,任何一份试卷都会给不同水平的学生带来不同程度的挑战。

例如,选择题第10题就需要学生巧妙运用函数对称性和数形结合的方法进行解答,而其他9题则较为常规。

填空第15题的几何小综合,无疑是今年考试的一个难点,涉及到面积的转化和相似的构造,这对于许多学生来说都是一大考验。

在解答题中,17〜22题延续了以往的考查方式,但21题对格点作图提出了更高的要求,需要学生对常规方法有更深入的理解和掌握;23题的几何大综合虽然整体考查方式未变,但第二问和第三问需要学生综合运用八九年级的几何知识点,进行巧妙的构造和推理;24题的二次函数大综合虽然思路清晰,但由于计算量巨大,对学生的计算能力提出了极大的挑战。

因此,学生在后期的备考中,需要巩固基础知识,立足课本,提高解题的熟练度和计算能力,这样才能在中考中应对自如,冲刺高分!姓题型新变化选择题、填空题、解答题的题量与分值相较于往年没有发生变化;罗列部分试题新思路第6题的一次函数应用题转变为了实际问题的函数图象;第10题是新载体,需考生结合函数对称性和数形结合的方法解题;第13题的分式计算演变成了分式方程;第15题是几何计算题,原为第16题的位置,被普遍认为是今年中考难度最高的一道题。

2021年湖北省武汉市部分学校九年级元月调考数学试卷(附答案详解)

2021年湖北省武汉市部分学校九年级元月调考数学试卷(附答案详解)

2021年湖北省武汉市部分学校九年级元月调考数学试卷一、选择题(本大题共10小题,共30.0分)1.将一元二次方程2x2−1=3x化成一般形式后,二次项系数和一次项系数分别是()A. 2,−1B. 2,0C. 2,3D. 2,−32.下列垃圾分类标识中,是中心对称图形的是()A. B. C. D.3.下列四个袋子中,都装有除颜色外无其他差别的10个小球,从这四个袋子中分别随机摸出一个球,摸到红球可能性最小的是()A. B. C. D.4.已知⊙O的半径等于3,圆心O到点P的距离为5,那么点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O外C. 点P在⊙O上D. 无法确定5.一元二次方程x2−4x−1=0配方后可化为()A. (x+2)2=3B. (x+2)2=5C. (x−2)2=3D. (x−2)2=56.在平面直角坐标系中,抛物线y=(x+2)(x−4)经变换后得到抛物线y=(x−2)(x+4),则下列变换正确的是()A. 向左平移6个单位B. 向右平移6个单位C. 向左平移2个单位D. 向右平移2个单位7.如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=33°,∠B=30°,则∠ACE的大小是()A. 63°B. 58°C. 54°D. 52°8.三个不透明的口袋中各有三个相同的乒乓球,将每个口袋中的三个乒乓球分别标号为1,2,3.从这三个口袋中分别摸出一个乒乓球,出现的数字正好是等腰三角形三边长的概率是()A. 49B. 59C. 1727D. 799.如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上一点,连接AC,BC.若∠P=60°,∠MAC=75°,AC=√3+1,则⊙O的半径是()A. √2B. √3C. 32D. 34√310.已知二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),则当x=x1+x2时,二次函数的值是()A. 2020B. 2021C. 2022D. 2023二、填空题(本大题共6小题,共18.0分)11.在直角坐标系中,点(−1,2)关于原点对称点的坐标是______.12.如图,平行四边形ABCD的对角线交于点O,过点O的直线EF分别交边AB,CD于E,F两点,在这个平行四边形上做随机投掷图钉试验,针头落在阴影区域内的概率是______ .13.国家实施“精准扶贫”政策以来,贫困地区经济快速发展,贫困人口大幅度减少.某地区2018年初有贫困人口4万人,通过社会各界的努力,2020年初贫困人口减少至1万人.则2018年初至2020年初该地区贫困人口的年平均下降率是______ .14.已知O,I分别是△ABC的外心和内心,∠BOC=140°,则∠BIC的大小是______ .15.如图,放置在直线l上的扇形OAB,由图①滚动(无滑动)到图②,再由图②滚动到图③,若半径OA=1,∠AOB=90°,则点O所经过的路径长是______ .16.下列关于二次函数y=x2−2mx+1(m为常数)的结论:①该函数的图象与函数y=−x2+2mx的图象的对称轴相同;②该函数的图象与x轴有交点时,m>1;③该函数的图象的顶点在函数y=−x2+1的图象上;④点A(x1,y1)与点B(x2,y2)在该函数的图象上.若x1<x2,x1+x2<2m,则y1<y2.其中正确的结论是______ (填写序号).三、解答题(本大题共8小题,共72.0分)17.若关于x的一元二次方程x2−bx+2=0有一个根是x=1,求b的值及方程的另一个根.18.如图,将△ABC绕点C顺时针旋转得到△DEC,点D落在线段AB上.求证:DC平分∠ADE.19.小刚参加某网店的“翻牌抽奖”活动,如图,四张牌分别对应价值2,5,5,10(单位:元)的四件奖品.(1)如果随机翻一张牌,直接写出抽中5元奖品的概率;(2)如果同时随机翻两张牌,求所获奖品总值不低于10元的概率.20.如图是由小正方形构成的6×6网格,每个小正方形的顶点叫做格点.⊙P经过A,B两个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线表示,画图结果用实线表示).(1)在图(1)中,⊙P经过格点C,画圆心P,并画弦BD,使BD平分∠ABC;(2)在图(2)中,⊙P经过格点E,F是⊙P与网格线的交点,画圆心P,并画弦FG,使FG=FA.21.如图,正方形ABCD内接于⊙O,E是BC⏜的中点,连接AE,DE,CE.(1)求证:AE=DE;(2)若CE=1,求四边形AECD的面积.22.疫情期间,按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y(单位:人)随时间x(单位:分钟)的变化情况如图所示,y可看作是x的二次函数,其图象经过原点,且顶点坐标为(30,900),其中0≤x≤30.校门口有一个体温检测棚,每分钟可检测40人.(1)求y与x之间的函数解析式;(2)校门口排队等待体温检测的学生人数最多时有多少人?(3)检测体温到第4分钟时,为减少排队等候时间,在校门口临时增设一个人工体温检测点.已知人工每分钟可检测12人,人工检测多长时间后,校门口不再出现排队等待的情况(直接写出结果).23.问题背景如图(1),△ABD,△AEC都是等边三角形,△ACD可以由△AEB通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小.尝试应用如图(2),在Rt△ABC中,∠ACB=90°,分别以AC,AB为边,作等边△ACD和等的值.边△ABE,连接ED,并延长交BC于点F,连接BD.若BD⊥BC,求DFDE 拓展创新如图(3),在Rt△ABC中,∠ACB=90°,AB=2,将线段AC绕点A顺时针旋转90°得到线段AP,连接PB,直接写出PB的最大值.24.如图,经过定点A的直线y=k(x−2)+1(k<0)交抛物线y=−x2+4x于B,C两点(点C在点B的右侧),D为抛物线的顶点.(1)直接写出点A的坐标;(2)如图(1),若△ACD的面积是△ABD面积的两倍,求k的值;(3)如图(2),以AC为直径作⊙E,若⊙E与直线y=t所截的弦长恒为定值,求t的值.答案和解析1.【答案】D【解析】解:将一元二次方程2x2−1=3x化成一般形式是2x2−3x−1=0,二次项的系数和一次项系数分别是2和−3,故选:D.先化成一般形式,即可得出答案.本题考查了一元二次方程的一般形式,能化成一元二次方程的一般形式是解此题的关键,注意:说项的系数带着前面的符号.2.【答案】B【解析】解:A、不是中心对称图形,故此选项不合题意;B、是中心对称图形,故此选项符合题意;C、不是中心对称图形,故此选项不合题意;D、不是中心对称图形,故此选项不合题意;故选:B.利用中心对称图形的定义进行解答即可.此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.3.【答案】A【解析】解:第一个袋子摸到红球的可能性=110;第二个袋子摸到红球的可能性=210=15;第三个袋子摸到红球的可能性=510=12;第四个袋子摸到红球的可能性=610=35.故选:A.要求可能性的大小,只需求出各自所占的比例大小即可.求比例时,应注意记清各自的数目.本题主要考查了可能性大小的计算,用到的知识点为:可能性等于所求情况数与总情况数之比,难度适中.4.【答案】B【解析】解:∵r=3,d=5,∴d>r,∴点P在⊙O外.故选:B.根据①点P在圆外⇔d>r.②点P在圆上⇔d=r.③点P在圆内⇔d<r,即可判断.本题考查点与圆的位置关系,解题的关键是熟练掌握基本知识,属于中考基础题.5.【答案】D【解析】解:x2−4x−1=0,x2−4x=1,x2−4x+4=1+4,(x−2)2=5,故选:D.移项,配方,即可得出选项.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.6.【答案】C【解析】解:y=(x+2)(x−4)=(x−1)2−9,顶点坐标是(1,9).y=(x−2)(x+4)=(x+1)2−9,顶点坐标是(−1,9).所以将抛物线y=(x+2)(x−4)向左平移2个单位长度得到抛物线y=(x−2)(x+4),故选:C.根据变换前后的两抛物线的顶点坐标找变换规律.此题主要考查了次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.7.【答案】C【解析】解:∵∠A=33°,∠B=30°,∴∠ACD=∠A+∠B=33°+30°=63°,∵△ABC绕点C按逆时针方向旋转至△DEC,∴△ABC≌△DEC,∴∠ACB=∠DCE,∴∠BCE=∠ACD,∴∠BCE=63°,∴∠ACE=180°−∠ACD−∠BCE=180°−63°−63°=54°.故选:C.先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC≌△DEC.8.【答案】B【解析】解:画树状图得:∵共有27种等可能的结果,两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的有15种结果,∴出现的数字正好是等腰三角形三边长的概率是1527=59.故选:B.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的乒乓球标号相同,并且三个标号符合三角形三边关系的情况,再利用概率公式即可求得答案.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】A【解析】解:连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,∵PM与⊙O相切于A点,∴OA⊥PM,∴∠OAM=90°,∵∠MAC=75°,∴∠OAC=15°,∵OA=OC,∴∠OAC=∠OCA=15°,∴∠AOH=30°,在Rt△AOH中,AH=12OA=12r,OH=√3AH=√32r,在Rt△ACH中,(12r)2+(r+√32r)2=(√3+1)2,解得r=√2,即⊙O的半径为√2.故选:A.连接OA、OC,过A点作AH⊥OC于H,如图,设⊙O的半径为r,根据切线的性质得到∠OAM=90°,则∠OAC=15°,再计算出∠AOH=30°,则可表示出AH=12r,OH=√32r,利用勾股定理得到(12r)2+(r+√32r)2=(√3+1)2,然后解方程即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了解直角三角形.10.【答案】C【解析】解:∵二次函数y=2020x2+2021x+2022的图象上有两点A(x1,2023)和B(x2,2023),∴x1、x2是方程2020x2+2021x+2022=2023的两个根,∴x1+x2=−20212020,∴当x=x1+x2时,二次函数y=2020x2+2021x+2022=2020(−20212020)2+2021⋅(−20212020)+2022=2022.故选:C.根据题意得出x=x1+x2=−20212020,代入函数的解析式即可求得二次函数的值.本题考查了一元二次方程根与系数的关系以及二次函数图象上点的坐标特征,图象上的点符合解析式.11.【答案】(1,−2)【解析】解:在直角坐标系中,点(−1,2)关于原点对称点的坐标是(1,−2),故答案为:(1,−2).根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),可得答案.本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.12.【答案】14【解析】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=14S四边形ABCD,∴点A落在阴影区域内的概率为14,故答案为:14.用阴影部分的面积除以平行四边形的总面积即可求得答案.