多面体欧拉定理的发现
(第29课)多面体欧拉定理的发现(1)

课题:9.10研究性课题:多面体欧拉定理的发现(一)教学目的:1. 了解多面体与简单多面体的概念、发现欧拉公式2.培养学生发现问题、探究问题、归纳总结能力教学重点:欧拉公式的发现过程教学难点:欧拉定义及其证明授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:本节为研究性课题通过研究欧拉定理的发现过程,让学生了解欧拉公式及其简单应用,扩大学生的知识面,培养学生学习数学的兴趣教学过程:一、复习引入:1 欧拉生平事迹简说:欧拉(Euler),瑞士数学家及自然科学家年4月15日出生于瑞士巴塞尔的一个牧师家庭,自幼受父亲的教育,13岁入读巴塞尔大学15岁大学毕业,16岁获硕士学位,1783年9月18日于俄国彼得堡去逝(详细资料附后)2多面体的概念:由若干个多边形围成的空间图形叫多面体;每个多边形叫多面体的面,两个面的公共边叫多面体的棱,棱和棱的公共点叫多面体的顶点,连结不在同一面上的两个顶点的线段叫多面体的对角线.3.凸多面体:把多面体的任一个面展成平面,如果其余的面都位于这个平面的同一侧,这样的多面体叫凸多面体.如图的多面体则不是凸多面体.4.凸多面体的分类:多面体至少有四个面,按照它的面数分别叫四面体、五面体、六面体等二、讲解新课:1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它就会连续(不破裂)变形,最后可变为一个球面如图:象这样,表面经过连续变形可变为球面的多面体,叫做简单多面体说明:棱柱、棱锥、正多面体等一切凸多面体都是简单多面体⑹2.五种正多面体的顶点数、面数及棱数:发现:它们的顶点数V 、面数F 及棱数E 式:2V F E +-=.上述关系式对简单多面体都成立3.欧拉公式的探究1.请查出图⑹的顶点数V 、面数F 、和棱数E V +F -E =6+6-10=22.查出图⑺中的顶点数V 、面数F 、和棱数E ,并验证上面公式是否还成立?3. 假如图⑸→图⑻的多面体表面是像皮膜,向内充气则⑸⑹将变成一个球面,图⑺将变成两个紧贴的球面,图⑻将变成一个环面。
最新整理高中数学研究性课题:多面体欧拉定理的发现 (二) .doc

高中数学研究性课题:多面体欧拉定理的发现 (二) 教学目的:会用欧拉公式解决实际问题 教学重点:欧拉定理的应用教学难点:在具体问题中会利用顶点V 、面数F 、棱数E 的关系互化授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它就会连续(不破裂)变形,最后可变为一个球面如图:象这样,表面经过连续变形可变为球面的多面体,叫做简单多面体说明:棱柱、棱锥、正多面体等一切凸多面体都是简单多面体2.五种正多面体的顶点数、面数及棱数:3.欧拉定理(欧拉公式):简单多面体的顶点数、面数及棱数E 有关系式: 2V F E +-=.4.欧拉示性数:在欧拉公式中令()f p V F E =+-,()f p 叫欧拉示性数 说明:(1)简单多面体的欧拉示性数()2f p =.(2)带一个洞的多面体的欧拉示性数()0f p =.例如:长方体挖去一个洞连结底面相应顶点得到的多面体()161632f p =+-=二、讲解范例:例1 由欧拉定理证明:正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这五种证明:设正多面体的每个面的边数为n ,每个顶点连有m 条棱,令这个多面体的面数为F ,每个面有n 条边,故共有nF 条边,由于每条边都是两个面的公共边,故多面体棱数2nF E = (1)令这个多面体有V 个顶点,每一个顶点处有m 条棱,故共有mV 条棱由于每条棱有两个顶点,故多面体棱数2mV E =(2) 由(1)(2)得:2E F n =,2E V m =代入欧拉公式:222E E E m n+-=. ∴11112m n E+-= (3), ∵又3m ≥,3n ≥,但m ,n 不能同时大于3,(若3m >,3n >,则有11102m n +-≤,即10E≤这是不可能的) ∴m ,n 中至少有一个等于3.令3n =,则1111032m E+-=>, ∴116m >,∴5m ≤,∴35m ≤≤. 同样若3m =可得35n ≤≤. 