模数与数模转换
第10章数模和模数转换

计算: (2)输出模拟量 计算: )输出模拟量Uo计算 * 计算电阻网络开路电压 E 以D=0001,即d0=1为例。 计算电阻网络开路电压U 为例。 = , 为例
0R
2R 2R 2R UREF
1R
2R
2 R
2R
3U
A
应用戴维 南定理
R
UAUREF/240’ ’1’ ’
2’ ’
3’ ’
即有源二端网络可以等效为电压源,电动势为 即有源二端网络可以等效为电压源, d0 UREF/24 ,等效内阻为 。 等效内阻为R。 同理,可得 对应的电压为: 同理,可得d1 、 d2和d3对应的电压为: d1UREF/23 、 d2UREF/22和d3UREF/21 。
例如:常用的8位DAC的分辨率约为:0.004 的分辨率约为: 例如:常用的 位 的分辨率约为 * 转换误差: 转换误差: 用最低有效位“ 对应的最小输出电压来表示 对应的最小输出电压来表示, 用最低有效位“1”对应的最小输出电压来表示, (有时也取最小输出电压的一半)。 有时也取最小输出电压的一半)。 转换误差公式: 转换误差公式: 输入数字代码的位数n越 输入数字代码的位数 越 转换误差就越小。 多,转换误差就越小。 ULSB = -UREF/2n
(1)绝对精度 ) 指对应于某个数字量的理论模拟 输入值与实际模拟输入值之差。 输入值与实际模拟输入值之差。 n位的 位的ADC能区分出输入模拟电 能区分出输入模拟电 位的 压信号的2n个不同等级 个不同等级。 压信号的 个不同等级。 (2)转换时间和转换率 ) 完成一次转换的时间 为转换时间, 为转换时间 , 其倒数就 是转换率。 是转换率。
数转换的原理框图: 模/数转换的原理框图: 数转换的原理框图 Ai
第7章 模数转换及数模转换

一个完整的微机闭环实时控制系统示意图
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
2
7.2 传感器
• A/D转换器是将模拟的电信号转换成数字信号。所以将物理量 转换成数字量之前,必须先将物理量转换成电模拟量。传感 器是把非电量的模拟量(如温度、压力、流量等)转换成电 压或电流信号。 • 因此,传感器一般是指能够进行非电量和电量之间转换的敏 感元件。传感器的精度直接影响整个系统的精度,如果传感 器误差较大,则测量电路、放大电路以及A/D转换电路和微机 的处理都会受到影响。 • 物理量的多样性使得传感器的种类繁多,下面对几种常用的 传感器作以简单的介绍。
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
15
1.DAC 0832主要特性 . 主要特性
• • • • • • • • • • 8位分辨率, 电流型输出, 外接参考电压-10V~+10V, 可采用双缓冲、单缓冲或直接输入三种工作方式, 单电源+5V~+15V, 电流建立时间1µs, R-2R T型解码网络, 线性误差0.2%FS(FS为满量程), 非线性误差0.4%FS, 数字输入与TTL兼容。
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
3
1.温度传感器 .