此题主要考查了几何概率,以及平行四边形的性质,用到的知识点为:概率=相应的面积与总面积之比.13.【答案】50%【解析】解:设2018年初至2020年初该地区贫困人口的年平均下降率为x,依题意得:4(1−x)2=1,解得:x1=0.5=50%,x2=1.5(不合题意,舍去).故答案为:50%.设2018年初至2020年初该地区贫困人口的年平均下降率为x,根据该地区2018年初及2020年初贫困人口的数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.14.【答案】125°或145°【解析】解:∵O是△ABC的外心,∴∠BAC=12∠BOC=12×140°=70°(如图1)或∠BAC=180°−70°=110°,(如图2)∵I是△ABC的内心,∴∠BIC=90°+12∠BAC,当∠BAC=70°时,∠BIC=90°+12×70°=125°;当∠BAC=110°时,∠BIC=90°+12×110°=145°;即∠BIC的度数为125°或145°.故答案为125°或145°.利用圆周角定理得到∠BAC=70°或∠BAC=110°,由于I是△ABC的内心,则∠BIC=90°+12∠BAC,然后把∠BAC的度数代入计算即可.本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了三角形的外心.15.【答案】32π【解析】解:点O所经过的路径长=3×90π⋅1180=32π.故答案为:32π.点O所经过的路径是三个14圆周长.本题考查轨迹,弧长公式等知识,解题的关键是理解题意,灵活运用所学知识解决问题.16.【答案】①③【解析】解:①∵二次函数y=x2−2mx+1的对称轴为直线x=−−2m2×1=m,二次函数y=−x2+2mx的对称轴为直线x=−2m2×(−1)=m,故结论①正确;②∵函数的图象与x轴有交点,则△=(−2m)2−4×1×1=4m2−4≥0,∴m≥1,故结论②错误;③∵y=x2−2mx+1=(x−m)2+1−m2,∴顶点为(m,−m2+1),∴该函数的图象的顶点在函数y=−x2+1的图象上,故结论③正确;④∵x1+x2<2m,∴x1+x22<m,∵二次函数y=x2−2mx+1的对称轴为直线x=m∴点A离对称轴的距离大于点B离对称轴的距离∵x1<x2,且a=1>0∴y1>y2故结论④错误;故答案为①③.利用二次函数的性质一一判断即可.本题考查抛物线与x轴的交点、二次函数的性质,二次函数图象上点的坐标特征,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】解:∵关于x的一元二次方程x2−bx+2=0有一个根是x=1,∴1−b+2=0,解得:b=3,把b=3代入方程得:x2−3x+2=0,设另一根为m,可得1+m=3,解得:m=2,则b的值为3,方程另一根为x=2.【解析】把x=1代入方程计算求出b的值,进而求出另一根即可.此题考查了根与系数的关系,以及一元二次方程的解,熟练掌握根与系数的关系是解本题的关键.18.【答案】证明:由旋转可知,△ABC≌△DEC,∴∠A=∠CDE,AC=DC,∴∠A=∠ADC,∴∠ADC=∠CDE,即DC平分∠ADE.【解析】利用全等三角形的性质以及等腰三角形的性质即可解决问题.本题考查旋转的性质,全等三角形的性质,等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】解:(1)∵在价值为2,5,5,10(单位:元)的四件奖品,价值为5元的奖品有2张,∴抽中5元奖品的概率为24=12;(2)画树状图如下:由树状图可知共有12种等可能结果,其中所获奖品总值不低于10元的有8种,∴所获奖品总值不低于10元的概率为812=23.【解析】(1)根据概率公式计算可得;(2)画树状图列出所有等可能结果,再从中确定所获奖品总值不低于10元的结果数,利用概率公式计算可得.此题还考查了列举法与树状图法求概率,解答此类问题的关键在于列举出所有可能的结果,画出树形图是解题的关键.20.【答案】解:(1)如图,点P,线段BD即为所求作.(2)如图,点P,线段FG即为所求作.【解析】(1)取格点T,连接AT交BC于点P,连接AC,取AC的中点W,作射线PW 交⊙P于点D,线段BD即为所求作.(2)取格点J,连接AB,AJ延长AJ交⊙P于Q,连接BQ可得圆心P,取格点R,D,连接FR,DR,作DR交⊙P于G,连接FG,可证FA=FR=FG,线段FG即为所求作.本题考查作图−应用与设计垂径定理,圆周角定理,线段的垂直平分线的性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.【答案】(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴AB⏜=CD⏜,∵E是BC⏜的中点,∴BE⏜=EC⏜,∴AE⏜=DE⏜,∴AE=DE.(2)解:连接BD,过点D作DF⊥DE交EC的延长线于F.∵四边形ABCD是正方形,∴∠DBC=∠DEC=45°,DA=DC,∵∠EDF=90°,∴∠F=90°−45°=45°,∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,在△ADE和△CDF中,{∠ADE=∠CDF ∠AED=∠FDA=DC,∴△ADE≌△CDF(AAS),∴AE=CF,∴S△ADE=S△CDF,∴S四边形AECD=S△DEF,∵EF=√2DE=EC+DE,EC=1,∴1+DE=√2DE,∴DE=√2+1,∴S△DEF=12DE2=√2+32.【解析】(1)欲证明AE=DE,只要证明AE⏜=DE⏜.(2)连接BD,过点D作DF⊥DE交EC的延长线于F.证明△ADE≌△CDF(AAS),推出AE= CF,推出S△ADE=S△CDF,推出S四边形AECD=S△DEF,再利用等腰三角形的性质构建方程求出DE,即可解决问题.本题考查正多边形与圆,正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.22.【答案】解:(1)∵顶点坐标为(30,900),∴设y=a(x−30)2+900,将(0,0)代入,得:900a+900=0,解得a=−1,∴y=−(x−30)2+900;(2)设第x分钟时的排队等待人数为w人,由题意可得:w=y−40x=−(x−30)2+900−40x=−x2+60x−900+900−40x=−x2+20x=−(x−10)2+100,∴当x=10时,w的最大值为100,答:排队等待人数最多时是100人;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由题意得:−(4+m)2+60(4+m)−40×4−(40+12)m=0,整理得:−m2+64=0,解得:m1=8,m2=−8(舍).答:人工检测8分钟时间后,校门口不再出现排队等待的情况.【解析】(1)由顶点坐标为(30,900),可设y=a(x−30)2+900,再将(0,0)代入,求得a的值,则可得y与x之间的函数解析式;(2)设第x分钟时的排队等待人数为w人,根据w=y−40x及(1)中所得的y与x之间的函数解析式,可得w关于x的二次函数,将其写成顶点式,按照二次函数的性质可得答案;(3)设人工检测m分钟时间后,校门口不再出现排队等待的情况,由于检测体温到第4分钟时,在校门口临时增设一个人工体温检测点,则体温检测棚的检测时间为(m+4)分钟,则学生到校的累计人数与人工检测m分钟后两种检测方式的检测人数之和相等时,校门口不再出现排队等待的情况,据此可列出关于m的方程,求解并根据问题的实际意义作出取舍即可.本题主要考查了二次函数在实际问题中的应用,熟练掌握待定系数法求二次函数的解析式及二次函数的性质是解题的关键.23.【答案】问题背景解:∵△ABD,△AEC都是等边三角形,∴∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,∴∠BAD+∠BAC=∠CAE+∠BAC,∴∠DAC=∠BAE,∴△ACD≌△AEB(SAS),∴△ACD可以由△AEB绕点A顺时针旋转60°得到,即旋转中心是点A,旋转方向是顺时针,旋转角是60°;尝试应用∵△ACD和△ABE都是等边三角形,∴AC=AD,AB=AE,∠CAD=∠BAE=60°,∴∠CAB=∠DAE,∴△ADE≌△ACB(SAS),∴∠ADE=∠ACB=90°,DE=CB,∵∠ADE=90°,∴∠ADF=90°,∵∠ADC=∠ACD=60°,∴∠DCF=∠CDF=30°,∴CF=DF,∵BD⊥BC,∴∠BDF=30°,∴BF=12DF,设BF=x,则CF=DF=2x,DE=3x,∴DFDE =2x3x=23;拓展创新∵∠ACB=90°,∴点C在以AB为直径的圆上运动,取AB的中点D,连接CD,∴CD=12AB=1,如图,过点A作AE⊥AB,且使AE=AD,连接PE,BE,∵将线段AC绕点A顺时针旋转90°得到线段AP,∴∠PAC=90°,PA=AC,∵∠EAD=90°,∴∠PAE=∠CAD,∴△CAD≌△PAE(SAS),∴PE=CD=1,∵AB=2,AE=AD=1,∴BE=√AE2+AB2=√12+22=√5,∴BP≤BE+PE=√5+1,∴BP的最大值为√5+1.【解析】问题背景由等边三角形的性质得出∠BAD=60°,∠CAE=60°,AD=AB,AC=AE,证得△ACD≌△AEB(SAS),由旋转的概念可得出答案;尝试应用证明△ADE≌△ACB(SAS),由全等三角形的性质得出∠ADE=∠ACB=90°,DE=CB,DF,则可得出答案;得出∠BDF=30°,由直角三角形的性质得出BF=12拓展创新过点A作AE⊥AB,且使AE=AD,连接PE,BE,由直角三角形的性质求出BE,PE 的长,则可得出答案.本题是几何变换综合题,考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质,熟练掌握旋转的性质是解题的关键.24.【答案】解:(1)∵A为直线y=k(x−2)+1上的定点,∴A的坐标与k无关,∴x−2=0,∴x=2,此时y=1,∴点A的坐标为(2,1);(2)∵y=−x2+4x=−(x −2)2+4,∴顶点D 的坐标为(2,4),∵点A 的坐标为(2,1),∴AD ⊥x 轴.如图(1),分别过点B ,C 作直线AD 的垂线,垂足分别为M ,N ,设B ,C 的横坐标分别为x 1,x 2,∵△ACD 的面积是△ABD 面积的两倍,∴CN =2BM ,∴x 2−2=2(2−x 1),∴2x 1+x 2=6.联立{y =−x 2+4x y =kx −2k +1,得x 2+(k −4)x −2k +1=0,① 解得x 1=4−k−√k2+122,x 2=4−k+√k 2+122, ∴2×4−k−√k 2+122+4−k+√k 2+122=6,化简得:√k 2+12=−3k ,解得k =−√62. 另解:接上解,由①得x 1+x 2=4−k ,又由2x 1+x 2=6,得x 1=2+k .∴(2+k)2+(k −4)(2+k)−2k +1=0,解得k =±√62. ∵k <0,∴k =−√62; (3)如图(2),设⊙E 与直线y =t 交于点G ,H ,点C 的坐标为(a,−a 2+4a). ∵E 是AC 的中点,∴将线段AE 沿AC 方向平移与EC 重合,∴x E −x A =x C −x E ,y E −y A =y C −y E ,∴x E =12(x A +x C ),y E =12(y A +y C ).∴E(1+a 2,−a 2+4a +12). 分别过点E ,A 作x 轴,y 轴的平行线交于点F ,在Rt △AEF 中,由勾股定理得:EA 2=(1+a 2−2)2+(−a 2+4a +12−1)2 =(a 2−1)2+(−a 2+4a+12−1)2,过点E 作PE ⊥GH ,垂足为P ,连接EH ,∴GH =2PH ,EP 2=(−a 2+4a+12−t)2,又∵AE =EH ,∴GH 2=4PH 2=4(EH 2−EP 2)=4(EA 2−EP 2)=4[(a 2−1)2+(−a 2+4a +12−1)2−(−a 2+4a +12−t)2] =4[a 24−a +1+(−a 2+4a +12)2−(−a 2+4a +1)+1−(−a 2+4a +12)2+t(−a 2+4a +1)−t 2]=4[(54−t)a 2+(4t −5)a +1+t −t 2]. ∵GH 的长为定值,∴54−t =0,且4t −5=0, ∴t =54.【解析】(1)由A为直线y=k(x−2)+1上的定点,可得k的系数为0,从而求得x值,则点A的坐标可得;(2)先求得顶点D的坐标,可得AD⊥x轴.分别过点B,C作直线AD的垂线,垂足分别为M,N,设B,C的横坐标分别为x1,x2由△ACD的面积是△ABD面积的两倍得出2x1+x2=6.将抛物线解析式与直线y=k(x−2)+1解析式联立,得出关于x的一元二次方程,方法一可以直接解方程,再结合2x1+x2=6求得答案;方法二可以用韦达定理及2x1+x2=6求得答案;(3)设⊙E与直线y=t交于点G,H,点C的坐标为(a,−a2+4a),用含a的式子表示出点E的坐标,再由勾股定理得出关于a的方程;分别过点E,A作x轴,y轴的平行线交于点F,过点E作PE⊥GH,垂足为P,连接EH,用含a的式子表示GH2,根据GH为定值,可得答案.本题属于二次函数综合题,综合考查了一次函数、二次函数、一元二次方程、勾股定理及圆的性质等知识点,数形结合并熟练掌握相关性质定理是解题的关键.。