例2.欧拉定理在研究化学分子结构中的应用:1996年诺贝尔化学奖授予对发现60C 有重大贡献的三位科学家60是由60个C 原子构成的分子,它是形如足球的多面体60个顶点,以每一个顶点为一端点都有三条棱,面的形状只有五边形和六边形,计算60C 分子中五边形和六边形的数目解:设60C 分子中有五边形x 个,六边形y 个60C 分子这个多面体的顶点数60V =,面数F x y =+,棱数1(360)2E =⨯⨯,由欧拉定理得:160()(360)22x y ++-⨯= (1), 另一方面棱数可由多边形的边数和来表示,得11(56)(360)22x y +=⨯ (2),由(1)(2)得:12x =,20y =∴60C 分子中五边形有12个,六边形有20个例3.一个正多面体各个面的内角和为20π,求它的面数、顶点数和棱数解:由题意设每一个面的边数为m ,则(2)20F m ππ-=,∴(2)20F m -=, ∵2mF E =,∴10E F =+, 将其代入欧拉公式2V F E +-=,得12V =,设过每一个顶点的棱数为n , 则62n E V n ==,12n F m =得121262n n m +-=,即5213n m+=(1), ∵3m ≥,∴5n ≤,又3n ≥,∴n 的可能取值为3,4,5,当3n =或4n =时(1)中m 无整数解;当5n =,由(1)得3m =,∴30E =, ∴20F =,综上可知:30E =,12V =,20F =.三、小结 :欧拉定理的应用;会用欧拉公式2V F E +-=解决简单多面体的顶点数、面数和棱数的计算问题四、课后作业:⒈ 一个简单多面体的各面都是三角形,证明它的顶点数V 和面数F 有下面的关系:F =2V -4 证明:∵23F E =,V +F -E =2 ∴V +F -F 23=2 ∴F =2V -4 ⒉ 设一个凸多面体有V 个顶点,求证:它的各面多边形的内角和为(V-2)·360°解:设此多面体的上底面有V 上个顶点,下底面有V 下个顶点将其下底面剪掉,抻成平面图形则V 上·360°+(V 下-2)·180°+(V 下-2)·180°=(V 上+V 下-2)·360°=(V -2)360°⒊ 有没有棱数是7的简单多面体?说明理由证明:∵V +F -E =2 , ∴V +F =7+2=9∵多面体的顶点数V ≥4,面数F ≥4∴只有两种情况V =4,F =5或V =5,F =4但是有4个顶点的多面体只有四个面,不可能是5个面,有四个面的多面体是四面体,也只有四个顶点,不可能有5个顶点,∴没有棱数是7的简单多面体⒋ 是否存在这样的多面体,它有奇数个面,且每一个面都有奇数条边证明:设有一个多面体,有F (奇数)个面,并且每个面的边数F n n n 21,也都是奇数,则E n n nF 221=+++但是上式左端是奇数个“奇数相加”,结果仍为奇数,可右端是偶数,这是不可能的 ∴不存在这样的多面体五、板书设计(略)六、课后记:。
§多面体欧拉定理的发现01

芯衣州星海市涌泉学校多面体欧拉定理的发现〔2〕一、课题:多面体欧拉定理的发现〔2〕二、教学目的:欧拉定理的应用.三、教学重、难点:欧拉定理的应用.四、教学过程:〔一〕复习:1.简单多面体的定义;2.欧拉定理;3.正多面体的种类.〔二〕新课讲解:例1.由欧拉定理证明:正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这五种. 证明:设正多面体的每个面的边数为n ,每个顶点连有m 条棱,令这个多面体的面数为F ,每个面有n 条边,故一一共有nF 条边,由于每条边都是两个面的公一一共边,故多面体棱数2nFE =〔1〕令这个多面体有V 个顶点,每一个顶点处有m 条棱,故一一共有mV 条棱。
由于每条棱有两个顶点,故多面体棱数2mVE =〔2〕 由〔1〕〔2〕得:2E Fn =,2E V m =代入欧拉公式:222E E E m n +-=. ∴11112m n E+-=〔3〕,∵又3m ≥,3n ≥,但m ,n 不能同时大于3,〔假设3m >,3n >,那么有11102m n +-≤,即10E≤这是不可能的〕∴m ,n 中至少有一个等于3.令3n =,那么1111032m E +-=>, ∴116m >,∴5m ≤,∴35m ≤≤.同样假设3m =可得35n ≤≤. 例2.欧拉定理在研究化学分子构造中的应用:1996年诺贝尔化学奖授予对发现60C 有重大奉献的三位科学家。