• 热电偶是一种大量使用的温度传感器,它是利用热电势效应 来工作的,室温下的典型输出电压为毫伏数量级。温度测量 范围与热电偶的材料有关,常用的有镍铝-镍硅热电偶和铂铑铂热电偶。热电偶的热电势-温度曲线一般是非线性的,需要 采取措施进行非线性校正。 • 另一种温度传感器为热敏电阻,它是一种半导体新型感温元 件,具有负的电阻温度系数,当温度升高时,其电阻值减小, 在使用热敏电阻作为温度传感器时,将温度的变化反映在电 阻值的变化中,从而改变电压或电流值。
模数(A/D)和数模(D/A)转换

模数(A/D)和数模(D/A)转换11.1 模数转换和数模转换概述11.1.1 一个典型的计算机自动控制系统一个包含A/D和D/A转换器的计算机闭环自动控制系统如图11.1所示。
图11.1 典型的计算机自动控制系统在图11.1中,A/D转换器和D/A转换器是模拟量输入和模拟量输出通路中的核心部件。
在实际控制系统中,各种非电物理量需要由各种传感器把它们转换成模拟电流或电压信号后,才能加到A/D转换器转换成数字量。
一般来说,传感器的输出信号只有微伏或毫伏级,需要采用高输入阻抗的运算放大器将这些微弱的信号放大到一定的幅度,有时候还要进行信号滤波,去掉各种干扰和噪声,保留所需要的有用信号。
送入A/D转换器的信号大小与A/D转换器的输入范围不一致时,还需进行信号预处理。
在计算机控制系统中,若测量的模拟信号有几路或几十路,考虑到控制系统的成本,可采用多路开关对被测信号进行切换,使各种信号共用一个A/D转换器。
多路切换的方法有两种:一种是外加多路模拟开关,如多路输入一路输出的多路开关有:AD7501,AD7503,CD4097,CD4052等。
另一种是选用内部带多路转换开关的A/D转换器,如ADC0809等。
若模拟信号变化较快,为了保证模数转换的正确性,还需要使用采样保持器。
在输出通道,对那些需要用模拟信号驱动的执行机构,由计算机将经过运算决策后确定的控制量(数字量)送D/A转换器,转换成模拟量以驱动执行机构动作,完成控制过程。
287第11章 模数(A/D )和数模(D/A )转换 11.1.2 模/数转换器(ADC )的主要性能参数1. 分辨率它表明A/D 对模拟信号的分辨能力,由它确定能被A/D 辨别的最小模拟量变化。
一般来说,A/D 转换器的位数越多,其分辨率则越高。
实际的A/D 转换器,通常为8,10,12,16位等。
2. 量化误差在A/D 转换中由于整量化产生的固有误差。
量化误差在±1/2LSB (最低有效位)之间。
数字逻辑:数模与模数转换电路

模拟信号
连续的、时间上连续变化 的信号,如声音、光线等 。
转换方式
数字信号可以通过数模转 换器转换为模拟信号,模 拟信号也可以通过模数转 换器转换为数字信号。
数字逻辑的基本门电路
AND门
当所有输入都为高电平(1)时,输 出才为高电平(1)。
NOT门
对输入信号取反,输入为高电平(1 )时输出为低电平(0),输入为低 电平(0)时输出为高电平(1)。
数字逻辑数模与模 数转换电路
目录
• 数字逻辑基础 • 数模转换电路(DAC) • 模数转换电路(ADC) • 数模与模数转换的应用 • 数模与模数转换的发展趋势
01
CATALOGUE
数字逻辑基础
数字信号与模拟信号的区别
01
02
03
数字信号
离散的、不连续的信号, 只有0和1两种状态,通常 用于表示二进制数。
集成化、微型化的电路设计
集成化
随着半导体工艺的进步,数模与 模数转换电路可以更加集成化, 减小电路体积,提高可靠性。
微型化
微型化设计可以减小电路板空间 占用,使得数模与模数转换电路 更加适用于小型化设备。
智能化的数据处理技术
数据校准
通过算法和校准技术,对数模与模数 转换电路的输出数据进行校准和修正 ,以提高转换精度。
权电阻型
根据输入数字码改变相应的权电阻的接 通或断开,从而改变输出电压。
权电容型
根据输入数字码改变相应的权电容的 充放电状态,从而改变输出电压。
权电流型
根据输入数字码改变相应的权电流源 的开关状态,从而改变输出电压。
权电压型
根据输入数字码改变相应的权电压源 的开关状态,从而改变输出电压。
DAC的性能参数
