初中数学微课-绝对值1ppt课件

合集下载

人教版七年级数学上册《绝对值》PPT课件

人教版七年级数学上册《绝对值》PPT课件

人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
课堂小结
1.绝对值的定义:
一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值, 记作│a│.
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
课堂小结
2.绝对值的意义: 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数; 0的绝对值是0. 即:①如果a>0,那么│a│=a; ②如果a=0,那么│a│=0;
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
例题解析
(2)∵
- 8 = 8 , -3 =3
21 21
77
又∵
8 <3 21 7
,即
- 8 <-3
21
7

∴得:-(-0.3)=0.3,-
1 3

1 3
.
1 ∵0.3< 3 ,
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
合作探究
对于正数,0和负数这三类数,它们之间有什么大小关系?两个负 数之间如何比较大小?
(1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小.
人教版七年级数学上册《绝对值》PPT 课件
人教版七年级数学上册《绝对值》PPT 课件
(2)你能将这七天中 每天的最低气温按从低到高 的顺序排列吗?
(3)数轴上的数的排列规律是什么?
人教版七年级数学上册《绝对值》PPT 课件
合作探究
(1)最低气温是-4,最高气温是9. (2)这七天中每天的最低气温按从低到高的顺序排列为: -4, -3, - 2, - 1,0,1 , 2. (3)数轴上的数的排列规律是: 在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序, 即左边的数小于右边的数.

绝对值ppt课件

绝对值ppt课件

做数的绝对值,记作
01 知识解读
单步训练
原点
− 在数轴上表示_______的点到_______的距离,
-12
且距离为_______,所以
− =_______
12
12


原点
− 在数轴上表示_______的点到_______的距离,
且距离为_______,所以 −


=_______
4
4
距离为_______,所以
=_______
注意
绝对值是求数轴上某点到原点
距离的运算
02
方法展示
02 方法展示
【示例1】化简下列各数:


=_____
− +

2020
=_____43;
【示例2】如果 = ,则 =_______
-2020
=_____
A、±
B、
C、−

2018
=_____
D、

绝对值比较大小
目录
CONTENTS
01
方法展示
02
实战演练
01
方法展示
01 方法展示
【示例1】数轴上A、B两点表示的数分别是−、−
−的绝对值是_____,−的绝对值是_____
4
3
在数轴中标出点A、B的位置,并比较它们的大小:_____
所以 + =_____
1
01 方法展示
总结
02
实战演练
02 实战演练
例5 若 − + + + + = ,求、、的值
练5.1 若 − + + − = ,则 + =_____

绝对值ppt课件

绝对值ppt课件

同学们再见!
汇报:AiPPT
时间:20XX.X
(1) 一辆汽车停在距离收费站8公里的位置,向东走到距离收费站3公里处, 又向西行驶5公里。问此时汽车到收费站的距离是多少公里?
假设向东为正方向,起始位置为-8公里,向东行驶到-3公里处。 然后向西(负方向)走5公里,到达:-3 - 5 = -8公里。 所以汽车回到了-8公里处,距离收费站:|-8| = 8公里。
公式表示
一般地,数轴上表示数a的点与原点的距离叫 作数a的绝对值,记作|a|
10 和 -10到原点的距离 都是10,所以 10 和 -10 的绝对值都是10,即
|10| =|10|, |-10| =10 显然|0|= 0
02
绝对值的性质
非负性
绝对值的第一个性质是非负性,即对于任何实数 a,都有 ( |a| ≥ 0 )。这意味着 绝对值总是非负的,它不会小于零。
(2) 如果|x - 3| = 7,求x的值。
根据绝对值的定义,x - 3 = 7 或 x - 3 = -7。 解得: x = 10 或 x = -4。
04
总结
复习定义和性质
1. 绝对值的定义 绝对值表示一个数到数轴上原点的距离,无论该数是正数、负数还是零。 •形式上表示为:|a|,当 a ≥ 0 时,|a| = a;当 a < 0 时,|a| = -a。 •例如:|5| = 5,|-5| = 5,|0| = 0。 2. 绝对值的性质 •非负性:|a| ≥ 0,绝对值永远是非负的。 •零点:|a| = 0 当且仅当 a = 0
(1) |-8| = _
答案:8 解析:绝对值的定义,|-8| = -(-8)= 8。(2) 已知|x| = 1源自,则x的取值为 ___ 和 ___。