60C 是由60个C 原子构成的分子,它是形如足球的多面体。
这个多面体有60个顶点,以每一个顶点为一端点都有三条棱,面的形状只有五边形和六边形,计算60C 分子中五边形和六边形的数目.解:设60C 分子中有五边形x 个,六边形y 个。
60C 分子这个多面体的顶点数60V =,面数F x y =+,棱数1(360)2E =⨯⨯,由欧拉定理得:160()(360)22x y ++-⨯=〔1〕,另一方面棱数可由多边形的边数和来表示,得11(56)(360)22x y +=⨯〔2〕,由〔1〕〔2〕得:12x =,20y = ∴60C 分子中五边形有12个,六边形有20个.例3.一个正多面体各个面的内角和为20π,求它的面数、顶点数和棱数.解:由题意设每一个面的边数为m ,那么(2)20F m ππ-=,∴(2)20F m -=, ∵2mF E =,∴10E F =+,将其代入欧拉公式2V F E +-=,得12V =,设过每一个顶点的棱数为n ,那么62n E V n ==,12n F m =得121262n n m +-=,即5213n m+=〔1〕, ∵3m ≥,∴5n ≤,又3n ≥,∴n 的可能取值为3,4,5,当3n =或者者4n =时〔1〕中m 无整数解;当5n =,由〔1〕得3m =,∴30E =,∴20F =,综上可知:30E=,12V =,20F =.五、小结:1.欧拉定理的应用;2.会用欧拉公式2V F E +-=解决简单多面体的顶点数、面数和棱数的计算问题.六、作业:课本第69页习题9.10第2,3题.。
高二数学教案:多面体欧拉定理的发现(1)

多面体欧拉定理的发现(1)一、课题:多面体欧拉定理的发现(1) 二、教学目标:1.了解简单多面体的概念;2.掌握欧拉定理.三、教学重、难点:欧拉定义及其证明. 四、教学过程:(一)欧拉生平事迹简说:欧拉(Euler),瑞士数学家及自然科学家。
1707年4月15日出生于瑞士巴塞尔的一个牧师家庭,自幼受父亲的教育,13岁入读巴塞尔大学15岁大学毕业,16岁获硕士学位,1783年9月18日于俄国彼得堡去逝. (二)新课讲解: 1.简单多面体:考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么 它就会连续(不破裂)变形,最后可变为一个球面.如图: 象这样,表面经过连续变形可变为球面的多面 体,叫做简单多面体.说明:棱柱、棱锥、正多面体等一切凸多面体都是简单多面体.2.填表:将五种正多面体的顶点数、面数及棱数分别填表:正多面体 顶点数V面数F 棱数E 正四面体 44 6 正六面体 8 6 12 正八面体 6 8 12 正十二面体 20 12 30 正二十面体122030发现:它们的顶点数、面数及棱数有共同的关系式:2F E +-=. 上述关系式对简单多面体都成立. 3.欧拉定理:简单多面体的顶点数V 、面数F 及棱数E 有关系式:2V F E +-=.(欧拉公式) 4.定理的证明:(方法一)以四面体ABCD 为例来说明:将它的一个面BCD 去掉,并使其变为平面图形, 四面体的顶点数V 、棱数E 与剩下的面数1F 变形 后都没有变。
因此,要研究V 、E 和F 的关系, 只要去掉一个面,将它变形为平面图形即可.ABCDEA 'B 'C 'D 'E '对平面图形,我们来研究:(1)去掉一条棱,就减少一个面。
例如去掉BC ,就减少一个面ABC . 同理,去掉棱CD 、BD ,也就各减少一个面ACD 、ABD . 由于1F E -、V 的值都不变,因此1V F E +- 的值也不变.(2)再从剩下的树枝形中,去掉一条棱,就减少 一个顶点。
多面体欧拉定理的发现1

多面体欧拉定理的发现(1)【教学目的】1.理解简单多面体的定义2.理解并熟记欧拉公式3.会运用欧拉公式及相关知识进行计算及推理【教学思路】正多面体5种→认识欧拉→拓扑变形→简单多面体概念→研究正多面体V、F、E的关系→欧拉定理→证明→欧拉定理的意义【教学过程】1.(1) 什么叫正多面体?特征?正多面体是一种特殊的凸多面体,它包括两个特征:①每个面都是有相同边数的正多边形;②每个顶点都有相同数目的棱数。