第9章 数模转换和模数转换

。
数字电路与逻辑设计
Rf
(2)求和放大器A:为 一个接成负反馈的理想 运算放大器。即:AV= ∞,iI=0,Ro=0。由于 负反馈,存在虚短和虚 断,即V-≈V+=0, iI= 0。
I A vO
VREF
输入数字Di=1时,开关Si将电阻23-iR接到基准电压VREF上, 在23-iR上的电流为
Ii VREF VREF i D = D 2 i i 23 i R 23 R
2
i
VREF ()
注意:该电路转换精度较高,
虑的是恒流源特性问题。
RI f4 2
但电路结构较复杂,主要考 vo I Rf Rf4I (20 D0 21 D1 22 D2 23 D3 )
2 D
i 0
3
i
数字电路与逻辑设计
改进:采用具有电流负 反馈的BJT恒流源电路 的权电流D/A转换器:
数字电路与逻辑设计
第9章 数模转换和模数转换
本章要点 本章分别讲授了数模转换和模数转换的基本原理和常 见的典型电路。文中主要介绍数模转换的基本原理,数模 转换器的转换精度和转换速度,分别介绍了权电阻网络数 模转换器,倒 T型电阻网络数模转换器和权电流型数模转 换器;然后介绍了模数转换的一般原理和步骤,分别介绍 了并联比较型模数转换器,逐次逼近型和双积分型模数转 换器的工作原理。
Rf VREF 3 2Rf VREF 3 i i vO I Rf Rf I i ( D 2 ) ( D 2 ) i i 3 4 R 2 i 0 R 2 i 0 i 0
3
若取反馈电阻Rf=R/2,则输出模拟电压表达式为
VREF 3 vO I Rf 4 ( Di 2i ) 2 i 0
第十章十一章数模及模数转换

5
③精度
指D/A转换器实际输出电压与理论值之间的误 差。有绝对误差和相对误差两种。 前者一般采用数字量的最低有效位作为衡量单 位。后者则用:输出量绝对误差/满量程×100%。 例如,一个数模转换器精度为±1/2LSB,表示该 转换器的实际输出值与其理想输出值间最大偏差 为最低有效位所对应的模拟输出值的一半。 再如,某分辨率为8位的D/A转换器。其精度为 ±1/2LSB。如果用相对误差表示其精度,则它的 精度是: (±1/2LSB×△)/(△×28)=(±1/2LSB)/28=(±1/2)/28 =±1/512。
20
对要求多片DAC0832同时进行转换的系统, 各芯片的选片信号不同,这样可由选片信号CS与 WR1将数据分别输入到每片的输入寄存器中。各片 的XFER与WR2分别接在一起,公用一组信号,在 XFER与WR2同时为低电平时,数据将在同一时刻由 8位输入寄存器传送到对应的8位DAC寄存器,并 靠WR2或XFER的上升沿将信号锁存在DAC寄存器中, 与此同时,多个DAC0832芯片开始转换,其时间 关系如图所示。
两个8位输入寄存器可以分别选通,从而使 DAC0832实现双缓冲工作方式,即可把从CPU 送来的数据先打入输入寄存器,在需要进行转 换时.再选通DAC寄存器,实现D/A转换,这种 工作方式称为双缓冲工作方式。
17
各引脚功能说明如下: ILE:输入锁存允许信号,输入,高电平有效。 CS:片选信号,输入、低电平有效,与ILE共同 决定WR1是否起作用。
19
IOUT2:DAC电流输出2, RFB:片内反馈电阻引脚,与外接运算放大器 配合构成I/V转换器。 VREF:参考电源或叫基准电源输入端,此端 可接一个正电压或一个负电压,范围为: +10V~ -10V,由于它是转换的基准,要求电压 准确、稳定性好。 VCC:芯片供电电压端.范围为+5V~+15V, 最佳值为+15V。 AGND:模拟地,即芯片模拟电路接地点,所 有的模拟地要连在一起。 DGND:数字地,即芯片数字电路接地点。所 有的数字电路地连地一起。使用时,再将模拟地 和数字地连到一个公共接地点,以提高系统的抗 干扰能力。
数模与模数转换器PPT课件

I
<
10
16VREF
190//1166VVRREEFF
vI
vO
D0
3. 逻辑电路
D/A 转换器
D1
D2
01 vC
0
R Q0
C1 S
FF0
01
10
0
01
Q1
R 1D
10
C1
S
FF1
10
R
Q 2 1D 10