2021-2022学年湖北省武汉市东西湖区九年级(上)期中数学试卷-附答案详解

2021-2022学年湖北省武汉市东西湖区九年级(上)期中数学试卷-附答案详解

2021-2022学年湖北省武汉市东西湖区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一元二次方程3x2−1=6x化成一般形式后,其中一次项系数是()A. 6B. −6C. 2D. −22.二次函数y=4(x−3)2+7的顶点为()A. (−3,−7)B. (3,7)C. (−3,7)D. (3,−7)3.在平面直角坐标系中,点(−3,−1)关于原点的对称点的坐标为()A. (3,1)B. (3,−1)C. (−3,−1)D. (−3,1)4.下面有4个汽车标致图案,其中是中心对称图形的是()A. B.C. D.5.已知关于x的一元二次方程(k−2)x2+2x−1=0有两个不相等的实数根,则k的取值范围为()A. k>1B. k>−1且k≠0C. k>1且k≠2D. k<16.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是()A. 57°B. 60°C. 67°D. 77°7.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A. 100(1+x)2=81B. 100(1−x)2=81C. 100(1−x%)2=81D. 100x2=818.将抛物线向上平移3个单位,再向左平移2个单位,得到的新抛物线的解析式为y=3x2,则平移前的抛物线解析式为()A. y=3(x+2)2+3B. y=3(x−2)2+3C. y=3(x−2)2−3D. y=3(x+2)2−39.点P1(−1,y1),P2(3,y2),P3(5,y3)均在二次函数y=−x2+2x+c的图象上,则y1,y2,y3的大小关系是()A. y1=y2>y3B. y1>y2>y3C. y3>y2>y1D. y3>y1=y210.当−2≤x≤1时,二次函数y=−(x−m)2+m2+1有最大值4,则实数m的值为()A. −74B. √3或−√3 C. 2或−√3 D. 2或√3或−74二、填空题(本大题共6小题,共18.0分)11.方程x2=4的解为______.12.设x1,x2是一元二次方程x2−5x−1=0的两实数根,则x1+x2的值为______.13.如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC与点E,将△BCE绕点C顺时针旋转90°得到△DCF,若CE=1cm,则BF=______cm.14.用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为xcm,则可列方程为______.15.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2−4ac<0;②a+b+c<0;③c−a=2;④方程ax2+bx+c−2=0有两个相等的实数根,其中正确结论的个数为______个.16.如图(1)在等边三角形△ABC中,边AB上的点D从顶点A出发,向顶点B运动,同时,边BC上的点E从顶点B出发,向顶点C运动,D,E两点运动速度的大小相等,设x= AD,y=AE+CD,y关于x的函数图象如图(2),图象过点(0,4),则图象最低点的纵坐标是______.三、解答题(本大题共8小题,共72.0分)17.已知二次函数y=−12x2+x+32,一次函数y=kx+6的图象与二次函数的图象都经过点A(−3,m),求m与k的值.18.如图,已知Rt△ABC中,∠A=90°,∠ABC=60°,将△ABC绕点B顺时针旋转60°得到△EBD,求证:CD= 2AB.19.如图,利用函数y=x2−4x+3的图象,直接回答:(1)方程x2−4x+3=0的解是______.(2)当x满足______时,y随x的增大而增大.(3)当x满足______时,函数值大于0.(4)当0<x<5时,y的取值范围是______.20.如图是由边长为1的小正方形组成的网格,每个小正方形的顶点叫做格点,正方形ABCD的四个顶点都是格点,点E也是格点.仅用无刻度的直尺在给定网格中完成画图,按步骤完成下列问题.(1)将线段BE绕B点逆时针旋转90°,点E的对应点为F,画出线段BF;(2)画线段EF的中点G;(3)连接BG,并延长交CD于点H,直接写出CH的长.21.如图,在四边形ABCD中,BC=CD,∠BCD=α°,∠ABC+∠ADC=180°,AC、BD交于点E,将△CBA绕点C顺时针α°旋转得到△CDF.(1)求证:∠CAB=∠CAD.(2)若∠ABD=90°,AB=3,BD=4,△BCE的面积为S1,△CDE的面积为S2,求S1:S2的值.22.某服装店购进一批秋衣,价格为每件30元.物价部门规定其销售单价不高于每件60元,经市场调查发现:日销售量y(件)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围;(2)求该服装店销售这批秋衣日获利W(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该服装店日获利最大?最大获利是多少元?23.(1)如图1,正方形ABCD中以AB为边在正方形内构造等边△ABE,等边△ABE边AE=√3.交正方形对角线BD于F点,求证:BFFD(2)将等腰Rt△BEF绕B点旋转至如图2的位置,连接DE,M点为DE的中点,连接AM、MF,求MA与MF的关系;(3)如图3,将△BEF绕B点旋转一周,若EF=4,AB=1,请直接写出点M在这个过程中的运动路径长为______.24.抛物线y=ax2−4ax+3a(a>0)交x轴正半轴于A,B两点(A在B的左边),交y轴正半轴于C;(1)如图①,连接AC,BC,若△ABC的面积为3,①求抛物线的解析式;②抛物线上是否存在点P,使∠PCB+∠ACB≤45°?若存在,求出P点横坐标的取值范围;(2)如图②,若Q为B点右侧抛物线上的动点,直线QA、QB分别交y轴于点D,E,判断CD:DE的值是否为定值.说明理由.答案和解析1.【答案】B【解析】解:化为一般式为:3x2−6x+1=0∴故一次项系数为−6,故选:B.根据一元二次方程的一般式即可求出答案.本题考查一元二次方程的一般式,解题的关键是熟练运用一元二次方程的一般式,本题属于基础题型.2.【答案】B【解析】【分析】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−ℎ)2+k中,对称轴为x=ℎ,顶点坐标为(ℎ,k).由二次函数的解析式直接可求得答案.【解答】解:∵y=4(x−3)2+7,∴顶点坐标为(3,7),故选:B.3.【答案】A【解析】解:点(−3,−1)关于原点的对称点的坐标为:(3,1).故选:A.根据两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(−x,−y),进而得出答案.此题主要考查了原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.4.【答案】A【解析】解:A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:A.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.此题主要考查了中心对称图形,关键是掌握中心对称图形定义.5.【答案】C【解析】解:∵关于x的一元二次方程(k−2)x2+2x−1=0有两个不相等的实数根,∴Δ=4+4(k−2)>0,解得k>1,∵k−2≠0,∴k≠2,∴k的取值范围k>1且k≠2,故选:C.根据关于x的一元二次方程(k−2)x2+2x−1=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围.本题考查了根的判别式,总结:一元二次方程根的情况与判别式Δ的关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.6.【答案】D【解析】解:∵将△ABC绕点A顺时针旋转90°后得到的△AB′C′,∴AC=AC′,∠CAC′=90°,∠B=∠AB′C′,∴△ACC′是等腰直角三角形,∴∠ACC′=45°,∴∠AB′C′=∠ACC′+∠B′C′C=45°+32°=77°,∴∠B=77°,故选:D.由旋转的性质可知△ACC′是等腰直角三角形,再利用三角形外角的性质可得.本题主要考查了旋转的性质,等腰直角三角形的判定与性质,三角形外角的性质等知识,证明△ACC′是等腰直角三角形是解题的关键.7.【答案】B【解析】解:设两次降价的百分率均是x,由题意得:x满足方程为100(1−x)2=81.故选:B.若两次降价的百分率均是x,则第一次降价后价格为100(1−x)元,第二次降价后价格为100(1−x)(1−x)=100(1−x)2元,根据题意找出等量关系:第二次降价后的价格=81元,由此等量关系列出方程即可.本题主要考查列一元二次方程,关键在于读清楚题意,找出合适的等量关系列出方程.8.【答案】C【解析】解:y=3x2,此抛物线的顶点坐标为(0,0),把点(0,0)向下平移3个单位再向右平移2个单位所得对应点的坐标为(2,−3),所以原抛物线解析式为y=3(x−2)2−3.故选:C.利用反向平移解决问题,先确定y=x2+4x+4的顶点坐标为(−2,0),在把把点(−2,0)反向平移得到(0,−4),然后根据顶点式写出原抛物线解析式.本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.【答案】A=1,【解析】解:二次函数y=−x2+2x+c的图象的对称轴为直线x=−22×(−1)而P1(−1,y1)和P2(3,y2)到直线x=1的距离都为2,P3(5,y3)到直线x=1的距离为4,所以y1=y2>y3.故选:A.先求出抛物线的对称轴方程,然后根据二次函数的性质,通过比较三个点到对称轴的距离大小可得到y1,y2,y3的大小关系.本题考查了二次函数图象上点的坐标特征:熟练掌握二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.10.【答案】C【解析】解:二次函数的对称轴为直线x=m,①m<−2时,x=−2时二次函数有最大值,此时−(−2−m)2+m2+1=4,,与m<−2矛盾,故m值不存在;解得m=−74②当−2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=−√3,m=√3(舍去);③当m>1时,x=1时二次函数有最大值,此时,−(1−m)2+m2+1=4,解得m=2,综上所述,m的值为2或−√3.故选:C.根据对称轴的位置,分三种情况讨论求解即可.本题考查了二次函数的最值问题,难点在于分情况讨论.11.【答案】x1=2,x2=−2【解析】【分析】本题考查了一元二次方程的解法−直接开平方法,比较简单.利用直接开平方法,求解即可.【解答】解:开方得,x=±2,即x1=2,x2=−2.故答案为x1=2,x2=−2.12.【答案】5【解析】解:∵x1、x2是一元二次方程x2−5x−1=0的两实数根,∴x1+x2=5,故答案为5.由根与系数的关系可直接求得x1+x2的值.本题主要考查根与系数的关系,掌握一元二次方程的两根之和等于−ba 、两根之积等于ca是解题的关键.13.【答案】(2+√2)【解析】【分析】本题考查了旋转的性质、正方形的性质以及角平分线的性质,解题的关键是求出线段BC 以及CF的长度.本题属于基础题,难度不大,解决该题型题目时,结合角平分线以及等腰直角三角形的性质求出线段的长度是关键.过点E作EM⊥BD于点M,则△DEM为等腰直角三角形,根据角平分线以及等腰直角三角形的性质即可得出DE的长度,再根据正方形以及旋转的性质即可得出线段BF的长.【解得】解:过点E作EM⊥BD于点M,如图所示.∵四边形ABCD为正方形,∴∠BDC=45°,∠BCD=90°,∴△DEM为等腰直角三角形.∵BE平分∠DBC,EM⊥BD,∴EM=EC=1cm,∴DE=√2EM=√2cm.由旋转的性质可知:CF=CE=1cm,∴BF=BC+CF=CE+DE+CF=1+√2+1=(2+√2)cm.故答案为(2+√2).14.【答案】x(20−x)=64【解析】解:设矩形的一边长为xcm,∵长方形的周长为40cm,∴宽为(20−x)cm,得x(20−x)=64.故答案为:x(20−x)=64.本题可根据长方形的周长,用x表示宽的值,然后根据面积公式即可列出方程.本题考查了由实际问题抽象出一元二次方程,要掌握运用长方形的面积计算公式S=ab 来解题的方法.15.【答案】3【解析】解:∵抛物线与x轴有两个交点,∴b2−4ac>0,所以①错误;∵顶点为D(−1,2),∴抛物线的对称轴为直线x=−1,∵抛物线与x轴的一个交点A在点(−3,0)和(−2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(−1,2),∴a−b+c=2,=−1,∵抛物线的对称轴为直线x=−b2a∴b=2a,∴a−2a+c=2,即c−a=2,所以③正确;∵当x=−1时,二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,∴方程ax2+bx+c−2=0有两个相等的实数根,所以④正确.综上所述,共有3个正确结论,故答案为:3.由抛物线与x轴有两个交点得到b2−4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=−1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(−1,2)得a−b+c=2,=−1得b=2a,所以c−a=2;根据二次函数的最由抛物线的对称轴为直线x=−b2a大值问题,当x=−1时,二次函数有最大值为2,即只有x=−1时,ax2+bx+c=2,所以说方程ax2+bx+c−2=0有两个相等的实数根.本题考查了二次函数的图象与系数的关系,关键是掌握以下性质:二次函数y=ax2+ bx+c(a≠0)的图象为抛物线;对称轴为直线x=−b;抛物线与y轴的交点坐标为(0,c);2a当b2−4ac>0,抛物线与x轴有两个交点;当b2−4ac=0,抛物线与x轴有一个交点;当b2−4ac<0,抛物线与x轴没有交点16.【答案】2√2−2【解析】解:∵图象过点(0,4),即当x=AD=BE=0时,点D与A重合,点E与B重合,此时y=AE+CD=AB+AC=4,∵△ABC为等腰直角三角形,∴AB=AC=2,过点A作AF⊥BC于点F,过点B作NB⊥BC,并使得BN=AC,如图所示:∵AD=BE,∠NBE=∠CAD,∴△NBE≌△CAD(SAS),∴NE=CD,又∵y=AE+CD,∴y=AE+CD=AE+NE,当A、E、N三点共线时,y取得最小值,如图所示,此时:AD=BE=x,AC=BN=2,∴AF=AC⋅sin45°=√2,又∵∠BEN=∠FEA,∠NBE=∠AFE∴△NBE∽△AFE,∴NBAF =BEFE,即√2=√2−x,解得:x=2√2−2,∴图象最低点的横坐标为:2√2−2.故答案为:2√2−2.观察函数图象,根据图象经过点(0,4)即可推出AB和AC的长,构造△NBE≌△CAD,当A、E、N三点共线时,y取得最小值,利用三角形相似求出此时的x值即可.本题考查动点问题的函数图象,通过分析动点位置结合函数图象推出AB、AC的长再通过构造三角形全等找到最小值是解决本题的关键.17.【答案】解:∵二次函数y=−12x2+x+32经过点A(−3,m),∴m=−12×9+(−3)+32=−6.又∵一次函数y=kx+6的图象经过点A(−3,m),∴m=−3k+6,即−6=−3k+6,解得,k=4.∴m和k的值分别是−6、4.【解析】把点A的坐标代入二次函数解析式,利用方程可以求得m的值;然后把点A的坐标代入一次函数解析式,也是利用方程来求k的值.本题考查了二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,图象上点的坐标适合解析式是解题的关键.18.【答案】证明:在Rt△ABC中,∠A=90°,∠ABC=60°,∴∠ACB=30°,∴BC=2AB,∵将△ABC绕点B顺时针旋转60°得到△EBD,∴BC=BD,∠CBD=60°,∴△CBD是等边三角形,∴CD=BD,∴CD=2AB.【解析】由特殊角的性质可得BC=2AB,再由旋转的性质可得△CBD是等边三角形,即可推出结论.本题考查了旋转的性质,含30°角的直角三角形,等边三角形的判定与性质,证明△CBD 是等边三角形是解题的关键.19.【答案】x1=1,x2=3>2x<1或x>3−1≤y<8【解析】解:(1)由图象可得,当y=0时,x=1或x=3,故方程x2−4x+3=0的解是x1=1,x2=3,故答案为:x1=1,x2=3;(2)由图象可得,=2时,y随x的增大而增大,当y=0时,x>1+32故答案为:>2;(3)由图象可得,当x<1或x>3时,函数值大于0,故答案为:x<1或x>3;(4)由图象可得,=2,当x=2时,该函数取得最小值−1,函数y=x2−4x+3的对称轴是直线x=1+32∴当0<x<5时,x=2取得最小值−1,x=5时y的值为8,即当0<x<5时,y的取值范围是−1≤y<8,故答案为:−1≤y<8.(1)根据函数图象,可以得到方程x2−4x+3=0的解;(2)根据函数图象,可以写出当x为何值时y随x的增大而增大;(3)根据函数图象可以写出,当x为何值时,函数值大于0;(4)根据函数图象和二次函数的性质,可以得到当0<x<5时,y的取值范围.本题考查抛物线与x轴的交点、二次函数的性质、二次函数的图象、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用数形结合的思想解答.20.【答案】解:(1)如图所示,线段BF即为所求;(2)如图所示,连接EF,根据矩形的性质可知对角线的交点即为点G;(3)如图,在Rt△FED中,EF=√DE2+DF2=√32+52=√34,∵G是EF的中点,∴FG=12EF=√342,∵∠FGH=∠D=90°,∠GFH=∠DFE,∴△GFH∽△DFE,∴GFDF =FHEF,∴√3425=√34,∴FH=175,∴CH=HF−CF=175−1=125,∴CH的长为125.【解析】(1)根据旋转的性质,作出点F的位置即可;(2)连接EF,根据矩形的性质可知对角线的交点即为点G;(3)利用△GFH∽△DFE,可求得FH=175,即可解决问题.本题主要考查了作图−旋转变换,矩形的性质,相似三角形的判定与性质等知识,证明△GFH∽△DFE得出FH的长是解题的关键.21.【答案】(1)证明:∵将△CBA绕点C顺时针α°旋转得到△CDF.∴∠CAB=∠CFD,∠ABC=∠CDF,AC=CF,∵∠ABC+∠ADC=180°,∴∠ADC+∠CDF=180°,∴点A,点D,点F三点共线,∵AC=CF,∴∠CFD=∠CAD,∴∠BAC=∠CAD;(2)解:∵∠ABD=90°,AB=3,BD=4,∴AD=√AB2+BD2=√9+16=5,如图,过点D作DH//AB交AC的延长线于H,∴∠H=∠BAC,∴∠DAC=∠H,∴AD=DH=5,∵AB//DH,∴△ABE∽△HDE,∴BEDE =ABDH=35,∴S1:S2=BEDE =35.【解析】(1)由旋转的性质可得∠CAB=∠CFD,∠ABC=∠CDF,AC=CF,由等腰三角形的性质可得∠CFD=∠CAD=∠BAC;(2)由勾股定理可求AD=5,过点D作DH//AB交AC的延长线于H,可证△ABE∽△HDE,可得BEDE =ABDH=35,即可求解.本题考查了相似三角形的判定和性质,旋转的性质,等腰三角形的性质等知识,添加恰当辅助线构造相似三角形是解题的关键.22.【答案】解:(1)设y=kx+b,根据题意得:{60k+b=8050k+b=100,解得:k=−2,b=200,∵球衣进价为30元,销售单价不高于每件60元,∴30≤x≤60,∴y与x的函数关系式为y=−2x+200(30≤x≤60);(2)由题意得:W=(x−30)y−450=(x−30)(−2x+200)−450=−2x2+260x−6450,∴W与x之间的函数关系式为W=−2x2+260x−6450;(3)W=−2x2+260x−6450=−2(x−65)2+2000,∵−2<0,∴x<65时,W随x的增大而增大,∵30≤x≤60,∴当x=60时,w有最大值,最大值为1950,∴当销售单价为60元时,该服装店日获利最大,最大值为1950元.【解析】(1)根据y与x成一次函数解析式,设为y=kx+b,把x与y的两对值代入求出k 与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量列出W关于x的二次函数解析式即可;(3)利用二次函数的性质求出W的最大值,以及此时x的值即可.此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.23.【答案】4√2π【解析】(1)证明:如图1中,过点F作FH⊥AB于点H.∵四边形ABCD是正方形,△ABE是等边三角形,∴∠ABD=45°,∠BAF=60°,设AH=m,则FH=BH=√3m,∴AB=m+√3m=(1+√3)m,∴BD=√2AB=(√2+√6)m,BF=√2BH=√6m,∴DF=BD=BF=√2m,∴BFDF =√6m√2m=√3;(2)解:结论:MA=MF,MA⊥MF.理由:如图2中,延长AM到T,使得MT=MA,连接ET,FT,AF,延长TE交AB的延长线于点H,设BF交EH于点J.∵AM=MT,∠AMD=∠TME,MD=ME,∴△AMD≌△TME(SAS),∴∠DAM=∠MTE,AD=ET,∴AD//TH,∵四边形ABCD是正方形,∴∠BAD=90°,AD=AB,∴AB=ET,∴∠H=180°−∠BAD=90°,∵∠H=∠EFJ=90°,∠HJB=∠FJE,∴∠HBJ=∠FEJ,∵∠FET+∠FEJ=180°,∠ABF+∠HBJ=180°,∴∠ABF=∠TEF,∵BF=EF,∴△ABF≌△TEF(SAS),∴AF=ET,∠AFB=∠TFE,∴∠AFT=∠BFE=90°,∵MA=MT,∴MF⊥AT.MF=AM=MT;(3)解:如图3中,连接BD,取BD的中点O,连接OM,∵EF=BF=4,∠BFE=90°,∴BE=√BF2+EF2=√42+42=4√2,∵OD=OB,DM=ME,∴OM=1BE=2√2,2∴点M的运动轨迹是以O为圆心,2√2长为半径的圆,∴点M的运动路径的长=2×π×2√2=4√2π.故答案为:4√2π.(1)如图1中,过点F作FH⊥AB于点H.设AH=m,则FH=BH=√3m,求出DF,BF(用m表示),可得结论;(2)结论:MA=MF,MA⊥MF.如图2中,延长AM到T,使得MT=MA,连接ET,FT,AF,延长TE交AB的延长线于点H,设BF交EH于点J.证明△AFT是等腰直角三角形,可得结论;(3)如图3中,连接BD,取BD的中点O,连接OM,利用勾股定理求出BE,再利用三角形的中位线定理求出OM=2√2,推出点M的运动轨迹是以O为圆心,2√2长为半径的圆,可得结论.本题属于四边形综合题,考查了正方形的性质,解直角三角形,全等三角形的判定和性质,三角形中位线定理,轨迹等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用三角形中位线定理探究轨迹问题,属于中考压轴题.24.【答案】【解答】解:(1)①令y=ax2−4ax+3a=0,解得:x=1或3,令x=0,则y=3a,则点A、B、C的坐标分别为(1,0)、(3,0)、(0,3a),S△ABC=12×AB×OC=12×2×3a=3,解得:a=1,故抛物线的表达式为:y=x2−4x+3…①;②存在,理由:如图②延长CP交x轴于点H,过点H作HG⊥AC交CA的延长线于点G,设∠PCB=∠PCB+∠ACB=45°,tan∠CAO=OCOA=3=tan∠HAG,设:GH=3x,则AG=x,AH=√10x,则GC=GH,即x+√10=3x,x=√102,则AH=5,则点H(6,0),将点C、H的坐标代入一次函数表达式并解得:直线CH的表达式为:y=−12x+3…②,联立①②并解得:x=72;而x ≥2,故:P 点横坐标的取值范围为2≤x ≤72且x ≠3;(2)设点Q(m,am 2−4am +3a),点A(1,0)、B(3,0),把点Q 、A 坐标代入一次函数表达式:y =sx +t 得:{am 2−4am +3a =sm +t 0=s +t ,解得:{k =am −3a b =3a −am, 故函数的表达式为:y =a(m −3)x +a(3−m),即点D 坐标为(0,3a −am),同理可得点E(0,3a −3am),CD DE =3a−3a+am 3a−am−3a+3am =12为定值.【解析】(1)①令y =ax 2−4ax +3a =0,解得:x =1或3,令x =0,则y =3a ,则点A 、B 、C 的坐标分别为(1,0)、(3,0)、(0,3a),即可求解;②tan∠CAO =OC OA =3=tan∠HAG ,设:GH =3x ,则AG =x ,AH =√10x ,则GC =GH ,即2x +√10=3x ,则AH =5,则点H(6,0),将点C 、H 的坐标代入一次函数表达式并解得:直线CH 的表达式为:y =−12+3…②,联立①②并解得:x =72,即可求解;(2)设点P(m,am 2−4am +3a),点A(1,0)、B(3,0),把点P 、A 坐标代入一次函数表达式:y =sx +t 得:{am 2−4am +3a =sm +t 0=s +t ,解得:{k =am −3a b =3a −am ,故函数的表达式为:y =a(m −3)x +a(3−m),即点D 坐标为(0,3a −am),同理可得点E(0,3a −3am),CD DE =3a−3a+3m 3a−am−3a+3am =32a 为定值.本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等知识,综合性强,难度适中.。