(2) 正多面体有哪几种?展示5种正多面体的模型。
为什么只有5种正多面体?著名数学家欧拉进行了研究,发现了多面体的顶点数、面数、棱数间的关系。
2. 介绍数学家欧拉欧拉(1707~1783)瑞士数学家,大部分时间在俄国和法国度过。
他16岁获硕士学位,早年在数学天才贝努里赏识下开始学习数学,并毕生研究数学,是数学史上最“高产”的数学家,在世发表700多篇论文。
他的研究论著几涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。
欧拉还是数学符号发明者,如用f (x)表示函数、∑表示连加、i表示虚数单位、π、e等。
在多面体研究中首先发现并证明了欧拉公式,今天我们沿着他的足迹探索这个公式。
3.发现关系:V+F-E=2。
是不是所有多面体都有这样的关系呢?如何去研究呢?需要观念和方法上的创新。
4.多面体拓扑变形与简单多面体的概念考虑一个多面体,例如正六面体,假定它的面是用橡胶薄膜做成的,如果充以气体,那么它会连续(不破裂)变形,最后可变成一个球面。
像这样,表面经过连续变形可变为球面的多面体,叫做简单多面体。
5. 欧拉定理定理 简单多面体的顶点数V 、棱数E 及面数F 间有关系V+F-E=2公式描述了简单多面体中顶点数、面数、棱数之间特有的规律6. 定理的证明分析:以四面体ABCD 为例。
将它的一个面BCD 去掉,再使它变为平面图 形,四面体的顶点数V 、棱数V 与剩下的面数F 1变形后都没有变(这里F 1=F-1)。
欧拉公式是怎么发现的?

欧拉公式是怎么发现的?欧拉公式指的是近代数学的伟大先驱之一莱昂哈德·欧拉(1707-1783)所发明的一系列公式。
这些公式分布在数学这颗大树的众多分支领域中,比如复变函数中的欧拉幅角公式、初等数论中的欧拉函数公式、拓扑学中的欧拉多面体公式、分式公式等等。
我们在学习中,最先接触到的欧拉公式就是著名的欧拉多面体公式:V-E+F=2。
下面简单介绍下这个公式的发现过程。
早在1639年,法国著名数学家笛卡尔(解析几何学的创始人)就发现了一个规律:不管由多边形围成的凸多面体的外形如何变化,其顶点数(V),棱数(E)和面数(F)都满足一个简单的公式——V-E+F=2。
但在当时这个规律并未广泛流传。
过了一百多年后,欧拉在1750年又重新独立地发现了这个规律,于是这个广为流传的公式被命名为欧拉多面体公式。
欧拉的思路大致是这样的:任意三角形的内角和一定是180°,用弧度表示就是π,这个角度是和三角形的形状和大小无关的。
进而就能发现,任何一个凸n边形的内角和为(n-2)π,这说明凸多边形的内角和是由边数的多少决定的,也和形状、大小等因素无关。
把这个理论推广到空间中若干个多边形围成的凸多面体,又有怎样的性质呢?欧拉首先选择了几个形状简单的多面体进行推理,并将观察所得进行了归纳总结,他发现这些多面体的面角和是由多面体的顶点数决定的。
欧拉又把这个猜想进一步推广,就得到了V-E+F=2的最终结论。
事实上,欧拉多面体公式的证明方法有很多种,比如数学归纳法,球面几何法等。
欧拉是一位不折不扣的数学天才。
但是他的非凡成就也和他对数学的热爱有关。
在欧拉人生的最后7年,他双目完全失明,但是仍然留下了大量数学遗产。
这或许更能说明,为什么数学史上能留下那么多经典的欧拉公式吧。
多面体欧拉定理的发现
高中新课标选修3-5《多面体欧拉定理的发现》教学设计温州中学黄振【教学背景】数学不应看作真理的汇集,而主要的应看成人类活动的一种创造性的活动。
因而在教学中,如何积极引导学生主动地探索,深刻剖析知识的产生、形成和发展过程,提高学生发现问题和解决问题的能力,这是我经常思考的问题。
过去我认为教师讲得越细,学生学得就越容易,课堂教学效率更高,就像钻山洞一样,老师领着学生钻比学生自己摸索可能更快一些。
可是我没想到,这样做会使学生养成不动脑筋的习惯,只限于被动地听课,而不愿主动地学习。
本节课试图在这一方面做一个尝试。
【教学目标】1.知识目标了解多面体的概念;理解多面体欧拉公式;了解公式的发现过程和证明方法。
2.能力目标①初步了解数学概念和结论的产生过程,提高学生发现问题和解决问题的能力。
②培养学生空间想象能力、逻辑思维能力、人际交往能力和协作能力。
③发展学生的创新意识和创新能力。