C1 S
FF2
0
Q3
R 1D
10
C1
S
FF3
VREF D3
D3( MSB)
1
D2
D1
D0 ( LSB)
(2)转换速率(SR)——在大信号工作状态下模拟电压的变化率。 3. 温度系数——在输入一定时,输出模拟电压随温度变化产生的变化量。一般
用满刻度输出条件下温度每升高1℃,输出电压变化的百分数来表示。
9.2 A/D转换器
一.A/D转换的一般步骤和取样定理
由于输入的模拟信号在时间上是连续量,所以一般的A/D转换过程为: 取样、保持、量化和编码。
R-2R倒T形电阻网络
基准电流: I=VREF/R,
分析计算: 基准电流: I=VREF/R,
流过各开关支路(从右到左)的电流分别为 I/2、I/4、I/8、I/16。
总电流:
i
VREF R
(
D0 24
D1 23
D2 22
D3 21
)
VREF 24 R
3 i0
( Di
2i )
输出电压:
vO
D/A 转换器
D1
D2
1 vC
01
第12章 数模模数转换

模拟电压 二进制编码 代表的模拟电压电平
1V
111
7=14/15 V
13/15 V
110
6=12/15 V
11/15 V
101
5=10/15 V
9/15 V
100
4=8/15 V
WR1:输入数据选通信号,低电平有效。(
上升沿锁存)
XFER:数据传送选通信号,低电平有效。 WR2:数据传送选通信号,低电平有效。(
上升沿锁存)
IOUT1:DAC输出电流1。当DAC锁存器中为全1时,IOUT1最大(满 量程输出);为全0时,IOUT1为0。
IOUT2:DAC输出电流2。它作为运算放大器的另一个差分输入 信号(一般接地)。满足 IOUT1+IOUT2 =
①D/A转换器模拟输出电压可能被分离的等级数--可用输 入数字量的位数n表示D/A转换器的分辨率;
②可用D/A转换器的最小输出电压与最大输出电压之比来表 示分辨率。
分辨率
U
Um
1 2n 1
分辨率越高,转换时对输入量的微小变化的反应越灵敏。 而分 辨率与输入数字量的位数有关,n越大,分辨率越高。
2. )转换误差
为模拟信号(IOUT1+IOUT2)输出。
DAC0832 的使用有双缓冲器型、单缓冲器型和直通型三
种工作方式。
DAC0832的三种工作方式
(a)双缓冲方式:采用二次缓冲方式,可在输出的同时,采集下一个数 据,提高了转换速度;也可在多个转换器同时工作时,实现多通道D/A的 同步转换输出。 (b)单缓冲方式:适合在不要求多片D/A同时输出时。此时只需一次写 操作,就开始转换,提高了D/A的数据吞吐量。 (c)直通方式:输出随输入的变化随时转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 模数转换器 (1) 模/数(A/D)转换器 A/D转换器是模拟信号源与计算机或其它数字系统之间联系的桥梁,它的任务是将连续变化的模拟信号转换为数字信号,以便计算机或数字系统进行处理、存储、控制和显示。在工业控制和数据采集及其它领域中,A/D转换器是不可缺少的重要组成部分。 1) 逐次逼近型A/D转换器 逐次逼近型A/D转换器又称逐次渐近型A/D转换器,是一种反馈比较型A/D转换器。逐次逼近型A/D转换器进行转换的过程类似于天平称物体重量的过程。天平的一端放着被称的物体,另一端加砝码,各砝码的重量按二进制关系设置,一个比一个重量减半。称重时,把砝码从大到小依次放在天平上,与被称物体比较,如砝码不如物体重,则该砝码予以保留,反之去掉该砝码,多次试探,经天平比较加以取舍,直到天平基本平衡称出物体的重量为止。这样就以一系列二进制码的重量之和表示了被称物体的重量。例如设物体重11克,砝码的重量分别为1克、2克、4克和8克。称重时,物体天平的一端,在另一端先将8克的砝码放上,它比物体轻,该砝码予以保留(记为1),我们将被保留的砝码记为1,不被保留的砝码记为0。然后再将4克的砝码放上,现在砝码总和比物体重了,该砝码不予保留(记为0),依次类推,我们得到的物体重量用二进制数表示为1011。用下表7.1表示整个称重过程。