2021年中考数学真题分类汇编--函数:函数与几何(压轴题1)(老师版)

2021年中考数学真题分类汇编--函数:函数与几何(压轴题1)(老师版)
(4)点Q是抛物线上位于x轴上方的一点,点R在x轴上,是否存在以点Q为直角顶点的等腰Rt△CQR?若存在,求出点Q的坐标,若不存在,请说明理由.
【分析】(1)用待定系数法即可求解;
(2)当∠CP′M为直角时,则P′C∥x轴,即可求解;当∠PCM为直角时,用解直角三角形的方法求出PN=MN+PM=6+ = ,即可求解;
【详解】(1)将 代入 ,
化简得 ,则 (舍)或 ,
∴ ,
得: ,则 .
设直线 对应的函数表达式为 ,
将 、 代入可得 ,解得 ,
则直线 对应的函数表达式为 .
(2)如图,过点A作 ∥BC,设直线 与y轴的交点为G,将直线BC向下平移GC个单位,得到线 ,
【答案】(1) ;(2) ;(3)存在, 或 .
6.(2021•株洲市)已知二次函数 .
(1)若 , ,求方程 的根的判别式的值;
(2)如图所示,该二次函数的图像与 轴交于点 、 ,且 ,与 轴的负半轴交于点 ,点 在线段 上,连接 、 ,满足 , .
①求证: ;
②连接 ,过点 作 于点 ,点 在 轴的负半轴上,连接 ,且 ,求 的值.
当x=±2时,y= =±2,
故“雁点”坐标为(2,2)或(﹣2,﹣2);
(2)①∵“雁点”的横坐标与纵坐标相等,
故“雁点”的函数表达式为y=x,
∵物线y=ax2+5x+c上有且只有一个“雁点”E,
则ax2+5x+c=x,
则△=25﹣4ac=0,即ac=4,
∵a>1,
故c<4;
②∵ac=4,则ax2+5x+c=0为ax2+5x+ =0,
作点C关于函数对称轴的对称点C′(2,8),作点D关于x轴的对称点D′(0,﹣4),

2021年湖北武汉中考数学试题(解析版)

2021年湖北武汉中考数学试题(解析版)

{来源}2021湖北武汉初中毕业、升学考试数学 {适用范围:3.九年级}{标题}2021年湖北省武汉市初中毕业、升学考试数 学(满分150分,考试时间120分钟){题型:1-选择题}一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. {题目}1.(2021湖北武汉1)实数2021的相反数是( ) A .2021B .-2021C .20191D .20191-{答案}B{解析}本题考查了相反数的求法,求相反数一般方法在原数前加“-”,再化简,2021的相反数是-2021.故选B . {分值}3{章节:[1-1-2-3]相反数} {考点:相反数的定义} {类别:常考题} {难度:1-最简单}{题目}2.(2021湖北武汉2)式子1-x 在实数范围内有意义,则x 的取值范围是( ) A .x >0B .x ≥-1C .x ≥1D .x ≤1{答案}C{解析}本题考查了二次根式有意义的条件及解一元一次不等式,由1-x 在实数范围内有意义,得x -1≥0,解得x ≥1,故选B . {分值}3{章节:[1-16-1]二次根式}{考点:二次根式的有意义的条件} {考点:解一元一次不等式} {类别:易错题} {难度:2-简单}{题目}3.(2021湖北武汉3) 不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .3个球都是黑球 B .3个球都是白球 C .三个球中有黑球 D .3个球中有白球 {答案}B{解析}本题考查了事件类型的判断,因为3个球都是黑球是随机事件,所以A 错误;因为3个球都是白球是不可能事件,所以B 正确;因为三个球中有黑球是随机事件,所以C 错误;因为3个球中有白球是随机事件,所以D 错误.故选B . {分值}3{章节:[1-25-1-1]随机事件}{考点:事件的类型}{类别:常考题}{难度:2-简单}{题目}4.(2021湖北武汉4)现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是()A.诚B.信C.友D.善{答案}D{解析}本题考查了轴对称图形的定义,“诚”、“信”、“友”都不是轴对称图形,只有“善”是轴对称图形。

2021年武汉市中考数学模拟试题2勤学早(二)及答案

2021年武汉市中考数学模拟试题2勤学早(二)及答案

2021年武汉市中考数学模拟试题2勤学早(二)及答案《勤学早》2021年武汉市四月调考逼真模拟试题(二)一、选择置l共10小置,每小题3分,共30分l 1.在-4,O,3,-8这四个数中,最大的数是( ) A.-4 B.O C.3 D.-8 210x+有意义的x的取值范围是( ) 7***-*****Ax B x≤- C_x≥ Dx≥77773不等式8-2x0的解集在数轴上表示正确的是( )4.下列事件是随机事件的是( ) A.购买一张福利彩票,中奖.B.在-个标准大气压下,加热到l00°C,水沸腾.C.有一名运动员奔跑的速度是50米/秒.D.在一个仅装着白球和黑球的袋中摸球,摸出红球.25.已知一元二次方程x-4x+3=0两根为x1、x2则x1+x2的值是( ) A.4 B.3 C.-4 D.-36.如图,空心圆柱的主视图是( )7.如图所示,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC.∠EBC= ∠E=60°, 若BE=6,DE=2,则BC的长度是( ) A.6 B.8 C.9 D.108.下列图形都是由同样大小的矩形按一定的规律组成,其中,第①个图形中一共有6个矩形,第②个图形中一共有11个矩形,……,按此规律,第⑥个图形中矩形的个数一共有()A.30个B.25个C.28个D.31个9.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按四个等级进行统计,其中A级:90分-100分;B级:75分-89分;c级:60分-74分;D级:60分以T(D级为不合格),将统计结果绘制如下两幅统计图,则以下四个结论:①D级学生的人数占全班总人数的百分比为4%;②扇形统计图中c级所在的扇形圆心角的度数为72。

;③该班学生体育测试成绩的中位数落在c等级内;④若该校九年级学生共有500人,估计这次考试中合格的学生共有480人,其中结论正确的个数有( ) A.1个B.2个C.3个D.4个10.如图,梯形ABCD中,AB//DC,AB上BC,AB=2cm,CD=4cm .以BC上一点0为圆心的圆经过A、D两点,且∠AOD=90°.则圆心O 到弦AD的距离是( )A.6cm B10 cm C.23 cm D.25cm二、填空题(共6小分,每小题3分,共18分)11。

2021年湖北省武汉市中考数学模拟试卷(含解析)

2021年湖北省武汉市中考数学模拟试卷(含解析)