3.情感目标①以欧拉公式的探索为载体,体验数学研究的过程和创造的激情。
②体验数学的简洁美(V+F-E=2),激发学生学习数学的兴趣。
【教学重点】欧拉定理的发现和证明。
【教学难点】欧拉定理的证明。
【教学设计】一.创设情境,提出问题播放世界杯主题曲,引出足球话题:四年一度的足球世界杯,被戏称为“绿茵场上的战争”,它令世人瞩目,吸引并造就了无数的球迷。
你也许是一个狂热的球迷,但是你知道足球的黑块和白块是什么图形吗?各有多少块?如果将它看成由这些多边形所围成的几何体,你能算出它的顶点数和棱数吗?(设计意图:让学生体验数学与“现实世界”息息相关,使数学学习发生在真实的世界和背景中,提高学生学习数学的兴趣和参与的程度。
)二.探究猜想,导入定理多面体是由它的面围成的立体图形,这些面的交线形成棱,棱与棱的相交形成顶点。
那么在多面体中,它的顶点数、面数和棱数之间有什么关系?请你来猜一猜。
首先让学生单独思考,然后同桌之间相互讨论。
学生一般会在已学过的多面体(棱柱、棱锥等)中进行探索,得到结果。
《假如我是欧拉……多面体欧拉定理的发现》教案及说明
假如我是欧拉……——多面体欧拉定理的发现一、教学目的1、了解欧拉公式,并体现公式的发现过程。
2、进一步让学生体会多面体的三种基本量:点、线、面是立体几何的主要研究对象;3、通过体验欧拉公式的发现过程,培养学生自主学习的能力;4、让学生再次体验几何体的美;5、在情感上培养学生换位思考方式及理解伟人的坚韧不拔的精神。
二、教学重点1、体验欧拉公式的发现过程及再次认识组成多面体的基本量:点、线、面;2、让学生在体验过程中培养学生自主学习的能力。
三、教学难点:学生在发现过程中体验到数学思想和方法。
四、教学过程t教案设计说明本节课设计为“研究性学习课题”。
以介绍伟人欧拉的生平作为引入,激发学生学习欧拉公式的兴趣;利用换位思考的形式,让学生假设自己是欧拉,通过一系列问题设计:怎样产生问题——怎样研究问题——怎样完善结论——应用,引导学生进行探究,在探究过程中,亲身体验欧拉公式的发现过程;最后对整个过程进行反思,让知识在反思中得到升华。
本节课这样设计的目的是在知识上,让学生了解欧拉公式,体会欧拉公式给出的是等量关系,这个等量关系刻划的是多面体的拓扑不变性,初步了解拓扑学;并在探究的过程中让学生不断体会到欧拉公式给出的是多面体的顶点数、面数、棱数这三者的数量关系,从而进一步让学生明确多面体的三个基本量:点、线、面。
在情感上,本节课以介绍伟人欧拉的生平作为引入,目的在于让学生了解欧拉,体会欧拉坚韧不拔的精神。
并且让学生假设自己是欧拉,重走欧拉公式的发现历程,进一步激发学生探究的兴趣,同时培养学生换位思考的方式。
在能力上,采用换位思考的方式,让学生假设自己是欧拉,引导学生进行探究,让学生在每一个问题的探究中获取更多的思想和方法。
其中问题一:怎样产生这一想法的解决,让学生通过独立思考、交流讨论和发表见解等形式,领悟到提出问题的重要性,培养学生要问——好问——善问的良好习惯,并从中体会到数学中类比和归纳的思想。
通过前面三大问题的设置:怎样产生问题——怎样研究问题——怎样完善结论,让学生体会得出研究问题的方式方法:提出问题——归纳——猜想——论证,并且培养学生严谨的治学态度。
多面体欧拉定理的发现(1)教学设计
1《多面体欧拉定理的发现(1)》教学设计温州第51中学 谢尚鸽教学设计前记: 1.教学实践:前年我上过该课,发现该课有下面几个地方比较难处理.(1)引入课题时怎样更好地激发学生的求知欲及探索欲.(2)课堂上如何省时,准确地数出多面体的顶点数,面数与棱数.(3)怎样引导学生构造反例(4)如何自然地提出简单多面体地概念(5)如何更生动地介绍欧拉(6)如何构造平台,让学生自然地证明欧拉公式 (7)课堂上如何有效地促进学生参与(8)如何完整地展现 “发现—猜想—证明”的探索过程. 2.教育理论:美国著名心理学家布鲁纳针对传统的讲授式教学,提出了发现学习的基本模式。
其主要环节是:⑴创设问题情景⑵提出假设⑶检验假设针对以上教学实际中碰到的8个问题,再结合布鲁纳的发现学习理论,下面我谈谈《多面体欧拉定理的发现》第1课时的教学设计. 一.教学目标 (1)知识目标识记欧拉公式,了解公式的发现过程。
(2)能力目标① 培养学生动手、观察、发现、归纳、猜想、探索、解决数学问题的能力。