人教版七年级数学上册《绝对值》PPT

人教版七年级数学上册《绝对值》PPT
(1) –(-1)和–(+2);
解: 先化简,–(-1)=1,–(+2)=-2
而1>-2,所以–(-1)>–(+2)。
(2)
8
3
- 和21
7
解:这是两个负数比较大小,先求它们的绝对值。
8
21
|- |=
8
21
而 <
8
3
3
9
,|- |= =
21 7
7 21
9
8
3
,- >21 21
7
(3) -(−0.3)和|-

8个单位长度
不同
。我们把这个距离8叫做+8和-8的
符号
绝对值
8
,它们

一般地,数轴上表示数a的点与
对值,记作:
.
原点的距离
叫做数a的绝
|a|
例:计算10和-10的绝对值?
因为在数轴上表示10和-10的两个点,它们距原点的单位距离都是10个单位
长度,所以10和-10的绝对值都是10,即|10|=10,|-10|=10.
;
3.一个负数的绝对值是 它的相反数 ;
4.零的绝对值是 0 ;
a (a 0),
(a 0),
(a 0).

| a | 0
a
| a | ≥0
0.2 (2)|-100|=____;
100
(1)|-0.2|=____;

6.5
(3)|−|=______;(4)|-6.5|=_____;
2
2

(5)|y|=____(y<0);(6)|
|=_____;3
3

新人教版初中数学《绝对值》PPT教学课件1

新人教版初中数学《绝对值》PPT教学课件1

C、如果两个数的绝对值相等则这两个数一定相 等
2、已知:|a|=3,|b|=2 求、a+b的

3、|x-3|+|y-2|=0成立的条件是( )
A、x=3
B、y=2 C、x=3 且y=2
1.字母 a 表示一个数,-a 表示什 么?-a一定是负数吗?
解:字母 a 表示一个数, -a 表示 a 的相反数,-a不一定是负数.
3.读了本文,我明白了在当今世俗的 喧嚣中 应保持 自己内 心的宁 静,不 为世俗 所扰。 文中的 菜农能 够在喧 闹的菜 市场沉 浸于书 本的美 好中, 沉浸于 内心的 宁静中 。在生 活中, 我不会 因某次 月考的 成功而 骄傲。 而要保 持内心 的宁静 ,继续 努力前 行。
4.概括文章的主要内容。通篇阅读, 分出层 次,梳 理情节 ,全盘 把握, 根据题 干要求 找出事 件的中 心内容 ,用自 己的语 言简洁 概括。 如可概 括为“我” 见到菜 农后发 生的几 件事及 对他态 度的变 化,由 此表达 了对菜 农的敬 佩之情 。
互为相反数的两个数的绝对 值有什么关系?
相等
1. 一个正数的绝对值是它本身;2. 0的绝对值 是0;3. 一个负数的绝对值是它的相反数。
即:①若a>0,则|a|=a; |a|=–a;
②若a<0,则
③若a=0,则|a|=0;来自或写成:a (a 0)
a
0
(a 0)
a (a 0)
例1 求下列各数的绝对值:
例如:大象离原点4个单位长度: │4│=4
那么两只小狗呢?
如果一个数为-5,则它的绝对值呢?
1、在数轴上标出到原点距离是10个单位长度的 点,这样的点有几个?
2、求下列各数的绝对值

绝对值ppt课件

绝对值ppt课件
(3)绝对值等于它本身的数有正数和0.
课本例题
例1 求下列各数的绝对值:
求一个数的绝对值的方法:
15
1
- ,+ ,-4.75,10.5.
2
10
解:
15

2
15
= ,
2
1
+
10
=
去掉绝对值符号时,必须按照“先
1

10
−4.75 = 4.75, 10.5 =10.5.
判后去”的原则,先判断这个数是
正数、0或负数,再根据绝对值的
值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.
试探索:(1)|5-(-2)|= 7