2021年湖北省武汉市中考数学模拟试卷一、选择题(共10小题).1.实数﹣2020的相反数是()A.2020B.﹣2020C.2021D.﹣20212.下列x的值能使二次根式有意义的是()A.﹣2B.﹣1C.0D.13.下列事件中,是必然事件的是()A.从一个只有红球的盒子里摸出一个球是红球B.买一张电影票,座位号是5的倍数C.掷一枚质地均匀的硬币,正面向上D.走过一个红绿灯路口时,前方正好是红灯4.下列微信表情图标属于轴对称图形的是()A.B.C.D.5.如图是一个空心圆柱体,其主视图是()A.B.C.D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.7.若两个点(x1,﹣2),(x2,4)均在反比例函数y=的图象上,且x1>x2,则k的值可以是()A.4B.3C.2D.18.某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为:()①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为4件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个B.2个C.3个D.4个9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.410.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图形有10个正三角形,…依此规律,若第n个图案有2020个三角形,则n=()A.670B.672C.673D.676二、填空题(共6小题).11.化简二次根式的结果是.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.13.计算:=.14.在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD =.15.抛物线y=ax2+bx﹣3(a≠0)与x轴有两个交点,且交点位于y轴两侧,则下列关于这个二次函数的说法正确的有.(填序号)①a>0;②若b>0,则当x>0时,y随x的增大而增大;③a+b<3;④一元二次方程ax2+bx﹣1=0的两根异号.16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.三、解答题(本大题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)17.计算:[a3•a5+(3a4)2]÷a2.18.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.19.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如图统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有人?在如图扇形统计图中A等级所对应的圆心角度数为度.(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?20.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.21.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.22.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W(元)与x(天)之间的函数关系式;(2)问哪一天销售这种水果的利润最大?最大日销售利润为多少?23.在平行四边形ABCD中,点E、F分别在边AB、BC上,DE、AF交于点M.(1)如图1,E为AB的中点,AF⊥BC交BC于点F,过点E作EN⊥AF交AF于点N,,直接写出的值是;(2)如图2,∠B=90°,∠ADE=∠BAF,求证:△AEM∽△AFB;(3)如图3,∠B=60°,AB=AD,∠ADE=∠BAF,求证:.24.如图1,直线L:y=﹣x+1与x轴,y轴分别交于点B,点E,抛物线L1:y=ax2+bx+c 经过点B,点A(﹣3,0)和点C(0,﹣3),并与直线L交于另一点D.(1)求抛物线L1的解析式;(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P 的坐标;(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M(,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.参考答案一、选择题(共10小题).1.实数﹣2020的相反数是()A.2020B.﹣2020C.2021D.﹣2021解:实数﹣2020的相反数是:2020.故选:A.2.下列x的值能使二次根式有意义的是()A.﹣2B.﹣1C.0D.1解:由题意得,x﹣1≥0,解得,x≥1,故x的值可以为1,故选:D.3.下列事件中,是必然事件的是()A.从一个只有红球的盒子里摸出一个球是红球B.买一张电影票,座位号是5的倍数C.掷一枚质地均匀的硬币,正面向上D.走过一个红绿灯路口时,前方正好是红灯解:A、从一个只有红球的盒子里摸出一个球是红球,是必然事件;B、买一张电影票,座位号是5的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、走过一个红绿灯路口时,前方正好是红灯,是随机事件.故选:A.4.下列微信表情图标属于轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,本选项不合题意;B、不是轴对称图形,本选项不合题意;C、是轴对称图形,本选项符合题意;D、不是轴对称图形,本选项不合题意.故选:C.5.如图是一个空心圆柱体,其主视图是()A.B.C.D.解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选:D.6.某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.B.C.D.解:根据题意画图如下:共有12种等可能数,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是=;故选:C.7.若两个点(x1,﹣2),(x2,4)均在反比例函数y=的图象上,且x1>x2,则k的值可以是()A.4B.3C.2D.1解:∵两个点(x1,﹣2),(x2,4)中的﹣2<4,x1>x2,∴反比例函数y=的图象经过第二、四象限,∴k﹣2<0,解得k<2.观察各选项,只有选项D符合题意.故选:D.8.某快递公司每天上午7:00﹣8:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,下列说法正确的个数为:()①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为4件;③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同.A.1个B.2个C.3个D.4个解:由题意结合图象可知:15分钟后,甲仓库内快件数量为130件,故①说法错误;甲仓库揽收快件的速度为:(130﹣40)÷15=6(件/分),所以8:00时,甲仓库内快件数为:40+6×60=400(件),故③说法正确;60﹣15=45(分),即45分钟乙仓库派送快件数量为180件,所以乙仓库每分钟派送快件的数量为:180÷45=4(件),故②说法正确;所以乙仓库快件的总数量为:60×4=240(件),设x分钟后,两仓库快递件数相同,根据题意得:240﹣4x=40+6x,解得x=20,即7:20时,两仓库快递件数相同,故④说法正确.所以说法正确的有②③④共3个.故选:C.9.如图,在半径为3的⊙O中,AB是直径,AC是弦,D是的中点,AC与BD交于点E.若E是BD的中点,则AC的长是()A.B.3C.3D.4解:连接OD,交AC于F,∵D是的中点,∴OD⊥AC,AF=CF,∴∠DFE=90°,∵OA=OB,AF=CF,∴OF=BC,∵AB是直径,∴∠ACB=90°,在△EFD和△ECB中∴△EFD≌△ECB(AAS),∴DF=BC,∴OF=DF,∵OD=3,∴OF=1,∴BC=2,在Rt△ABC中,AC2=AB2﹣BC2,∴AC===4,故选:D.10.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成.第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图形有10个正三角形,…依此规律,若第n个图案有2020个三角形,则n=()A.670B.672C.673D.676解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+1=10个三角形,…∴第n个图案有(3n+1)个三角形.根据题意可得:3n+1=2020,解得:n=673,故选:C.二、填空题(本大题共有6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号处的横线上)11.化简二次根式的结果是3.解:==3.故答案为:3.12.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是 4.5h.解:将数据重新排列为:3,3,4,5,5,6,所以这组数据的中位数为=4.5(h),故答案为:4.5h.13.计算:=﹣1.解:=﹣==﹣1.故答案为:﹣1.14.在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD =2.解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵AB⊥AC,∴∠BAC=90°,∴AC===2,∴OA=AC=,∴OB===,∴BD=2OB=2;故答案为:2.15.抛物线y=ax2+bx﹣3(a≠0)与x轴有两个交点,且交点位于y轴两侧,则下列关于这个二次函数的说法正确的有①②④.(填序号)①a>0;②若b>0,则当x>0时,y随x的增大而增大;③a+b<3;④一元二次方程ax2+bx﹣1=0的两根异号.解:设抛物线与x轴的交点为(x1,0)、(x2,0),∵两个交点在y轴两侧,∴x1•x2<0,即<0,∴a>0,因此①符合题意;当x=0时,y=﹣3,抛物线与y轴交点为(0,﹣3),当b>0时,而a>0,对称轴在y轴的左侧,在对称轴右侧,y随x的增大而增大,因此②符合题意;当x=1时,y=a+b﹣3的值无法确定,故③不符合题意,一元二次方程ax2+bx﹣1=0的两根就是一元二次方程ax2+bx﹣3=﹣2的两根,实际上就是抛物线y=ax2+bx﹣3,与直线y=﹣2的两个交点的横坐标,当抛物线的对称轴位于y 轴的左侧时,a、b同号,此时一元二次方程ax2+bx﹣1=0的两根异号,故④符合题意;故答案是:①②④.16.如图,折叠矩形纸片ABCD,使点D落在AB边的点M处,EF为折痕,AB=1,AD=2.设AM的长为t,用含有t的式子表示四边形CDEF的面积是.解:连接DM,过点E作EG⊥BC于点G,设DE=x=EM,则EA=2﹣x,∵AE2+AM2=EM2,∴(2﹣x)2+t2=x2,解得x=+1,∴DE=+1,∵折叠矩形纸片ABCD,使点D落在AB边的点M处,∴EF⊥DM,∠ADM+∠DEF=90°,∵EG⊥AD,∴∠DEF+∠FEG=90°,∴∠ADM=∠FEG,∴tan∠ADM=,∴FG=,∵CG=DE=+1,∴CF=+1,∴S四边形CDEF=(CF+DE)×1=t+1.故答案为:t+1.三、解答题(本大题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)17.计算:[a3•a5+(3a4)2]÷a2.解:原式=(a8+9a8)÷a2=10a8÷a2=10a6.18.如图,已知AD⊥BC于点D,E是延长线BA上一点,且EC⊥BC于点C,若∠ACE=∠E.求证:AD平分∠BAC.【解答】证明:∵AD⊥BC于点D,EC⊥BC于点C,∴AD∥EC,∴∠BAD=∠E,∠DAC=∠ACE,∵∠ACE=∠E,∴∠BAD=∠DAC,即AD平分∠BAC.19.为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如图统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有40人?在如图扇形统计图中A等级所对应的圆心角度数为45度.(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?解:(1)这次随机抽取的学生共有20÷50%=40(人),扇形统计图中A等级所对应的圆心角度数为360°×=45°,故答案为:40、45;(2)B等级人数为40×27.5%=11(人),补全图形如下:(3)这次九年级学生期末数学考试成绩为优秀的学生人数大约有1200×=480(人).20.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,点B的坐标为(1,0).(1)画出△ABC关于x轴对称的△A1B1C1,并写出C1点的坐标;(2)画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2,并写出B2点的坐标.解:(1)如图,△A1B1C1,即为所求,C1点的坐标为(3,﹣1);(2)如图,△A2B2C2,即为所求,B2点的坐标为(0,1).21.如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.【解答】(1)证明:∵AE与⊙O相切,AB是⊙O的直径∴∠BAE=90°,∠ADB=90°,∴∠ADC=90°,∵CE∥AB,∴∠BAE+∠E=180°,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,∴∠BAC=∠ACE,∴∠BCA=∠ACE,在△ADC和△AEC中,,∴△ADC≌△AEC(AAS),∴AD=AE;(2)解:连接BF,如图所示:∵∠CBF=∠DAC,∠AFB=90°,∴∠CFB=90°,sin∠CBF==sin∠DAC=,∵AB=BC=10,∴CF=2,∵BF⊥AC,∴AC=2CF=4,在Rt△ACD中,sin∠DAC==,∴CD=×4=4,∴AD===8.22.某超市购进一批时令水果,成本为10元/千克,根据市场调研发现,这种水果在未来30天的销售单价m(元/千克)与时间x(天)之间的函数关系式为m=x+20(1≤x≤30,x为整数),且其日销售量y(千克)与时间x(天)之间的函数关系如图所示:(1)求每天销售这种水果的利润W(元)与x(天)之间的函数关系式;(2)问哪一天销售这种水果的利润最大?最大日销售利润为多少?解:(1)由题意设销售数量y=kx+b(k≠0),把(10,55),(26,39)代入函数解析式得:,解得:,∴y=﹣x+65,∴W=y(m﹣10)=(﹣x+65)(x+20﹣10)=﹣x2+x+650(1≤x≤30,x为整数).∴每天销售这种水果的利润W(元)与x(天)之间的函数关系式为W=﹣x2+x+650(1≤x≤30,x为整数);(2)∵W=﹣x2+x+650,∴抛物线的对称轴为直线x=﹣=22.5,∵a=﹣<0,1≤x≤30,x为整数,∴当x=22或x=23时,W取得最大值,最大值为:(﹣22+65)(×22+10)=43×21=903(元).∴第22或23天销售这种水果的利润最大,最大日销售利润为903元.23.在平行四边形ABCD中,点E、F分别在边AB、BC上,DE、AF交于点M.(1)如图1,E为AB的中点,AF⊥BC交BC于点F,过点E作EN⊥AF交AF于点N,,直接写出的值是;(2)如图2,∠B=90°,∠ADE=∠BAF,求证:△AEM∽△AFB;(3)如图3,∠B=60°,AB=AD,∠ADE=∠BAF,求证:.解:(1)∵EN⊥AF,BF⊥AF,∴EN∥BF,又∵E为AB的中点,∴BF=2EN,∵,∴,∴,故答案为:;(2)证明:∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠BAD=∠ABC=90°,∵∠ADE=∠BAF,∴∠BAD﹣∠ADE=∠ABC﹣∠BAF,∴∠AED=∠AFB,又∵∠BAF=∠MAE,∴△AEM∽△AFB;(3)证明:如图,连接AC,过点B作BP∥AC交AF的延长线于点P,∴△BFP∽△CFA,∴,∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形,∵∠ABC=60°,∴∠PBC=∠ACB=60°,∴∠ABP=120°,∴∠DAE=∠ABP,在△ADE与△BAP中,,∴△ADE≌△BAP(ASA),∴AE=BP,又∵AC=AD,∴.24.如图1,直线L:y=﹣x+1与x轴,y轴分别交于点B,点E,抛物线L1:y=ax2+bx+c 经过点B,点A(﹣3,0)和点C(0,﹣3),并与直线L交于另一点D.(1)求抛物线L1的解析式;(2)如图2,点P为x轴上一动点,连接AD,AC,CP,当∠PCA=∠ADB时,求点P 的坐标;(3)如图3,将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,点M(,0),点N是L2上且位于第一象限内一动点,MN交L2于Q点,QR∥x轴分别交OF,ON于S,R,试说明:QS与SR存在一个确定的数量关系.解:(1)令y=0,有y=﹣x+1=0,得x=1,∴B(1,0),把点A(﹣3,0)、B(1,0)和点C(0,﹣3)代入y=ax2+bx+c中,得,解得,,∴抛物线L1的解析式为:y=x2+2x﹣3;(2)由,得,,∴D(﹣4,5),∵y=﹣x+1,∴E(0,1),B(1,0),∴OB=OE,∴∠OBD=45°.∴BD=5.∵A(﹣3,0),C(0,﹣3),∴OA=OC,AC=3,AB=4.∴∠OAC=45°,∴∠OBD=∠OAC.如图2,①当点P在点A的右边,∠PCA=∠ADB时,△PAC∽△ABD.∴,∴,∴AP=,∴;②当点P在点A的左边,∠PCA=∠ADB时,记此时的点P为P2,则有∠P2CA=∠P1CA.过点A作x轴的垂线,交P2C于点K,则∠CAK=∠CAP1,又AC公共边,∴△CAK≌△CAP1(ASA)∴AK=AP1=,∴K(﹣3,﹣),∴直线CK:y=﹣x﹣3,∴P2(﹣15,0).P的坐标:(﹣,0)或(﹣15,0);(3)QS=SR.理由如下:∵将抛物线L1平移,使其顶点是坐标原点O,得到抛物线L2,将直线DB向下平移经过坐标原点O,交抛物线L2于另一点F,∴抛物线L2的解析式为y=x2,直线OF的解析式为:y=﹣x,不妨设N(n,n2),∵点M(,0),∴直线MN的解析式为:y=,同理,直线ON的解析式为y=nx,∵MN交L2于Q点,∴Q(,),∵QR∥x轴分别交OF,ON于S,R,∴S(﹣,),R(,),∴QS=,SR=,∴QS=SR.。