② 培养学生的空间想象能力、逻辑思维能力. ③ 培养学生的团结协作能力、创新意识和创新能力. (3)德育与美育目标① 以多面体欧拉公式的探索为载体,体验数学研究的过程和创造的激情。
② 通过数学家业绩的介绍,培养学生学习数学大师严谨的科学态度和不怕困难的顽强精神,从而促进学生非智力因素的发展.③ 体验数学的简洁美(2=-+E F V )和对称美,激发学生学习数学的兴趣。
二.教学的重点与难点重点是组织全体学生积极地参与多面体欧拉公式的发现。
难点是欧拉公式的证明 三.教学过程 课前准备:课前先把学生分成8个学习小组,确定组长,负责组织讨论及收集数据.上课时把有关多面体顶点数,棱数,面数的数据统计表发给每位同学,同时发给每组一个足球。
1.创设情境:让学生观察足球,提问足球表面有哪些图形?你们知道足球表面有几个顶点,几条棱,几个面? 以小组为单位,要求学生数一数足球的顶点数、面数及边数,填入数据统计表内。
欧拉公式
研究性课题多面体欧拉公式的发现源自+F-E=2V+F-E=2
V+F-E=2?
定义表面在连续变形中能变形为一个
球面的多面体,叫做简单多面体
多面体的欧拉定理:V+F-E=2,其中V、 F、E分别代表简单多面体的顶点数、面数和 棱数。
V+F-E=2
1、一个简单多面体的各面都是三角形,证明 它的顶点数V和面数F有F=2V-4的关系 2、一个简单多面体的各面都是四边形,证明 它的顶点数V和面数F有F=V-2的关系
欧拉----- 瑞士著名数学家,是数学史上最多产 的数学家,他毕生从事数学研究,他的论著几 乎涉及18世纪所有数学分支。比如,在初等数 学中,欧拉首先将符号正规化,如f(x) 表示函 数,e表示自然对数的底,a、b、c表示ΔABC 的三边等;数学中的欧拉公式、欧拉方程、欧 拉常数、欧拉方法、欧拉猜想等。其中欧拉公 式中的一个特殊公式e iπ+1 = 0,将数学上的5 个常数0、1、e、i、π联系在一起。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多面体欧拉定理的发现【新课引入】让学生观察足球,提问:足球表面有哪些图形?足球表面有几个顶点,几条棱,几个面?以小组为单位,要求学生数一数足球的顶点数、面数及边数,填入数据统计表内。
看一看能否找到一些规律.【设计意图】从生活的实际问题引入,可以调节课堂气氛,激发学生的学习兴趣, 培养学生的观察能力和动手操作的能力,同时可以自然地过渡到数多面体的顶点数,面数,棱数.【新课讲解】1.尝试猜想:以小组为单位,要求学生自己再举一些多面体,数一数它们的面数,棱数,顶点数,把数据填入统计表内,看一看能否找出规律。
多面体顶点数面数棱数规律在个人思考、分组讨论的基础上,由小组的组长总结归纳规律:顶点数+面数-棱数=2教师指出这就是有名的欧拉公式:V+F E=2【设计意图】让学生学会分析、总结,从现象看到本质,掌握从特殊到一般的规律.同时可以培养学生的动手,创新能力和交流协作的能力。
2.介绍欧拉(利用电脑制作一段有关欧拉生平的录像)(大约1-2分钟)欧拉,瑞士数学家,16岁获硕士学位,毕生研究数学,是数学史上最“高产”的数学家,在世发表700多篇论文.欧拉的成功不是偶然,而是靠他那顽强的毅力和孜孜不倦的治学精神。
既使在他双目失明后的17年间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。
他的研究论著几乎涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。
欧拉还是数学符号发明者,如用 f ( x )表示.函数、∑表示连加、i表示虚数单位、π、e等。
【注】更多介绍见最后【阅读材料】。
【设计意图】通过录像,声情并茂介绍大数学家欧拉,使学生能够更好地了解欧拉的科学精神与顽强地毅力,促进学生非智力因素地发展.3.构造反例先让学生举反例,如果学生举不出,教师用几何画板进行引导演示过程中,要求学生计算这些多面体的顶点数,面数,棱数,然后将数据填入下表中情况1:正方体挖去一个四棱锥(可以动画展示)如下图1图1情况2:拖动O点使之下移(可以动画展示)如下图2图3图2情况3:拖动O点使之上移(可以动画展示)如上图3情况4:侧面两个四棱锥挖掉多面体顶点数棱数面数顶点数+面数 棱数图1图2图3图4【设计意图】深入探究,完善猜想. 可以培养学生空间想象能力,表达能力及创造能力。