表7.1 逐次逼近法称重物体过程表 顺序 砝码(克) 比较 砝码取舍 1 8 8<11 取(1) 2 4 12>11 舍(0) 3 2 10<11 取(1) 4 1 11=11 取(1) 图7.7 逐次逼近型A/D转换器方框图
利用上述天平称物体重量的原理可构成逐次逼近型A/D转换器。 逐次逼近型A/D转换器的结构框图如图7.7所示,包括四个部分:电压比较器、D/A转换器、逐次逼近寄存器和顺序脉冲发生器及相应的控制逻辑。 逐次逼近型A/D转换器是将大小不同的参考电压与输入模拟电压逐步进行比较,比较结果以相应的二进制代码表示。转换开始前先将寄存器清零,即送给D/A转换器的数字量为0,三个输出门G7、G8、G9被封锁,没有输出。转换控制信号有效后(为高电平)开始转换,在时钟脉冲作用下,顺序脉冲发生器发出一系列节拍脉冲,寄存器受顺序脉冲发生器及控制电路的控制,逐位改变其中的数码。首先控制逻辑将寄存器的最高位置为1,使其输出为100……00。这个数码被D/A转换器转换成相应的模拟电压Uo,送到比较器与待转换的输入模拟电压Ui进行比较。若Uo>Ui,说明寄存器输出数码过大,故将最高位的1变成0,同时将次高位置1;若Uo≤Ui,说明寄存器输出数码还不够大,则应将这一位的1保留。数码的取舍通过电压比较器的输出经控制器来完成的。依次类推按上述方法将下一位置1进行比较确定该位的1是否保留,直到最低位为止。此时寄存器里保留下来的数码即为所求的输出数字量。 2) 并联比较型A/D转换器 并联比较型A/D转换器是一种高速A/D转换器。图8-9所示是3位并联型A/D转换器,
∞ + + 控制电路 寄存器
DAC
时序脉冲电路 数码输入 它由基准电压REFU、电阻分压器、电压比较器、寄存器和编码器等五部分组成。REFU是基准电压、iu是输入模拟电压,其幅值在0到REFU之间,012ddd是输出的3位二进制代码,CP是控制时钟信号。 由图8-9可知,由8个电阻组成的分压器将基准电压REFU分成8个等级,其中七个等级的电压接到7个电压比较器1C到7C的反相输入端,作为它们的参考电压,其数修正值分别为REFU/14、3REFU/14…13REFU/14。输入模拟电压iu同时接到每个电压比较器的同相输入端上,使之与7个参考电压进行比较,从而决定每个电压比较器的输出状态。 当iu0器都被置0状态。经编码器编码后输出的二进制代码为012ddd=0。 依次类推,可以列出iu为不同等级时寄存器的状态及相应的输出二进制数,如表8-1所示:
表8-1 双并联比较型A/D转换器真值表 并联比较型A/D转换器的最大优点是转换速度快,它是各种A/D转换器中速度最快的一种。这是因为输入信号电压iu同时加到电压比较器的所有输入端,从加入iu到二进制数的稳定输出所经历的时间为电压比较器、触发器和编码器的延迟时间之和。而且各位代码的转换几乎是同时进行的,增加输出代码位数对转换速度的影响很小。 并联比较型A/D转换器的主要缺点是使用的比较器和触发器较多。随着分辨率的提高,所需元件数目要按几何级数增加。输出为3位二进制代码时,需要电压比较器和触发器的个数均为23-1=7。当输出为n位二进制数时,需要个数为2n-1。例如:当n=10时,需要的电压比较器和触发器的个数均为210-1=1023。相应的编码器也变得复杂起来。显然,这种A/D转换器的成本高,价格贵,是不经济的。在一般场合较少使用。
(2) 模/数(A/D)转换器的主要技术性能 1.分辨率 分辨率是指A/D转换器输出数字量的最低位变化一个数码时,对应输入模拟量的变化量。通常以A/D转换器输出数字量的位数表示分辨率的高低,因为位数越多,量化单位就越小,对输入信号的分辨能力也就越高。例如,输入模拟电压满量程为10V,若用8位A/D转换器转换时,其分辨率为10V/28=39mV,10位的A/D转换器是9.76Mv,而12位的A/D转换器为2.44mV。 2.转换误差 转换误差表示A/D转换器实际输出的数字量与理论上的输出数字量之间的差别。通常以输出误差的最大值形式给出。转换误差也叫相对精度或相对误差。转换误差常用最低有效位的倍数表示。例如,某A/D转换的相对精度为±(1/2)LSB,这说明理论上应输出的数字量与实际输出的数字量之间的误差不大于最低位为1的一半。