2021-2022学年湖北省武汉市黄陂区九年级(上)期中数学试卷-附答案详解

2021-2022学年湖北省武汉市黄陂区九年级(上)期中数学试卷-附答案详解

2021-2022学年湖北省武汉市黄陂区九年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.将方程3x2+2x=5化成一元二次方程的一般形式,若二次项系数为3,则一次项系数和常数项分别是()A. 2,5B. 2,−5C. −2,5D. −2,−52.下列各图案中,属于中心对称图形的是()A. B. C. D.3.方程x2−6x=0两个根分别为x1,x2,则x1+x2的值是()A. −3B. 0C. 3D. 64.点(1,−2)在抛物线y=x2−4x+n上,则n的值为()A. −2B. −1C. 1D. 25.如图,点A,B分别是两个半圆的圆心,则该图案的对称中心是()A. 点AB. 点BC. 线段AB的中点D. 无法确定6.关于x的方程x2−3x+n=0有两个不相等的实数根,则n的取值范围是()A. n<94B. n≤94C. n>−94D. n>497.抛物线y=12(x+1)2−2向右平移2个单位再向上平移1个单位后所得抛物线的顶点是()A. (1,1)B. (1,−1)C. (−1,−2)D. (1,−2)8.如图,在一块长30m,宽20m的矩形苗圃基地上修建两横一纵三条等宽的道路,剩余空地种植花苗,设道路的宽为xm,若种植花苗的面积为522m2,依题意列方程()A. 20x+30×2x=600−522B. 20x+30×2x−x2=600−522C. (20−2x)(30−x)=522D. (20−x)(30−2x)=5229.如图,抛物线C1:y=x2−2x(0≤x≤2)交x轴于O,A两点;将C1绕点A旋转180°得到抛物线C2,交x轴于A1;将C2绕点A1旋转180°得到抛物线C3,交x轴于A2,…,如此进行下去,则抛物线C10的解析式是()A. y=−x2+38x−360B. y=−x2+34x−288C. y=x2−36x+288D. y=−x2+38x+36010.如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=2,线段BC绕点B旋转到BD,连AD,E为AD的中点,连CE,则CE的长不可能是()A. 1.2B. 2.05C. 2.7D. 3.1二、填空题(本大题共6小题,共18.0分)11.若2是方程x2−c=0的一个根,则c的值为______.12.x2−6x+(______)=(x−______)213.如图,在△ABC中,∠BAC=80°,将△ABC绕点A逆时针旋转110°得到△ADE,点B的对应点D恰好落在BC的延长线上,则∠E的度数为______°.14.某高档游泳健身馆每人每次游泳健身的票价为80元,每日平均客流量为136人,为了促进全民健身运动,游泳馆决定降价促销,经市场调查发现,票价每下降1元,每日游泳健身的人数平均增加2人.当每日销售收入最大时,票价下调______元.15.二次函数y=ax2+2ax+c(a,c为常数且a<0)经过(1,m),且mc<0,下列结论:①c>0;②a<−c;③若关于x的方程ax2+2ax=p−c(p>0)有整数解,则符3合条件的p的值有3个;④当a≤x≤a+2时,二次函数的最大值为c,则a=−4.其中一定正确的有______.(填序号即可)16.如图,菱形ABCD中,AB=12,∠BAD=60°,E为线段BC的中点.若点P是线段AB上一动点,Q为线段AD上一点,则△PQE的周长的最小值是______.三、计算题(本大题共1小题,共8.0分)17.解方程:x2−x−1=0.四、解答题(本大题共7小题,共64.0分)18.已知二次函数y=x2−4x+3.(1)填表:x…01234…y…______ ______ ______ ______ ______ …(2)在平面直角坐标系中画出函数y=x2−4x+3的图象;(3)由图象可知,当y>0时,x的取值范围是______.(直接写出结果)19.用一条长40cm的绳子围成一个矩形,设矩形的一边长为x cm.(1)若围成的矩形面积为75cm2,求x的值;(2)当x为何值时围成的矩形面积最大,最大面积是多少?20.如图,在△ABC中,点A(−3,−1),B(1,1),C(0,3).(1)将△ABC绕点O顺时针旋转90°,点A,B,C的对应点A1,B1,C1均落在格点上,画出旋转后的△A1B1C1,并直接写出点A1,B1,C1的坐标;(2)将△ABC绕点A旋转后,B,C对应点B2,C2均落在格点上,画出旋转后的△AB2C2,并直接写出点B2,C2的坐标;(3)若线段B1C1绕某点旋转后恰好与线段B2C2重合,直接写该点的坐标为______.21.已知抛物线y=x2−2(m−1)x+m2与x轴分别交于(x1,0),(x2,0)两点.(1)求m的取值范围.(2)若x1,x2满足(x1+2)(x2+2)=5,求m的值.(3)点(a,y1),(b,y2),(−12,y3)均在抛物线上,若−13<a<b,请直接写出y1,y2,y3的大小关系(用“<”连接).22.R0,也叫基本传染数,或者基本再生数,英文为Basic reproduction number.更确切的定义是:在没有外力介入,所有人都没有免疫力的情况下,一个感染某种传染病的人,总共会传染给其他多少个人的平均数.例如:有1人感染新型冠状病毒,若R0=3.50,则经两轮传染后感染新型冠状病毒的人数为:1+1×3.50+1×3.50×3.50≈17(人).时下人心惶惶的新型冠状病毒的基本传染数据估计为3.30到5.40之间.请解答下列问题:(1)若现有10人感染新型冠状病毒,则经历两轮传染后,感染新型冠状病毒的人数大约在什么范围内(直接写出结果,结果保留整数)?(2)最近,新型冠状病毒变异出德尔塔毒株,德尔塔变异病毒的R0值极高.若1人患病,在无任何外力影响下经历两轮传染后共有73人感染.①求德尔塔变异病毒的R0值;②国家研制出新冠疫苗后发现,通过接种疫苗可以使得R0值随接种人数比例的增高同步降低.例如,当疫苗全民接种率达到40%时,此时的R0值为:R0(1−40%)=0.6R0.若有1人感染德尔塔变异病毒,要在两轮内将总感染人数控制在7人以内,再加以隔离等措施的干涉,就可控制住疫情,则全民接种率至少应该达到多少?23.在Rt△ABC中,∠ABC=90°,∠A=α,O为AC的中点,将点O沿BC翻折得到点O′,将△ABC绕点O′顺时针旋转,使点B与C重合,旋转后得到△ECF.(1)如图1,旋转角为______.(用含α的式子表示)(2)如图2,连BE,BF,点M为BE的中点,连接OM,①∠BFC的度数为______.(用含α的式子表示)②试探究OM与BF之间的关系.(3)如图3,若α=30°,请直接写出OM的值为______.BE24.抛物线C1:y=ax2+bx+3交x轴于A(−1,0),B(3,0),交y轴于C.(1)求抛物线的解析式.(2)如图1,抛物线的对称轴l交BC于M,交OB于N,点I为MN的中点.若抛物线上一点P关于点I的中心对称点Q正好落在坐标轴上,求点P的坐标;(3)如图2,点G(−3,0),将抛物线C1平移得到抛物线C2,C2的顶点D始终在线段CG上,抛物线C2与x轴交于EF两点,过点D作DH垂直于x轴于点H,线段DH和EF之间存在怎样的数量关系?判断并说明理由.答案和解析1.【答案】B【解析】解:3x2+2x=5,3x2+2x−5=0,一次项系数是2、常数项是−5,故选:B.首先移项把5移到等号左边,然后再确定一次项系数和常数项.此题主要考查了一元二次方程的一般形式,关键是掌握任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.2.【答案】D【解析】解:选项A、B、C均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,选项D能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,故选:D.根据中心对称图形定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.此题主要考查了中心对称图形,关键是掌握中心对称图形定义.3.【答案】D【解析】解:∵方程x2−6x=0两个根分别为x1,x2,∴x1+x2=6,故选:D.根据根与系数的关系直接求解.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=−ba ,x1⋅x2=ca.4.【答案】C【解析】解:∵点(1,−2)在抛物线y=x2−4x+n上,∴−2=1−4+n,解得n=1.故选:C.把点(1,−2)代入抛物线y=x2−4x+n,即可解得n.本题主要考查用待定系数法求二次函数解析式的知识点,本题是基础题,较简单.5.【答案】C【解析】解:如图对称中心是AB的中点,故选:C.由已知两个图形的位置,判断它们是否中心对称,可以把各对应点连线,看所有连线是否交于同一点.本题考查了中心对称,理解中心对称的定义是解题的关键.6.【答案】A【解析】解:∵关于x的方程x2−3x+n=0有两个不相等的实数根,∴Δ>0,即Δ=(−3)2−4n>0,∴n<94,故选:A.根据方程有两个不相等的实数根,则Δ>0,即Δ=(−3)2−4n>0,求出n的取值范围即可.本题主要考查根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac 有如下关系:①当Δ>0时,方程有两个不相等的两个实数根;②当Δ=0时,方程有两个相等的两个实数根;③当Δ<0时,方程无实数根.7.【答案】B【解析】解:抛物线y=12(x+1)2−2向右平移2个单位再向上平移1个单位后所得抛物线是:y=12(x+1−2)2−2+1,即y=12(x−1)2−1,所以顶点为(1,−1).故选:B.直接根据二次函数图象平移的规律即可得出平移后的抛物线的解析式,进而即可得到结论.本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的法则是解答此题的关键.8.【答案】C【解析】解:设道路的宽为x m,则种植花苗的部分可合成长(30−x)m,宽(20−2x)m 的矩形,依题意得:(30−x)(20−2x)=522,故选:C.设道路的宽为xm,则种植花苗的部分可合成长(30−x)m,宽(20−2x)m的矩形,根据种植花苗的面积为522m2,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.【答案】A【解析】解:∵抛物线C1:y=x(x−2)(0≤x≤2)与x轴交于点O,A;∴抛物线C1开口向上(a=1),且经过O(0,0),A(2,0),∵将C1绕点A旋转180°得C2,交x轴于A1;∴抛物线C2开口向下(a=−1),且经过A(2,0),A1(4,0),∵将C2绕点A1旋转180°得到抛物线C3,交x轴于A2,∴抛物线C3开口向上(a=1),且经过A1(4,0),A2(6,0),…,如此进行下去,直至得C10,∴抛物线C10开口向下(a=−1),且经过A8(18,0),A9(20,0),∴C10的解析式为:y10=−(x−18)(x−20)=−x2+38x−360,故选:A.根据图象的旋转变化规律,可得出抛物线C10的开口方向及与x轴两个交点坐标,从而可求出其解析式.此题主要考查了二次函数图象的旋转规律,根据已知求出二次函数图象旋转后与x轴两个交点的坐标是解题关键.10.【答案】D【解析】解:作AB的中点O,连接OE,如图:由题意知:BD=BC=2,∵点E为AD的中点,点O为AB中点,BD=1,∴OE=12∴点E的轨迹是以O为圆心,1为半径的圆,∴当点E在CO延长线上时,CE最大,而由∠ACB=90°,∠BAC=30°,BC=2可得AB=4,∵点O为AB中点,AB=2,∴OC=12∴CE最大为OC+OE=2+1=3,∴CE的长度不能是3.1,故选:D.BD=1,从而作AB的中点O,连接OE,根据E为AD的中点,O为AB中点,可得OE=12知点E的轨迹是以点O为圆心,1为半径的圆,可求得CE最大值为3,即可得到答案.本题考查直角三角形中的旋转问题,解题的关键是作AB的中点,从而由已知得出点E的轨迹.11.【答案】4【解析】解:根据题意,将x=2代入方程x2−c=0,得:4−c=0,解得c=4,故答案为:4.根据方程的解的概念将x=2代入方程x2−c=0,据此可得关于c的方程,解之可得答案.本题主要考查一元二次方程的解,解题的关键是掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.【答案】93【解析】解:∵(x−3)2=x2−6x+32=x2−6x+9,故答案为:9,3.先根据乘积二倍项确定出后一个数为3,再根据完全平方公式a2±2ab+b2=(a±b)2即可解答.本题考查了完全平方公式,属于基础题,关键是要熟记完全平方公式.13.【答案】65【解析】解:∵将△ABC绕点A逆时针旋转110°得到△ADE,∴AB=AD,∠BAD=110°,∠ACB=∠E,∴∠ABC=35°,∵∠BAC=80°,∴∠ACB=65°=∠E,故答案为:65.由旋转的性质可得AB=AD,∠BAD=110°,∠ACB=∠E,由等腰三角形的性质可求∠ABC=35°,由三角形内角和定理可求解.本题考查了旋转的性质,等腰三角形的性质,掌握旋转的性质是解题的关键.14.【答案】6【解析】解:设票价下调x元,每日销售收入为w元,由题意得:w=(2x+136)(80−x)=−2x2+24x+10880=−2(x−6)2+10952.∵−2<0,∴当x=6时,w最大,∴当每日销售收入最大时,票价下调6元,故答案为:6.根据票价为80元,每日平均客流量为136人,当票价每下降1元,每日游泳健身的人数平均增加2人,列出函数解析式,并根据函数的性质求函数的最大值.本题考查差二次函数的应用,关键是找到等量关系写出函数解析式.15.【答案】①②③④【解析】解:∵二次函数y=ax2+2ax+c(a,c为常数且a<0)经过(1,m),∴a+2a+c=m,即3a+c=m,∴3ac+c2=cm,∵mc<0,∴3ac+c2<0,∴0≤c2<−3ac,∵a<0,∴c>0,故①正确;∴c<−3a,∴a<−c,故②正确;3∵c>0,mc<0,∴m<0,∴点(1,m)在x轴的下方,=−1,a<0,c>0,∵抛物线的对称轴为直线x=−2a2a∴抛物线与直线y=p(p>0)交点的横坐标为整数的有−2,−1,0三个,∴若关于x的方程ax2+2ax=p−c(p>0)有整数解,则符合条件的p的值有3个,故③正确;∵抛物线对称轴为直线x=−1,与y轴的交点为(0,c),∴抛物线过(−2,c),∵a≤x≤a+2时,二次函数的最大值为c,∴a+2=−2,∴a=−4,故④正确;故答案为:①②③④.根据题目中的二次函数的图象和性质,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的性质解答.16.【答案】6√21【解析】解:作E点关于AB的对称点G,作E点关于AD的对称点F,连结FG交AD于点Q,交AB于点P,∴FQ=EQ,PE=PG,∴PQ+QE+PE=FQ+PQ+GP=FG,此时△PQE的周长最小,由对称性可得,FE⊥AD,GE⊥AB,∵E是BC的中点,∴FE是BC的垂直平分线,连结DE,∵菱形ABCD中,∠BAD=60°,∴△BCD是等边三角形,∵E是BC的中点,∴DE是BC的垂直平分线,∴D点在EF上,∴DF=DE,在Rt△BCD中,BC=12,∠BCD=60°,∴DE=6√3,∴EF =12√3,∵AB ⊥GH ,FH ⊥GH ,∴FH//AB//CD ,∴∠HFE =∠CDE =30°,∴HE =12EF =6√3, 在Rt △EFH 中,FH =√EF 2−EH 2=18,∵∠ABC =180°−∠BAD =120°,∴∠EBM =60°,∴∠BEM =30°,在Rt △BEM 中,BM =12BE =3,∴ME =3√3,∴GM =ME =3√3,∴GE =6√3,∴GH =GE +EH =6√3+6√3=12√3,在Rt △FHG 中,FG =√FH 2+GH 2=6√21,∴△PQE 的周长的最小值是6√21,故答案为:6√21.作E 点关于AB 的对称点G ,作E 点关于AD 的对称点F ,连结FG 交AD 于点Q ,交AB 于点P ,此时△PQE 的周长最小,连结DE ;先求出FE 是BC 的垂直平分线,再由DE 是BC 的垂直平分线,可知D 点在EF 上,利用直角三角形的勾股定理分别求出FH =18,GH =12√3,在Rt △FHG 中,FG =√FH 2+GH 2=6√21.本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,利用菱形、直角三角形的性质求解是解题的关键.17.【答案】解:x 2−x −1=0,x =−b±√b 2−4ac 2a=1±√1+42×1=1±√52, ∴x 1=1+√52,x 2=1−√52.【解析】本题考查了公式法解一元二次方程,解题时要注意将方程化为一般形式.确定a ,b ,c 的值,然后检验方程是否有解,若有解,代入公式即可求解.解此题的关键是熟练应用求根公式,要注意将方程化为一般形式,确定a、b、c的值.18.【答案】30−103x<1或x>3【解析】解:(1)x=0时,y=x2−4x+3=3;x=1时,y=x2−4x+3=0;x=2时,y=x2−4x+3=−1;x=3时,y=x2−4x+3=0;x=4时,y=x2−4x+3=3;故答案为:3,0,−1,0,3;(2)画出函数y=x2−4x+3的图象如下:(3)由图象可知,当y>0时,x的取值范围是x<1或x>3,故答案为:x<1或x>3.(1)将x的值逐个代入y=x2−4x+3计算即可得对应的y值;(2)描点,连线即可画出函数图象;(3)观察图象在x轴上方的部分,对应x的范围即为所求.本题考查二次函数图象及性质,解题的关键是根据x、y的取值,画出函数图象.19.【答案】解:(1)由已知,矩形的另一边长为(20−x)cm,由题意得:x(20−x)=75,整理得:x2−20x+75=0,解得:x1=5,x2=15,答:x的值为5cm或15cm;(2)设矩形的面积为ycm2,由题意得:y=x(20−x)=−x2+20x=−(x−10)2+100,∵−1<0,∴当x=10时,y有最大值,最大值为100,答:当x为10cm时围成的矩形面积最大,最大面积是100cm2.