4.简单多面体概念的引入提问: 图3中的多面体与我们学过的多面体有什么不同?教师指出:欧拉研究多面体有一种创意,那就是假设它的表面是用橡胶薄膜做成的,然后充气,在连续变形且不破裂的前提下,把平面变成了曲面。
(多媒体演示)教师顺势得出简单多面体的概念。
5.完善猜想如何修正猜想?【设计意图】自然地引入简单多面体概念,同时让学生发现欧拉公式的适用范围,从而完善猜想.通过多媒体动态演示可以更好地理解简单多面体地概念.6.构建平台1:分析欧拉公式:V+F-E=2若棱数和面数都减少相同的数值,则V+F-E的值改变吗?若棱数和顶点数都减少相同的数值,则V+F-E的值改变吗?7.构建平台2:(1)让学生探求平面图形的V+F-E 的值 学生探讨:1.图形中每增加一个顶点,V+F-E 的值为多少2.图形中每减少一个顶点,V+F-E 的值为多少3.图形中每减少一条棱, V+F-E 的值为多少4.图形中每增加一个面, V+F-E 的值为多少图4V +F-E=18.欧拉公式的证明提问:现在给你任意一个简单多面体(如下图1),假想它的面也是用橡胶薄膜做成的,内部是空的. 如何证明V+F-E=2?(学生很可能回答不出来,此时教师可进行适当的引导)图8图7图6图5图4图3图2图1DABCCFGGG教师引导1:拉成平面图后(图2) ,它的V+F-E 的值为多少?如何证明平面图的V+F-E=1?能不能通过减少棱数来实现呢?教师引导2:在平面图2中,若去掉它周围的一条棱,)此时V+F-E 有变化吗? 这样可以逐步把 “周围”的棱一 一去掉,同时保持V+F-E 的值不变. 最后剩下什么图形(如图8),此时V+F-E 的值为多少?( V+F-E=1)【设计意图】通过平台1引导学生探讨欧拉公式,其目的是让学生明白同时减少棱数,面数或同时减少棱数,顶点数,V+F-E 的值不变。
通过平台2让学生自主的探讨平面图形的点,线,面的关系,其目的是让学生明白平面图形的V+F-E =1,空间问题平面化。
如果学生提出其它证法,可以讨论,辨别后作出评价。
9.归纳反思(1)欧拉公式的探索过程:发现-猜想-再发现-完善猜想-证明猜想 (2)新的几何领域:拓扑学 10. 欧拉公式的另一证明把“立体图”的面ABCDE 煎掉后,其余各面铺开。
展开后,各面的棱数和顶点数没有变,而多边形内角和 只与边数有关,所以多面体各个面内角总和不变。
展开后,各面的棱数和顶点数没有变,而多边形内角和 只与边数有关,所以多面体各个面内角总和不变。
设多面体F 个面,各面边数分别为1n ,2n ,…,F n , 则内角总和为12()1802180F n n n F ++⋅-⋅+,设多面体有V 个顶点,底面是m 边形,则“展开图”有V m -个顶点在中间, 则内角总和为()180(2)180(2)180(2)360V m m m V -⋅+-⋅+-⋅=-⋅,∴12()1802180(2)360F n n n F V ++⋅-⋅=-⋅+,又∵122F n n n E ++=+,∴2V F E +-=.11.定理的意义(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律;(2)思想方法创新训练:在定理的发现及证明过程中,在观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;在方法上将底面剪掉,然后其余各面拉开铺平,化为平面图形(立体图→平面图)。
(3)引入拓扑新学科:“拉开图”与以前的展开图是不同的,从立体图到拉开图,各面的形状,以及长度、距离、面积、全等等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。
事实上,定理在引导大家进入一个新几何学领域:拓扑学。
我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。
(4)给出多面体分类方法:在欧拉公式中,令E F V p f -+=)(f (p)叫做欧拉示性数。
定理告诉我们,简单多面体的欧拉示性数f (p)=2。
除简单多面体外,还有不是简单多面体的多面体。
例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。