.
(2)探索猜想:对于任意有理数 x ,| x -(-6)|+| x -3|是否有最小值?
如果有,求出最小值;如果没有,说明理由.
【解】对于任意有理数 x ,| x -(-6)|+| x -3|有最小值.因为| x -(-6)|
【解】点 A3向左移动2个单位长度到达 A2点,再向右移动6个单位长度到
达 A5点.
(3)若原点是零件供应点,则5个机器人分别到达供应点取货的总路程是多
少?
【解】|-4|+|-3|+|-1|+|1|+|3|=12.
答:5个机器人分别到达供应点取货的总路程是12.
分层练习-拓展
15. [新考法 特例猜想法]同学们都知道,|5-(-2)|表示5与-2之差的绝对
A. x ≤2
B. x <2
| a |= a ;当 a < 0时,| a |=- a ;当 a =0时,
C. x ≥2
D. x >2
| a |= a =- a ,所以当 a ≤0时,| a |=- a .

1.3绝对值课件(14张PPT)

1.3绝对值课件(14张PPT)
+4和-4
问:为什么绝对值等于4的数有两个?
-4
4
三、辨别应用,巩固新知
(1)填表
课本21-22面课内练习

相反数
绝对值210Fra bibliotek-(2)画一条数轴,在数轴上分别标出绝对值是6,1.2,0的数.
再次播放动画,观察几个数的绝对值大小和对应点离原点的位置远近,你有什么发现?
一个数的绝对值越大,数轴上的对应点离原点越远;
2.互为相反数的两个数有什么相同点和不同点?
五、目标检测
课本22面作业题
同学们再见!
授课老师:
时间:2024年9月15日
是它本身
是0
是它的相反数
如果a>0,那么|a|=a
如果a=0,那么|a|=0
如果a<0,那么|a|=-a
问题5 (口答)说出下列各数的绝对值:
7
-7
-2.05
0
1000
观察绝对值的大小,你有什么发现?
任何数的绝对值都大于或等于0
问题6 求绝对值等于4的数.
答:数轴上到原点的距离等于4个单位长度的点总共有两个, 左右各一个。
|+5|=5
问题3:借助数轴,请你说出数轴上30,-1.6,-10,-4对应的点到原点的距离分别是多少?并求出它们的绝对值.
3对应的点到原点的距离是3,则3的绝对值是3,即|3|=3
+10对应的点到原点的距离是10,则+10的绝对值是10,即|+10|=10
对应的点到原点的距离是,则的绝对值是,即=
一个数的绝对值越小,数轴上的对应点离原点越近;
(3)举一个生活中的例子,说明解决某些问题只需考虑数的绝对值.

绝对值ppt课件

绝对值ppt课件
绝对值ppt课件
contents
目录
• 绝对值的概念 • 绝对值的运算 • 绝对值的应用 • 绝对值的拓展知识 • 总结与回顾
01
绝对值的概念
绝对值的定义
01
绝对值是一个数到原点的距离, 用数学符号表示为:a的绝对值( a ≧ 0)和│a│(a < 0)。
02
一个正数的绝对值是它本身;一 个负数的绝对值是它的相反数;0 的绝对值是0。
绝对值在数学中的应用
在数学中,绝对值是一个非常重 要的概念,它可以用来表示实数
的距离。
绝对值的性质包括:非负性、传 递性、三角不等式等。
绝对值的应用还包括比较大小、 解方程等。
绝对值在物理中的应用
在物理学中,绝对值的概念可 以用来描述粒子的位置、速度 等物理量。
绝对值的性质可以用来计算物 理量的大小和方向。
绝对值的除法
|a| / |b| = |a/b|,即绝对值的 除法等于两数绝对值的商。
应用案例分享
案例一
在数轴上,点A和点B分别表示-5 和2,求A和B之间的距离。利用 绝对值的加法,可以计算出AB之 间的距离为7。
案例二
在数轴上,点C表示-3,点D表示 5,求C和D之间的距离。利用绝 对值的减法,可以计算出CD之间 的距离为8。
绝对值与不等式的关系
通过绝对值,我们可以将不等式转化为等式,从而可以更容易地解 决不等式问题。
应用
在数学中,绝对值被广泛应用于解不等式和方程的问题。
05
总结与回顾
主要概念总结
绝对值的定义
绝对值是一个数到原点的 距离,用符号“|”表示。
绝对值的性质
正数的绝对值是它本身, 负数的绝对值是它的相反 数,0的绝对值是0。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档