【解析】(1)设矩形的一边长为xcm,则矩形的另一边长为(20−x)cm,根据矩形的面积为75cm2,由矩形的面积公式列出一元二次方程,解方程即可;(2)设矩形的面积为ycm2,由矩形的面积公式写出函数解析式,并根据函数的性质求最值即可.本题考查二次函数和一元二次方程的应用,关键是根据等量关系列出函数解析式和一元二次方程.20.【答案】(4,−2)【解析】解:(1)如图,△A1B1C1即为所求,点A1(−1,3),B1(1,−1),C1(3,0);(2)如图,△AB2C2即为所求,点B2(1,−3),C2(2,−1);(3)若线段B1C1绕某点旋转后恰好与线段B2C2重合,该点Q的坐标为(4,−2).故答案为:(4,−2).(1)利用旋转变换的在分别作出A,B,C的对应点A1,B1,C1即可;(2)利用旋转变换的性质分别作出B,C的对应点B2,C2即可;(3)线段B1B2,C1C2的垂直平分线的交点即为所求.本题考查作图−旋转变换,解题的关键是掌握旋转变换的性质,属于中考常考题型.21.【答案】解:(1)根据题意得:△=4(m−1)2−4m2=−8m+4>0,;解得m<12(2)根据题意得x1+x2=2(m−1),x1x2=m2,∵(x1+2)(x2+2)=5,∴x1x2+2(x1+x2)+4=5,∴m2+4m−4+4=5,整理得m2+4m−5=0,解得m 1=−5,m 2=1,而m <12;∴m 的值为−5;(3)∵y =x 2−2(m −1)x +m 2,∴抛物线开口向上,对称轴为直线x =−−2(m−1)2=m −1, ∴m <12,∴m −1<−12∵−13<a <b , ∴−12<a <b ,∴y 3<y 1<y 2.【解析】(1)先计算判别式的值,然后根据判别式的意义进行证明;(2)根据根与系数的关系x 1+x 2=2(m −1),x 1x 2=m 2,然后利用x 1+2)(x 2+2)=5,得到关于m 的方程,解方程即可;(3)求得抛物线开口向上,对称轴为直线x =m −1,由m <12得出m −1<−12,然后根据二次函数的性质即可得到结论.本题主要抛物线与x 轴的交点,二次函数图象与系数的关系.二次函数图象上点的坐标特征,二次函数y =ax 2+bx +c(a,b,c 是常数,a ≠0)的交点与一元二次方程ax 2+bx +c =0根之间的关系,熟练掌握二次函数的性质是解题的关键.22.【答案】解:(1)当R0=3.30时,经历两轮传染后,感染新型冠状病毒的人数为:10+10×3.30+10×3.30×3.30≈152(人),当R0=5.40时,经历两轮传染后,感染新型冠状病毒的人数为:10+10×5.40+10×5.40×5.40≈356(人),∴现有10人感染新型冠状病毒,则经历两轮传染后,感染新型冠状病毒的人数大约在152人至356人;(2)①根据题意得:1+1×R0+1×R0×R0=73,即R02+R0−72=0, 解得R0=−9(舍去)或R0=8,答:德尔塔变异病毒的R0值为8;②设全民接种率至少应该达到x%,根据题意得:1+1×8(1−x%)+1×8(1−x%)×8(1−x%)≤7,令8(1−x%)=y,则1+y+y2≤7,∴y2+y−6≤0,解得−3≤y≤2,即8(1−x%)≤2,∴x%≥75%,答:全民接种率至少应该达到75%.【解析】(1)根据题意,分别计算R0=3.30和R0=5.40时,经历两轮传染后,感染新型冠状病毒的人数,即可得到答案;(2)①由已知列出方程,即可解得德尔塔变异病毒的R0值;②根据已知列出不等式,即可解得答案.本题考查一元二次方程及不等式的应用,解题的关键是读懂题意,理解R0的意义,根据已知列方程(不等式)解决问题.23.【答案】2αα√2114【解析】解:如图1,连接OB、O′B、O′C,∵∠ABC=90°,O为AC的中点,AC,∴OB=OA=OC=12∴∠OBA=∠A=α,∴∠CBO=∠ABC−∠OBA=90°−α,∵将点O沿BC翻折得到点O′,∴∠CBO′=∠CBO=90°−α,由旋转可知,O′B=O′C,∠FCO′=∠CBO′,BC=CF,∴∠BCO′=∠CBO′=90°−α,∴∠BO′C=180°−2∠CBO′=180°−2(90°−α)=2α,故答案为:2α;(2)①如图2,连接BO、EO,延长OM交EF于N,由(1)和图1知:∠FCO′=∠CBO′=90°−α,BC=CF,∴∠BCF=2∠CBO′=2×(90°−α)=180°−2α,∵BC=CF,∴∠BFC=∠FBC=180°−∠BCF=α,2故答案为:α;②如图2,由①得:∠CBF=∠BFC=∠A=α,由旋转可知:∠CFE=∠BCA,AC=EF,∵∠ABC=90°,∴∠A+∠BCA=90°,∴∠BFC+∠CFE=90°,∴BF⊥EF,∵OC=OB,∴∠OBC=∠BCA,∴∠A+∠BCA=90°,∴∠CBF+∠OBC=90°,∴OB⊥BF,∴OB//EF,∴∠OBM=∠NEM,∵M为BE的中点,∴BM=EM,在△OBM和△NEM中,{∠OBM=∠NEM BM=EM∠OMB=∠NME,∴△OBM≌△NEM(ASA),∴EN=BO,OM=MN=12ON,∴EN=12AC=12EF,∴N为EF的中点,∴ON//BF,∵BF⊥EF,∴ON⊥EF,∴四边形OBFN是矩形,∴ON=BF,又∵OM=12ON,∴BF=2OM;(3)如图3,连接CO′交BF于H,∵∠BCO′=∠FCO′,BC=CF,∴CH⊥BF,BF=2HF,∵BF=2OM,∴OM=HF,由(2)①知:∠BFC=α,∵α=30°,∴∠BFC=30°,∴HF=√32CF,∵OM=HF,∴CF=2√3OM3,又∵∠ECF =∠ABC =90°,∠FEC =∠A =α=30°,∴EF =2CF =4√3OM 3,∴BE =√BF 2+EF 2=√(2OM)2+(4√33OM)2=2√213OM , ∴OM BE =√2114, 故答案为:√2114. (1)根据旋转的性质和轴对称的性质即可得出结论;(2)①连接BO 、EO ,延长OM 交EF 于N ,结合(1)求出∠BCF =180°−2α,再由BC =CF 即可得出结论;②先证出△OBM≌△NEM ,进而证出四边形OBFN 是矩形可得结论;(3)连接CO′交BF 于H ,由α=30°以及(2)的结论可得HF =√32CF ,进而得到CF =2√3OM 3,求出EF =4√3OM 3,在Rt △BEF 中用勾股定理可得BE 2√213OM ,可得答案. 此题是几何变换综合题,主要考查了旋转的性质,折叠的性质,直角三角形的性质,平行四边形的判定和性质,解题的关键是准确作出辅助线.24.【答案】解:(1)将A(−1,0),B(3,0)代入y =ax 2+bx +3,得{a −b +3=09a +3b +3=0,解得:{a =−1b =2, ∴抛物线的解析式为y =−x 2+2x +3.(2)当x =0时,y =3,则点C(0,3),设直线BC 的解析式为y =kx +b ,则{b =33k +b =0,解得:{k =−1b =3, ∴直线BC 的解析式为y =−x +3,∵抛物线y =−x 2+2x +3的对称轴为直线x =1,∴N(1,0),当x =1时,y =2,即M(1,2),∴MN 的中点I 的坐标为(1,1),设P(x,−x 2+2x +3),则点Q 的坐标为(2−x,x 2−2x −1),当点Q 在x 轴上时,x 2−2x −1=0,解得:x =1+√2,或x =1−√2,∴点P 为(1+√2,2)或(1−√2,2),当点Q 在y 轴上时,2−x =0,∴x =2,∴点P 为(2,3),综上所述,点P 的坐标为(1+√2,2)或(1−√2,2)或(2,3).(3)EF 2=4DH ,理由如下,设直线GC 的解析式为y =mx +n ,则{−3m +n =0n =3,解得:{m =1n =3, ∴直线GC 的解析式为y =x +3,设点D 的坐标为(a,a +3)(−3≤a ≤0),则DH =a +3,∴抛物线C 2的解析式为y =−(x −a)2+a +3,当y =0时,−(x −a)2+a +3=0,解得:x =a +√a +3或x =a −√a +3,∴EF =|a +√a +3−(a −√a +3)|=2√a +3,∴EF 2=4(a +3)=4DH .【解析】(1)将点A 和点B 代入函数解析式求得a 与b 的大小,从而得到抛物线的解析式;(2)先令x =0求得点C 的坐标,然后求得直线BC 的解析式,从而求出点M 与点N 的坐标,进而得到点I 的坐标,再利用中心对称的性质求得点P 的对称点Q ,最后利用坐标轴上点的坐标特征得到点P 的坐标;(3)先通过点G 与点C 的坐标求出直线GC 的解析式,然后表示出顶点D 的坐标,进而通过顶点式得到抛物线C 2的解析式,再令y =0求得点E 与点F 的横坐标,最后求得DH 与EF 的长度得到结果.本题考查了待定系数法求二次函数的解析式、二次函数图象上点的坐标特征,解题的关键是会利用函数图象上点的坐标特征表示所求点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年湖北省武汉市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.实数3的相反数是()A. 3B. −3C. 13D. −132.下列事件中是必然事件的是()A. 抛掷一枚质地均匀的硬币,正面朝上B. 随意翻到一本书的某页,这一页的页码是偶数C. 打开电视机,正在播放广告D. 从两个班级中任选三名学生,至少有两名学生来自同一个班级3.下列图形都是由一个圆和两个相等的半圆组合而成的,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.4.计算(−a2)3的结果是()A. a6B. −a6C. −a5D. a55.如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.6.学校招募运动会广播员,从两名男生和两名女生共四名候选人中随机选取两人,则两人恰好是一男一女的概率是()A. 13B. 12C. 23D. 347.我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x人,物价是y 钱,则下列方程正确的是()A. 8(x−3)=7(x+4)B. 8x+3=7x−4C. y−38=y+47D. y+38=y−478.一辆快车和一辆慢车将一批物资从甲地运往乙地,其中快车送达后立即沿原路返回,且往返速度的大小不变,两车离甲地的距离y(单位:km)与慢车行驶时间t(单位:ℎ)的函数关系如图,则两车先后两次相遇的间隔时间是()A. 53ℎ B. 32ℎ C. 75ℎ D. 43ℎ9.如图,AB是⊙O的直径,BC是⊙O的弦,先将BC⏜沿BC翻折交AB于点D,再将BD⏜沿AB翻折交BC于点E.若BE⏜=DE⏜,设∠ABC=α,则α所在的范围是()A. 21.9°<α<22.3°B. 22.3°<α<22.7°C. 22.7°<α<23.1°D. 23.1°<α<23.5°10.已知a,b是方程x2−3x−5=0的两根,则代数式2a3−6a2+b2+7b+1的值是()A. −25B. −24C. 35D. 36二、填空题(本大题共6小题,共18.0分)11.化简√(−5)2的结果是______.12.我国是一个人口资源大国.第七次全国人口普查结果显示,北京等五大城市的常住人口数如下表,这组数据的中位数是______ .城市 北京 上海 广州 重庆 成都 常住人口数万 2189248718683205209413. 已知点A(a,y 1),B(a +1,y 2)在反比例函数y =m 2+1x(m 是常数)的图象上,且y 1<y 2,则a 的取值范围是______ .14. 如图,海中有一个小岛A.一艘轮船由西向东航行,在B点测得小岛A 在北偏东60°方向上;航行12nmile 到达C 点,这时测得小岛A 在北偏东30°方向上.小岛A 到航线BC 的距离是______ nmile(√3≈1.73,结果用四舍五入法精确到0.1).15. 已知抛物线y =ax 2+bx +c(a,b ,c 是常数),a +b +c =0.下列四个结论:①若抛物线经过点(−3,0),则b =2a ;②若b =c ,则方程cx 2+bx +a =0一定有根x =−2; ③抛物线与x 轴一定有两个不同的公共点;④点A(x 1,y 1),B(x 2,y 2)在抛物线上,若0<a <c ,则当x 1<x 2<1时,y 1>y 2. 其中正确的是______ (填写序号).16. 如图(1),在△ABC 中,AB =AC ,∠BAC =90°,边AB 上的点D 从顶点A 出发,向顶点B 运动,同时,边BC 上的点E 从顶点B 出发,向顶点C 运动,D ,E 两点运动速度的大小相等,设x =AD ,y =AE +CD ,y 关于x 的函数图象如图(2),图象过点(0,2),则图象最低点的横坐标是______ .三、解答题(本大题共8小题,共72.0分)17. 解不等式组{2x ≥x −1,①4x +10>x +1.②请按下列步骤完成解答.(1)解不等式①,得______ ; (2)解不等式②,得______ ;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是______ .18.如图,AB//CD,∠B=∠D,直线EF与AD,BC的延长线分别交于点E,F,求证:∠DEF=∠F.19.为了解落实国家《关于全面加强新时代大中小学劳动教育的意见》的实施情况,某校从全体学生中随机抽取部分学生,调查他们平均每周劳动时间t(单位:ℎ),按劳动时间分为四组:A组“t<5”,B组“5≤t<7”,C组“7≤t<9”,D组“t≥9”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是______ ,C组所在扇形的圆心角的大小是______ ;(2)将条形统计图补充完整;(3)该校共有1500名学生,请你估计该校平均每周劳动时间不少于7h的学生人数.20.如图是由小正方形组成的5×7网格,每个小正方形的顶点叫做格点,矩形ABCD的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,先在边AB上画点E,使AE=2BE,再过点E画直线EF,使EF平分矩形ABCD的面积;(2)在图(2)中,先画△BCD的高CG,再在边AB上画点H,使BH=DH.21.如图,AB是⊙O的直径,C,D是⊙O上两点,C是BD⏜的中点,过点C作AD的垂线,垂足是E.连接AC交BD于点F.(1)求证:CE是⊙O的切线;=√6,求cos∠ABD的值.(2)若DCDF22.在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品.A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.23.问题提出如图(1),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=AC,EC=DC,点E 在△ABC内部,直线AD与BE于点F.线段AF,BF,CF之间存在怎样的数量关系?问题探究(1)先将问题特殊化如图(2),当点D,F重合时,直接写出一个等式,表示AF,BF,CF之间的数量关系;(2)再探究一般情形如图(1),当点D,F不重合时,证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC和△DEC中,∠ACB=∠DCE=90°,BC=kAC,EC=kDC(k是常数),点E在△ABC内部,直线AD与BE交于点F.直接写出一个等式,表示线段AF,BF,CF之间的数量关系.24.抛物线y=x2−1交x轴于A,B两点(A在B的左边).(1)▱ACDE的顶点C在y轴的正半轴上,顶点E在y轴右侧的抛物线上;①如图(1),若点C的坐标是(0,3),点E的横坐标是3,直接写出点A,D的坐标.2②如图(2),若点D在抛物线上,且▱ACDE的面积是12,求点E的坐标.(2)如图(3),F是原点O关于抛物线顶点的对称点,不平行y轴的直线l分别交线段AF,BF(不含端点)于G,H两点.若直线l与抛物线只有一个公共点,求证:FG+ FH的值是定值.答案和解析1.【答案】B【知识点】实数的性质、相反数【解析】解:实数3的相反数是:−3.故选:B.直接利用相反数的定义分析得出答案.此题主要考查了实数的性质,正确掌握相反数的定义是解题关键.2.【答案】D【知识点】随机事件【解析】解:A、抛掷一枚质地均匀的硬币,正面朝上,是随机事件;B、随意翻到一本书的某页,这一页的页码是偶数,是随机事件;C、打开电视机,正在播放广告,是随机事件;D、从两个班级中任选三名学生,至少有两名学生来自同一个班级,是必然事件;故选:D.根据事件发生的可能性大小判断即可.本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.【答案】A【知识点】利用轴对称设计图案、利用旋转设计图案【解析】解:A.既是轴对称图形又是中心对称图形,故此选项符合题意;B.不是轴对称图形,是中心对称图形,故此选项不合题意;C.不是轴对称图形,是中心对称图形,故此选项不合题意;D.是轴对称图形,不是中心对称图形,故此选项不合题意;故选:A.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了利用轴对称设计图案和利用旋转设计图案,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】B【知识点】幂的乘方与积的乘方【解析】解:(−a2)3=−a6,故选:B.根据幂的乘方的运算法则计算可得.本题主要考查幂的乘方与积的乘方,解题的关键是掌握幂的乘方法则:底数不变,指数相乘与积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.5.【答案】C【知识点】简单组合体的三视图【解析】解:从正面看易得有两层,底层三个正方形,上层中间是一个正方形.故选:C.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.6.【答案】C【知识点】用列举法求概率(列表法与树状图法)【解析】解:画树状图如图:共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种,∴两人恰好是一男一女的概率为812=23,故选:C.画树状图,共有12种等可能的结果,抽取的两人恰好是一男一女的结果有8种,再由概率公式求解即可.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.