它的表面不能经过连续变形变为一个球面,而能变为一个环面,它的欧拉示性数为f (p)=16+16-32=0, 所以带一个洞的多面体的欧拉示性数等于零。
A B CD E A ' B 'C 'D 'E 'AD B 'CEA 'B C 'D 'E '【例题讲解】例1:欧拉定理在研究化学分子结构中的应用:1996年诺贝尔化学奖授予对发现60C 有重大贡献的三位科学家。
60C 是由60个C 原子构成的分子,它是形如足球的多面体。
这个多面体有60个顶点,以每一个顶点为一端点都有三条棱,面的形状只有五边形和六边形,计算60C 分子中五边形和六边形的数目。
解:设60C 分子中有五边形x 个,六边形y 个。
60C 分子这个多面体的顶点数60V =,面数F x y =+,棱数1(360)2E =⨯⨯,由欧拉定理得:160()(360)22x y ++-⨯= (1),另一方面棱数可由多边形的边数和来表示,得11(56)(360)22x y +=⨯ (2),由(1)(2)得:12x =,20y =∴60C 分子中五边形有12个,六边形有20个。
例2:有没有棱数是7 的简单多面体? 解:假设有一个简单多面体的棱数E=7. 根据欧拉公式得:V +F =E +2=9因为多面体的顶点数V ≥4,面数F ≥4,所以只有两种情形: V =4,F =5或V =5,F =4.但是,有4 个顶点的多面体只有4个面,而四面体也只有四个顶点.所以假设不成立, 没有棱数是7 的简单多面体例3.由欧拉定理证明:正多面体只有正四面体、正六面体、正八面体、正十二面体、正二十面体这五种。
证明:设正多面体的每个面的边数为n ,每个顶点连有m 条棱,令这个多面体的面数为F ,每个面有n 条边,故共有nF 条边,由于每条边都是两个面的公共边,故多面体棱数2nFE =(1) 令这个多面体有V 个顶点,每一个顶点处有m 条棱,故共有mV 条棱。
由于每条棱有两个顶点,故多面体棱数2mVE =(2) 由(1)(2)得:2E F n =,2E V m =代入欧拉公式:222E EE m n+-=.∴11112m n E+-= (3), ∵又3m ≥,3n ≥,但m ,n 不能同时大于3,(若3m >,3n >,则有11102m n +-≤,即10E≤这是不可能的)∴m ,n 中至少有一个等于3.令3n =,则1111032m E+-=>, ∴116m >,∴5m ≤,∴35m ≤≤.同样若3m =可得35n ≤≤. 【阅读材料】欧拉(Euler),瑞士数学家及自然科学家。
1707年4月15日出生于瑞士巴塞尔的一个牧师家庭,自幼受父亲的教育,13岁入读巴塞尔大学15岁大学毕业,16岁获硕士学位,1783年9月18日于俄国彼得堡去逝。
欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把数学推至几乎整个物理的领域。
他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学中的经典著作。
欧拉对数学的研究非常广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。
欧拉的惊人成就并不是偶然的,是他顽强意志的必然结果,他可以在任何不良的环境中工作,经常抱着孩子在膝上完成论文。
欧拉在28岁时,不幸一支眼睛失明,30年以后,他的另一只眼睛也失明了。
他双目失明以后,从没有停止过他的数学研究。
他以惊人的毅力和坚忍不拔的精神继续工作着,在他双目失明至逝世的十七年间,口述著作了几本书和400篇左右的论文。
由于欧拉的著作甚多,出版欧拉全集是十分困难的事情,1909年瑞士自然科学会就开始整理出版,直到现在还没有出完,计划是72卷。
在欧拉的886种著作中,属于他生前发表的有530本书和论文,其中不少是教科书。
他的著作文笔流畅、浅显、通俗易懂,读后引人入胜十分令读者敬佩。
尤其值得一提的是他编写的平面三角课本,采用的记号如,cos ,sin x x ……等等现今已经成为数学的国际语言。
欧拉1720年秋入读巴塞尔大学,由于异常勤奋和聪慧,受到约翰·伯努利的赏识,并给以特别的指导,在此期间欧拉同约翰的两个儿子尼古拉·伯努力和丹尼尔·伯努利也结成了亲密的朋友。