输入模拟电压 寄存器状态 输出二进制数 iu 0D 1D 2D 3D 4D 5D 6D 7D 2d 0d 1d
(0-1/14)REFU 0 0 0 0 0 0 0 0 0 0 0 (1/14-3/14)REFU 0 0 0 0 0 0 0 1 0 0 1 (3/14-5/14)REFU 0 0 0 0 0 1 1 1 0 1 0 (5/14-7/14)REFU 0 0 0 0 1 1 1 1 0 1 1 (7/14-9/14)REFU 0 0 0 1 1 1 1 1 1 0 0 (9/14-11/14)REFU 0 0 1 1 1 1 1 1 1 0 1 (11/14-13/14)REFU 0 1 1 1 1 1 11 1 1 1 0 (13/14-1/14)REFU 1 1 1 1 1 1 1 1 1 1 1 3.转换速度 A/D转换器从接收到转换控制信号开始,到输出端得到稳定的数字量为止所需要的时间,即完成一次A/D转换所需的时间称为转换速度。采用不同的转换电路,其转换速度是不同的,并行型比逐次逼近型要快得多。低速的A/D转换器为1~30ms,中速A/D转换器的时间在50μs左右,高速A/D转换器的时间在50ns左右,ADC809的转换时间在100μs左右。 4. 数/模转换器DAC
(1)数/模转换器的基本概念 把数字信号转换为模拟信号称为数-模转换,简称D/A(Digital to Analog)转换,实现D/A转换的电路称为D/A转换器,或写为DAC(Digital –Analog Converter)。 随着计算机技术的迅猛发展,人类从事的许多工作,从工业生产的过程控制、生物工程到企业管理、办公自动化、家用电器等等各行各业,几乎都要借助于数字计算机来完成。但是,计算机是一种数字系统,它只能接收、处理和输出数字信号,而数字系统输出的数字量必须还原成相应的模拟量,才能实现对模拟系统的控制。数-模转换是数字电子技术中非常重要的组成部分。 D/A转换器及A/D转换器的种类很多,这里主要介绍常用的权电阻网络D/A转换器,倒T型电阻网络D/A转换器。 1) 权电阻网络D/A转换器
图7.1 权电阻网络D/A转换器 ①工作原理 权电阻网络D/A转换器的基本原理图如图7.1所示。 这是一个四位权电阻网络D/A转换器。它由权电阻网络电子模拟开关和放大器组成。该电阻网络的电阻值是按四位二进制数的位权大小来取值的,低位最高(23R),高位最低(20R),从低位到高位依次减半。S0、S1、S2和S3为四个电子模拟开关,其状态分别受输入代码D0、D1、D2和D3四个数字信号控制。输入代码Di 为1时开关Si 连到1端,连接到参考电压VREF 上,此时有一支路电流Ii流向放大器的A节点。Di为0时开关Si 连到0端直接接地,节点A处无电流流入。运算放大器为一反馈求和放大器,此处我们将它近似看作是理想运放。 权电阻网络D/A转换器的优点是电路简单,电阻使用量少,转换原理容易掌握;缺点是所用电阻依次相差一半,当需要转换的位数越多,电阻差别就越大,在集成制造工艺上就越难以实现。为了克服这个缺点,通常采用T型或倒T型电阻网络D/A转换器。 ② T形电阻网络D/A转换器 为了克服权电阻网络D/A转换器中电阻阻值相差过大的缺点,又研制出了如图7-3所示的T形电阻网络D/A转换器,由R和2R两种阻值的电阻组成T形电阻网络(或称梯形电阻网络)为集成电路的设计和制作带来了很大方便。网络的输出端接到运算放大器的反相输入端。
图8-3 T形电阻网络D/A转换器 T形电阻网络D/A转换器的优点是它只需R和2R两种阻值的电阻,这对选用高精度电阻和提高转换器的精度都是有利的;该电路的缺点是使用的电阻数量较大。此外在动态过程中T形电阻网络相当于一根传输线,从REFU加到各级电阻上开始到运算放大器的输入稳定地建立起来为止,需要一定的传输时间,因而在位数较多时将影响D/A转换器的工作速度。而且,由于各级电压信号到运算放大器输入端的时间有先有后,还可能在输出端产生相当大的尖峰脉冲。如果各个开关的动作时间再有差异,那时输出端的尖峰脉冲可能会持续更长的时间。 提高转换速度和减小尖峰脉冲的有效方法是将图8-4电路改成倒T形电阻网络D/A转换电路,如图8-6所示