【答案】D【知识点】由实际问题抽象出一元一次方程【解析】解:设物价是y钱,根据题意可得:y+3 8=y−47.故选:D.根据人数=总钱数÷每人所出钱数,得出等式即可.此题主要考查了由实际问题抽象出一元一次方程,正确找出等量关系是解题关键.8.【答案】B【知识点】一次函数的应用【解析】解:根据图象可知,慢车的速度为a6 km/ℎ.对于快车,由于往返速度大小不变,总共行驶时间是4ℎ,因此单程所花时间为2h,故其速度为a2 km/ℎ.所以对于慢车,y与t的函数表达式为y=a6t (0≤t≤6)⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅①.对于快车,y与t的函数表达式为y={a2(t−2)(2≤t<4)⋅⋅⋅⋅⋅⋅⋅②,−a2(t−6)4≤t≤6)⋅⋅⋅⋅⋅⋅⋅③,联立①②,可解得交点横坐标为t=3,联立①③,可解得交点横坐标为t=4.5,因此,两车先后两次相遇的间隔时间是1.5,故选:B.根据图象得出,慢车的速度为a6 km/ℎ,快车的速度为a2 km/ℎ.从而得出快车和慢车对应的y与t的函数关系式.联立两个函数关系式,求解出图象对应两个交点的坐标,即可得出间隔时间.本题主要考查根据函数图象求一次函数表达式,以及求两个一次函数的交点坐标.解题的关键是利用图象信息得出快车和慢车的速度,进而写出y与t的关系.9.【答案】B【知识点】翻折变换(折叠问题)、圆周角定理、圆心角、弧、弦的关系【解析】解:如图,连接AC,CD,DE.∵ED⏜=EB⏜,∴ED=EB,∴∠EDB=∠EBD=α,∵AC⏜=CD⏜=DE⏜,∴AD=CD=DE,∴∠DCE=∠DEC=∠EDB+∠EBD=2α,∴∠CAD=∠CDA=∠DCE+∠EBD=3α,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∴4α=90°,∴α=22.5°,故选:B.如图,连接AC,CD,DE.证明∠CAB=3α,利用三角形内角和定理求出α,可得结论.本题考查翻折变换,圆周角定理,等腰三角形的判定和性质,三角形内角和定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.10.【答案】D【知识点】代数式求值、一元二次方程的根与系数的关系*【解析】解:∵a,b是方程x2−3x−5=0的两根,∴a2−3a−5=0,b2−3b−5=0,a+b=3,∴a2−3a=5,b2=3b+5,∴2a3−6a2+b2+7b+1=2a(a2−3a)+3b+5+7b+1=10a+10b+6=10(a+b)+6=10×3+6=36.故选:D.根据一元二次方程解的定义得到a2−3a−5=0,b2−3b−5=0,即a2=3a+5,b2= 3b+5,根据根与系数的关系得到a+b=3,然后整体代入变形后的代数式即可求得.本题考查了根与系数的关系的知识,解答本题要掌握若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1⋅x2=ca.也考查了一元二次方程解的定义.11.【答案】5【知识点】二次根式的性质【解析】解:√(−5)2=|−5|=5.根据二次根式的性质解答.解答此题,要弄清二次根式的性质:√a2=|a|的运用.12.【答案】2189【知识点】中位数【解析】解:将这组数据重新排列为1868,2094,2189,2487,3205,所以这组数据的中位数为2189,故答案为:2189.将这组数据从小到大重新排列,再根据中位数的定义求解即可.本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.【答案】−1<a<0【知识点】反比例函数图象上点的坐标特征【解析】解:∵k=m2+1>0,∴反比例函数y=m2+1(m是常数)的图象在一、三象限,在每个象限,y随x的增大而减x小,①当A(a,y1),B(a+1,y2)在同一象限,∵y1<y2,∴a>a+1,此不等式无解;②当点A(a,y1)、B(a+1,y2)在不同象限,∵y1<y2,∴a<0,a+1>0,解得:−1<a<0,故答案为−1<a<0.根据反比例函数的性质分两种情况进行讨论,①当点A(a,y1),B(a+1,y2)在同一象限时,②当点A(a,y1),B(a+1,y2)在不同象限时.此题主要考查了反比例函数图象上点的坐标特征,分类讨论是解题的关键.14.【答案】10.4【知识点】解直角三角形的应用【解析】解:过点A作AE⊥BD交BD的延长线于点E,由题意得,∠CBA=60°,∠EAD=30°,∴∠ABD=30°,∠ADE=60°,∴∠BAD=∠ADE−∠ABD=30°,∴∠BAD=∠ABD,∴AD=AB=12nmile,,在Rt△ADE中,sin∠ADE=AEAD∴AE=AD⋅sin∠ADE=6√3≈10.4(nmile),故小岛A到航线BC的距离是10.4nmile,故答案为10.4.过点A作AE⊥BD交BD的延长线于点E,根据三角形的外角性质得到∠BAD=∠ABD,根据等腰三角形的判定定理得到AD=AB,根据正弦的定义求出AE即可.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.15.【答案】①②④【知识点】二次函数与一元二次方程、二次函数图象上点的坐标特征、二次函数图象与系数的关系、一元二次方程的根与系数的关系*、根的判别式【解析】解:∵抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0,∴(1,0)是抛物线与x轴的一个交点.①∵抛物线经过点(−3,0),∴抛物线的对称轴为直线x=1+(−3)2=−1,∴−b2a=−1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=−b2c =−12,且二次函数y=cx2+bx+a过点(1,0),∴1+m2=−12,解得m=−2,∴y=cx2+bx+a与x轴的另一个交点为(−2,0),即方程cx2+bx+a=0一定有根x=−2;故②正确;③△=b2−4ac=(a+c)2−4ac=(a−c)2≥0,∴抛物线与x轴一定有两个公共点,且当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且ca>1,∴(1,0)在对称轴的左侧,∴当x<1时,y随x的增大而减小,∴当x1<x2<1时,y1>y2.故④正确.故答案为:①②④.①由题意可得,抛物线的对称轴为直线x=b2a =1+(−3)2=−1,即b=2a,即①正确;②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=−b2c =−12,则1+m2=−12,解得m=−2,即方程cx2+bx+a=0一定有根x=−2;故②正确;③△=b2−4ac=(a+c)2−4ac=(a−c)2≥0,则当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;④由题意可知,抛物线开口向上,且ca>1,则当x<1时,y随x的增大而减小,则当x1<x2<1时,y1>y2.故④正确.本题考查了二次函数图象与系数的关系,根与系数的关系,二次函数图象与x轴的交点等问题,掌握相关知识是解题基础..16.【答案】√2−1【知识点】动点问题的函数图象【解析】解:∵图象过点(0,2),即当x=AD=0时,点D与A重合,点E与B重合,此时y=AE+CD=AB+AC=2,∵△ABC为等腰直角三角形,∴AB=AC=1,过点A作AF⊥BC于点F,过点B作NB⊥BC,并使得BN=AC,如图所示:∵AD=BE,∠NBE=∠CAD,∴△NBE≌△CAD(SAS),∴NE=CD,又∵y=AE+CD,∴y=AE+CD=AE+NE,当A、E、N三点共线时,y取得最小值,如图所示,此时:AD=BE=x,AC=BN=1,∴AF=AC⋅sin45°=√2,2∖又∵∠BEN=∠FEA,∠NBE=∠AFE∴△NBE∽△AFE∴NBAF =BEFE,即1√22=x√22−x,解得:x=√2−1,∴图象最低点的横坐标为:√2−1.故答案为:√2−1.观察函数图象,根据图象经过点(0,2)即可推出AB和AC的长,构造△NBE≌△CAD,当A、E、N三点共线时,y取得最小值,利用三角形相似求出此时的x值即可.本题考查动点问题的函数图象,通过分析动点位置结合函数图象推出AB、AC的长再通过构造三角形全等找到最小值是解决本题的关键.17.【答案】x≥−1x>−3x≥−1【知识点】在数轴上表示不等式的解集、一元一次不等式组的解法【解析】解:{2x≥x−1,①4x+10>x+1.②(1)解不等式①,得x≥−1;(2)解不等式②,得x>−3;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集是x≥−1.故答案为:x≥−1;x>−3;x≥−1.先解出两个不等式,然后在数轴上表示出它们的解集,即可写出不等式组的解集.本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法.18.【答案】证明:∵AB//CD,∴∠DCF=∠B,∵∠B=∠D,∴∠DCF=∠D,∴AD//BC,∴∠DEF=∠F.【知识点】平行线的性质【解析】由平行线的性质得到∠DCF=∠B,进而推出∠DCF=∠D,根据平行线的判定得到AD//BC,根据平行线的性质即可得到结论.本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定是解决问题的关键.19.【答案】100 108°【知识点】加权平均数、扇形统计图、总体、个体、样本、样本容量、用样本估计总体、条形统计图【解析】解:(1)这次抽样调查的样本容量是10÷10%=100,=108°,C组所在扇形的圆心角的大小是360°×30100故答案为:100,108°;(2)B组的人数=100−15−30−10=45(名),条形统计图如图所示,(3)1500×30+10=600(名).100答:估计该校平均每周劳动时间不少于7h的学生人数为600.(1)用D组的人数÷所占百分比计算即可,计算C组的百分比,用C组的百分数乘以360°即可得出C组所在扇形的圆心角的大小;(2)求出B组人数,画出条形图即可;(3)用C,D两组的百分数之和乘以1500即可.本题考查条形统计图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.20.【答案】解:(1)如图,直线EF即为所求.(2)如图,线段CG,点H即为所求.【知识点】尺规作图与一般作图、矩形的性质【解析】(1)如图取格点T,连接DT交AB于点E,连接BD,取BD的中点F,作直线EF即可.(2)取格点E,F,连接EF交格线于P,连接CP交BD于点G,线段CG即为所求.取格点M,N,T,K,连接MN,TK交于点J,取BD的中点O,作直线OJ交AB于H,连接DH,点H即为所求.本题考查作图−应用与设计作图,矩形的性质,平行线分线段成比例定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】(1)证明:连接OC交BD于点G,∵点C是BD⏜的中点,∴由圆的对称性得OC垂直平分BD,∴∠DGC=90°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠EDB=90°,∵CE⊥AE,∴∠E=90°,∴四边形EDGC是矩形,∴∠ECG=90°,∴CE⊥OC,∴CE是⊙O的切线;(2)解:连接BC,设FG=x,OB=r,∵DC=√6,DF设DF=t,DC=√6t,由(1)得,BC=CD=√6t,BG=GD=x+t,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BCG+∠FCG=90°,∵∠DGC=90°,∴∠CFB+∠FCG=90°,∴∠BCG=∠CFB,∴Rt△BCG∽Rt△BFC,∴BC2=BG⋅BF,∴(√6t)2=(x+t)(x+2t)解得x1=t,x2=−52t(不符合题意,舍去),∴CG=√BC2−BG2=√(√6)2−(2t)2=√2t,∴OG=r−√2t,在Rt△OBG中,由勾股定理得OG2+BG2=OB2,∴(r−√2t)2+(2r)2=r2,解得r=3√22t,∴cos∠ABD=BGOB =3√22t=2√23.【知识点】解直角三角形、切线的判定与性质、圆周角定理、相似三角形的判定与性质【解析】(1)连接OC交BD于点G,可证明四边形EDGC是矩形,可求得∠ECG=90°,进而可求CE是⊙O的切线;(2)连接BC,设FG=x,OB=r,利用DCDF=√6,设DF=t,DC=√6t,利用Rt△BCG∽Rt△BFC的性质求出CG,OG,利用勾股定理求出半径,进而求解.本题综合考查了圆周角定理,勾股定理,切线的性质等知识,解决本题的关键是能够利用圆的对称性,得到垂直平分,利用相似与勾股定理的性质求出边,即可解答.22.【答案】解:(1)设B原料单价为m元,则A原料单价为1.5m元,根据题意,得900m −9001.5m=100,解得m=3,∴1.5m=4.5,∴每盒产品的成本是:4.5×2+4×3+9=30(元),答:每盒产品的成本为30元;(2)根据题意,得w=(x−30)[500−10(x−60)]=−10x2+1400x−33000,∴w关于x的函数解析式为:w=−10x2+1400x−33000;(3)由(2)知w=−10x2+1400x−33000=−10(x−70)2+16000,∴当a≥70时,每天最大利润为16000元,当60<a<70时,每天的最大利润为(−10a2+1400a−33000)元.【知识点】分式方程的应用、二次函数的应用【解析】(1)根据题意列方程先求出两种原料的单价,再根据成本=原料费+其他成本计算每盒产品的成本即可;(2)根据利润等于售价减去成本列出函数关系式即可;(3)根据(2)中的函数关系式,利用函数的性质求最值即可.本题主要考查二次函数的性质和分式方程,熟练应用二次函数求最值是解题的关键.23.【答案】解:(1)如图(2),∵∠ACD+∠ACE=90°,∠ACE+∠BCE=90°,∴∠BCE=∠ACD,∵BC=AC,EC=DC,∴△ACD≌△BCE(SAS),∴BE=AD=AF,∠EBC=∠CAD,故△CDE为等腰直角三角形,故DE=EF=√2CF,则BF=BD=BE+ED=AF+√2CF;即BF−AF=√2CF;(2)如图(1),由(1)知,△ACD≌△BCE(SAS),∴∠CAF=∠CBE,BE=AF,过点C作CG⊥CF交BF于点G,∵∠FCE+∠ECG=90°,∠ECG+∠GCB=90°,∴∠ACF=∠GCB,∵∠CAF=∠CBE,BC=AC,∴△BCG≌△ACF(AAS),∴GC=FC,BG=AF,故△GCF为等腰直角三角形,则GF=√2CF,则BF=BG+GF=AF+√2CF,即BF−AF=√2CF;(3)由(2)知,∠BCE=∠ACD,而BC=kAC,EC=kDC,即BCAC =ECCD=k,∴△BCE∽△CAD,∴∠CAD=∠CBE,过点C作CG⊥CF交BF于点G,由(2)知,∠BCG=∠ACF,∴△BGC∽△AFC,∴BGAF =BCAC=k=GCCF,则BG=kAF,GC=kFC,在Rt△CGF中,GF=√GC2+FC2=√(kFC)2+FC2=√k2+1⋅FC,则BF=BG+GF=kAF+√k2+1⋅FC,即BF−kAF=√k2+1⋅FC.【知识点】相似形综合【解析】(1)证明△ACD≌△BCE(SAS),则△CDE为等腰直角三角形,故DE=EF=√2CF,进而求解;(2)由(1)知,△ACD≌△BCE(SAS),再证明△BCG≌△ACF(AAS),得到△GCF 为等腰直角三角形,则GF =√2CF ,即可求解; (3)证明△BCE∽△CAD 和△BGC∽△AFC ,得到BG AF =BC AC =k =GC CF ,则BG =kAF ,GC =kFC ,进而求解.本题是相似形综合题,主要考查了三角形全等和相似、勾股定理的运用等,综合性强,难度适中. 24.【答案】解:(1)对于y =x 2−1,令y =x 2−1=0,解得x =±1,令x =0,则y =−1, 故点A 、B 的坐标分别为(−1,0)、(1,0),顶点坐标为(0,−1),①当x =32时,y =x 2−1=54,由点A 、C 的坐标知,点A 向右平移1个单位向上平移3个单位得到点C ,∵四边形ACDE 为平行四边形,故点E 向右平移1个单位向上平移3个单位得到点D ,则32+1=52,54+3=174,故点D 的坐标为(52,174);②设点C(0,n),点E 的坐标为(m,m 2−1),同理可得,点D 的坐标为(m +1,m 2−1+n),将点D 的坐标代入抛物线表达式得:m 2−1+n =(m +1)2−1,解得n =2m +1,故点C 的坐标为(0,2m +1);连接CE ,过点E 作y 轴的平行线交x 轴于点M ,交过点C 与x 轴的平行线与点N ,则S △ACE =S 梯形CNMA −S △CEN −S △AEM =12(m +1+m)(2m +1)−12×(m +1)(m 2−1)−12m[2m +1−(m2−1)]=12S ▱ACED =6,解得m=−5(舍去)或2,故点E的坐标为(2,3);(2)∵F是原点O关于抛物线顶点的对称点,故点F的坐标为(0,−2),由点B、F的坐标得,直线BF的表达式为y=2x−2①,同理可得,直线AF的表达式为y=−2x−2②,设直线l的表达式为y=tx+n,联立y=tx+n和y=x2−1并整理得:x2−tx−n−1=0,∵直线l与抛物线只有一个公共点,故△=(−t)2−4(−n−1)=0,解得n=−14t2−1,故直线l的表达式为y=tx−14t2−1③,联立①③并解得x H=t+24,同理可得,x G=t−24,∵射线FA、FB关于y轴对称,则∠AFO=∠BFO,设∠AFO=∠BFO=α,则sin∠AFO=∠BFO=OBBF =√1+22=√5=sinα,则FG+FH=−x Gsinα+x Hsinα=√5(x H−x G)=√5(t+24−t−24)=√5为常数.【知识点】二次函数综合【解析】(1)①点A向右平移1个单位向上平移3个单位得到点C,而四边形ACDE为平行四边形,故点E向右平移1个单位向上平移3个单位得到点D,即可求解;②利用S△ACE=S梯形CNMA−S△CEN−S△AEM=6,求出m=−5(舍去)或2,即可求解;(2)由FG+FH=−x Gsinα+x Hsinα=√5(x H−x G)=√5(t+24−t−24)=√5,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。

相关文档
最新文档